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Summary of results. NTGS laser ablation ICP–MS zircon and rutile age constraints 
on the basement to the Limbunya Group in drillhole LBD2

by
BL Reno, I Belousov and M Morissette

SUMMARY

New laser ablation inductively-coupled plasma mass spectrometry (LA–ICP–MS) U–Pb geochronological data are reported 
for zircon and rutile from samples from two intervals of drillhole LBD2 beneath the Limbunya Group of the Birrindudu 
Basin, Northern Territory. 

Sample LB23BLR001 is a metamudstone, from the depth interval 451.5–459.41 m, that has undergone amphibolite 
facies metamorphism. The sample preserves evidence for two phases of metamorphism: an early graphite–cordierite–rutile 
assemblage that defines a pervasive weak grain shape foliation; and a younger assemblage of randomly-oriented andalusite 
and rutile that overprints the graphite–cordierite fabric. Fabric development in this sample occurred ca 1.86–1.70 Ga, with a 
thermal overprint at approximately 1.62 Ga, and a later thermal, hydrothermal, or alteration event at 234 ± 34 Ma.

Sample LB23BLR002 is a metatuff or metamudstone from the depth interval 386.2–391.9 m that has been pervasively 
recrystallised. A rutile age of ca 2.06 Ga likely represents the timing of volcanism or deposition of the interval; it may 
alternatively represent the timing of pervasive recrystallisation and metamorphism in the sample. A younger age of ca 1.72 Ga 
records a metamorphic overprint. 

The probable deposition age of ca 2.06 Ga or older indicates that basement to the Limbunya Group in LBD2 may not 
belong to any known lithostratigraphic unit in the Tanami Region. If the deposition age is ca 2.06 Ga, then the basement rocks 
may instead correlate to, or be coeval with, the Woodcutters Supergroup in the Pine Creek Orogen; if the ca 2.06 Ga age 
represents the timing of recrystallisation of the sample, then the interval would correlate to an older lithostratigraphic unit. 
Further study is required to confidently interpret the lithostratigraphic unit and geological province beneath the Birrindudu 
Basin in drillhole LBD2.

The analyses aim to identify the rocks, and to determine their age and the timing of any metamorphism or alteration they 
experienced, providing insights into the lithology and provenance of the rocks beneath the Birrindudu Basin.
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INTRODUCTION

This Record presents the results of the mineral isotopic 
geochronology analyses conducted at the ARC Centre of 
Excellence in Ore Deposits (CODES) at the University of 

Tasmania on samples from drillhole LBD2 (Figure 1). 
LBD2 intersects metasedimentary and metaigneous 
rocks beneath the Birrindudu Basin; these rocks have 
been hypothesised to belong to, or be coeval with, rocks 
of the Tanami Region or the Pine Creek Orogen but their 
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Figure 1. Regional geological map showing location of samples analysed. The outcrop extent of the lithostratigraphic groups and 
supergroups discussed in the text from the Northern Territory Geological Survey (2023). The Inverway Metamorphics are too small 
to depict at this scale but are located within the area mapped as Limbunya Group. Some road data is copyrighted OpenStreetMap and 
available from https://www.openstreetmap.org and https://opendatacommons.org.
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Sample No. Latitude Longitude Lithology Age (Ma) Interpretation
LB23BLR001 -17.46228 130.128319 metamudstone 1.86–1.70 Ga pre-dates, or dates fabric development
LB23BLR001 -17.46228 130.128319 metamudstone ca 1.62 Ga thermal overprint
LB23BLR001 -17.46228 130.128319 metamudstone 234 ± 34 Ma thermal overprint
LB23BLR002 -17.46228 130.128319 metatuff or metamudstone ca 2.06 Ga deposition
LB23BLR002 -17.46228 130.128319 metatuff or metamudstone ca 1.72 Ga metamorphism

Table 1. Summary of LA–ICP–MS samples and results. Sample coordinates are referenced to the Map Grid of Australia 1994 (MGA94), 
Zone 53. Uncertainties are given at the 95% confidence level.

lithology and provenance have remained unconstrained. 
Zircon and rutile were analysed in two metasedimentary 
samples to constrain the age and identity of the unknown 
basement rocks as well as the timing of any metamorphism 
or alteration they experienced.

This record documents the location, lithology, and 
geologic context of each sample; the petrologic context 

of the zircon and rutile in each sample; and the isotopic 
data collected from zircon and rutile in each sample. 
A chronologic interpretation is also provided for each 
sample. A summary of sample information and analytical 
results is provided in Table 1, with sample and grain 
imagery in Appendix 1 and the full analytical results in 
Appendix 2.

Analytical procedures 

All zircon and rutile U–Pb isotopic analyses presented in 
this report were undertaken by LA–ICP–MS at CODES 
Analytical Laboratories, University of Tasmania.

Sample preparation 

Mineral separation commenced with ~200–400 g of 
rock crushed in a Cr-steel ring and milled to a grain size 
<4000 micron. Heavy minerals were separated using a gold 
pan, and magnetic minerals were removed by a Fe–B–Nd 
hand magnet. The heavy mineral portion was placed on 
double-sided tape, and epoxy glue was then poured to form a 
2.5 cm diameter disc mount. The mount samples were dried 
for 12 hours, polished using clean sandpaper and polishing 
lap, and then washed in distilled water in an ultrasonic bath.

Zircon and rutile location and imaging

The Mineral Liberation Analyser (MLA) at the Central 
Science Laboratory (CSL) of the University of Tasmania 
(Appendix 1) was used to create a full backscattered 
electron (BSE) image of each grain mount. Individual 
zircon and rutile grains were identified using a combination 
of relative BSE intensity and subsequent x-ray analysis. 

Zircon and rutile searches were performed on polished 
grain mounts coated with 20 nm of carbon using a FEI 
MLA 650 tungsten-filament scanning electron microscope 
(SEM) equipped with a Bruker Quantax Esprit 2.1 EDS 
system with two XFlash 5030 SDD detectors. BSE 
images and energy dispersive x-ray spectra for MLA were 
collected using an accelerating voltage of 20 keV, a total 
x-ray intensity ~600 000 cps, and a dead time of ~32% (on 
quartz). BSE contrast and brightness were adjusted on silver 
and epoxy. A resolution of 512 × 512 pixels was used at 194× 
magnification resulting in a pixel size of 3 × 3 µm2. The 
Bruker AMICS software version 3 and the particle method 
were used to discriminate mineralogy in the samples.

After classification and identification of zircon, 
cathodoluminescence (CL) imagery was collected for 
individual grains on the same SEM using a Gatan PanaCL-F 
CL detector at 10 kV accelerating voltage.

Isotope analysis

Trace element and U–Pb analyses were performed on zircon 
and rutile using an Agilent 7900 quadrupole inductively 
coupled plasma mass spectrometer (ICP–MS), coupled with 
a 193 nm Coherent Ar-F excimer laser equipped with the 
Resonetics S155 ablation cell (Table 2). 

Each analysis began with a 30-second blank gas 
measurement followed by a further 30-second analysis time 
once the laser was switched on. Rutile was ablated using 
20 µm spots at 5 Hz and an energy density of ~5 J/cm2. 
Zircon was ablated using 20 µm spots at 5 Hz and an energy 
density of ~2.1 J/cm2. A flow of He carrier gas at a rate of 
0.35 l/min carried particles ablated by the laser out from the 
chamber to be mixed with Ar gas and carried to the plasma 
torch. Approximately 2 ml of nitrogen was also added to 
increase sensitivity at heavier masses.

For rutile, isotopes measured were 24Mg, 27Al, 29Si, 43Ca, 
49Ti, 55Mn, 57Fe, 89Y, 90Zr, 93Nb, 118Sn, 140Ce, 146Nd, 147Sm, 
153Eu, 157Gd, 163Dy, 166Er, 172Yb, 178Hf, 181Ta, 182W, 202Hg, 204Pb, 
206Pb, 207Pb, 208Pb, 232Th, 235U and 238U  with each isotope 
measured every ~0.23 seconds with longer counting time 
on the Pb and U isotopes compared to the other elements. 

Data reduction, based on the method outlined in detail 
in Thompson et al (2016) and based on Chew et al (2014), 
involved a common Pb correction on the calibration 
standard. Intervals on the laser spectrum were chosen based 
on the lowest common Pb content and to avoid other mineral 
phases. For Pb/U ratios, downhole fractionation, instrument 
drift and mass bias correction factors were calculated 
using long-term average analyses of TB1 rutile (Thompson 
et al 2021, Jenkins et al 2023). For 207Pb/206Pb ratios (ages) 
instrument drift and mass bias correction factors were 
calculated using analyses of NIST610 glass and the Pb 
isotopic values of Baker et al (2004). Calibration of U–Pb 
ages was checked using several rutile reference materials 
that were treated as unknowns: R10 rutile (Luvizotto et al 
2009) and R19 rutile (Zack et al 2011).

For zircon, isotopes measured were 31P, 49Ti, 56Fe, 89Y, 
91Zr, 93Nb, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 
163Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu, 178Hf, 181Ta, 204Pb, 
206Pb, 207Pb, 208Pb, 232Th, 235U and 238U with each element 
being measured every 0.25 seconds with longer counting 
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Laser system Coherent Ar-F gas laser

Laser wavelength 193 nm

Laser mode Spot analysis

Nominal pulse width c 20 ns

Repetition rate 5 Hz

Spot size (diameter) 20 μm

Fluence 2.1 (zircon), 5 (ruitle) J/cm2

Ablation cell Resonetics S155

Ablation cell gas flow rate 
(He) 0.35 l/min

Tubing for gas flow Nylon 6

Laser beam focus Fixed at sample surface

ICP–MS
Agilent 7900 quadrupole 

ICP–MS

Interface cones cones for X lenses

Detector type
Dual mode Electron 

Multiplier

Detector mode

pulse counting for signals 
< 3.5 Mcps (Pb and U 

isotopes)

Detector vacuum 1.00E-05 Pa

Argon gas flow rate (l/min) l/min

Plasma 14 l/min

Auxiliary 0.8 l/min

Sample 1.05 l/min

RF Power 1350 W

Lenses (V)

Extract 1 2.4 V

Extract 2 -102 V

Data acquisition and processing

Samples per peak 1

Acquisition mode peak jumping

Integration type counts per second

Mass resolution 300

Oxide production rate <0.1 % ThO/Th

Analysis duration c 90 s

Blank 30 s

Ablation 30 s

Washout 21 s

Table 2. LA–ICP–MS operating and data acquisition parameters.

Reference 
material Phase Reference Reference method 

and isotope system
Preferred 

age ±2σ This Record 
(same system) ±2σ

TB-1 rutile Thompson et al 2021; Jenkins et al 2023 LA–ICP–MS 
Concordia 512.6 3.0 510 4

R10 rutile Luvizotto et al 2009 ID-TIMS 206Pb/238U 1091.6 3.5 1072 17

R19 rutile Zack et al 2011 ID-TIMS Concordia 489.5 0.9 467 8

91500 zircon Wiedenbeck et al 1995 ID-TIMS 206Pb/238U 1062.4 0.4 1065 3

Temora zircon Black et al 2003 ID-TIMS Concordia 416.81 0.22 418 2

Plesovice zircon Slama et al (2008) ID-TIMS Concordia 337.1 0.37 339 1

time on the Pb isotopes compared to the other elements. For 
each analysis, a subset of the data most closely matching 
a concordant composition was selected for quantification. 
For Pb/U ratios, downhole fractionation, instrument drift 
and mass bias correction factors were calculated using 
analyses of the 91500 zircon using values of Wiedenbeck 
et al (1995). For 207Pb/206Pb ratios and 207Pb/206Pb -based 
ages, instrument drift and mass bias correction factors were 
calculated using analyses of the NIST610 glass and the Pb 
isotopic values of Baker et al (2004). The calibration of 
the U–Pb ages was checked on analyses of Temora zircon 
(Black et al 2004) and Plešovice zircon (Sláma et al 2008) 
throughout the analytical session; these standards were 
treated as unknowns.

Trace element abundances in zircon and rutile were 
calibrated on NIST610 glass using values of Jochum et al 
(2011) and secondary standard corrections based on the 
compositions of glasses BCR-2G and GSD-1G (GeoReM 
preferred values; http://georem.mpch-mainz.gwdg.de/). 
Quantification was performed using 91Zr as the internal 
standard element for zircon and 49Ti as the internal standard 
element for rutile, normalizing all measured cations to 
100% total oxide, assuming stoichiometric proportions. 
LADR software (Norris and Danyushevsky 2018) was used 
for data reduction. The primary and secondary standards, 
as well as NIST610, BCR-2G and GSD-1G glasses, were 
analysed in duplicate at the beginning, end, and every 
60 minutes throughout the analytical session. 

Standard and reference material data are included in 
Appendix 2 and summarised in Table 3. Primary and 
secondary analyses are depicted in Figure 2 for rutile and 
Figure 3 for zircon.

Table 3. The preferred age of monazite reference standards used in this Record, and the geochronological results for the reference standards 
used in this Record.
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Figure 2. Tera-Wasserburg concordia diagram and weighted mean 
average plots for primary standards and reference rutile analysed 
in this study. The isotope system displayed in the weighted mean 
averages is the same as in the preferred age presented in Table 2. In 
concordia plots, the black dots show individual isotope analyses, 
green ellipses show 2σ confidence intervals, and the white ellipse 
represents the concordia age for the sample. In weighted mean 
average plots, analyses indicated in green are included in the mean 
and the analyses indicated in cyan are excluded. (a) TB-1 rutile 
concordia, (b) R10 rutile 206Pb/238U, and (c) R19 rutile concordia.

Figure 3. Tera-Wasserburg concordia diagram and weighted mean 
average plots for primary standards and reference zircon analysed 
in this study. The isotope system displayed in the weighted mean 
averages is the same as in the preferred age presented in Table 2. In 
concordia plots, the black dots show individual isotope analyses, 
green ellipses show 2σ confidence intervals, and the white ellipse 
represents the concordia age for the sample. In weighted mean 
average plots, analyses indicated in green are included in the 
mean and the analyses indicated in cyan are excluded. (a) 91500 
zircon 206Pb/238U, (b) Temora zircon concordia, and (c) Temora 
zircon concordia.
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Data reduction and presentation

In this Record, an individual determination of time 
calculated from a single high-precision isotope analysis 
is referred to as a date; a normally distributed population 
of individual dates interpreted to record a single mineral 
growth or recrystallisation event is referred to as an age 
(Martin et al 2007, Baldwin and Brown 2008, Reno 
et al 2012, Schoene et al 2013). Unless stated otherwise, 
207Pb/206Pb ages are quoted when discussing ages older than 
1500 Ma; 206Pb/238U ages are quoted when discussing ages 
younger than 1500 Ma (see Spencer et al 2016).

Data, dates, and age interpretations were calculated 
and depicted using the packages IsoplotR 6.4 (Vermeesch 
2018), ggplot2 (Wickham 2016), provenance (Vermeesch 
et al 2016), dplyr (Wickham et al 2023), tidyr (Wickham 
et al 2024), and viridis (Garnier et al 2024) in R 4.4.1 
(R Core Team 2024) running in RStudio 2023.12.1+402 
(Posit Team 2024). An R script containing the R code and 
data used for age calculations and production of all plots is 
included in Appendix 1; a subset of the relevant diagrams 
produced by that notebook is included as figures here.  

No common lead corrections were made on the data in 
this record. Concordance and discordance were calculated 
using the formulae:

and

Uncertainties on individual dates calculated from single 
isotope analyses are presented at a 1σ level; uncertainties on 
age calculations are presented at a 95% confidence level (see 
Vermeesch 2018 for details); and uncertainties on isotope 
and chemical data are presented at a 1σ level.

Assessment of concordance follows that of Spencer 
et al (2016) in that only analyses that fall along the 1:1 age 
line are within uncertainty of the concordia and therefore 
‘concordant’. Analyses that fall off this line cannot be 
considered concordant; radiogenic lead loss or some other 
isotopic disturbance cannot be discounted and must be 
considered in any age determination and interpretation.

Mineral abbreviations follow Siivola and Schmid (2007). 

Concordance (%) = 100 x

Discordance (%) = 100% – Concordance (%)

206Pb
238U date

207Pb
206Pb date
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SAMPLES ANALYSED

Drillhole LBD2

Drillhole LBD2 (Figure 4), drilled in December 2009 
to a depth of 751.6 m, targeted a magnetic and gravity 
anomaly within the Birrindudu Basin to assess the potential 
for Ni– Cu–PGE mineralisation related to rocks of the 
Kalkarindji Suite. Logging of the hole presented in Muir 
(2011) interpreted:

•  0–345.55 m: Limbunya Group of the Birrindudu Basin
•  345.55 m: unconformity
•  345.55–634.3 m: undivided Birrindudu Group of the 

Birrindudu Basin
•  634.3 m: unconformity
•  634.3–751.6 m: Inverway Metamorphics

The interpretation of Inverway Metamorphics at the 
base of the hole was based on the presence of that unit 
~19 km south-west of the drillhole location. Kositcin and 
Carson (2017) interpreted the Inverway Metamorphics 
to have a maximum depositional age of ca 1.87 Ga but 
also raised the possibility of the sample representing a 
correlative of the Tanami Group. But the sample location, 
photograph and description of the sample in Kositcin and 
Carson (2017) is also consistent with the sample instead 
belonging to the Stirling Sandstone of the Limbunya Group 
of the Birrindudu Basin. 

The age of the Birrindudu Group is constrained to be 
younger than ca 1.77 Ga, based on the age of the underlying 
Pargee Sandstone (Cross and Crispe 2007), and older than 
ca 1.65 Ga, based on the age of the overlying Limbunya 
Group (Fanning 1991).

Maximum depositional ages in the Limbunya Group are 
in the range ca 1.83–1.64 Ga (Dunster and Ahmad 2013), 
and a tuff in the Fraynes Formation near the top of the 
Limbunya Group provides a constraint of ca 1.64 Ga on the 
depositional age for that formation (Munson et al 2019).

Subsequent studies have suggested alternative 
interpretations of the stratigraphy intersected in LBD2. 
Schmid and Baumgartner (2024) found that rocks below 
the Limbunya Group between ~350 m and ~500 m 
include hydrothermally altered and metamorphosed 
mafic volcaniclastic rocks, inconsistent with Birrindudu 
Group stratigraphy. Kositcin and Carson (2024) obtained 
a SHRIMP U–Pb zircon age of ca 1.82 Ga for a feldspar 
porphyry sill at 562.50–563.00 m depth, which is older than 
the age range of the Birrindudu Group and would require 
the units beneath the ~345.55 m unconformity to be older 
than ca 1.82 Ga.

Accordingly, the identity and age of the units below the 
unconformity at the base of the Limbunya Group in LBD2 
remain poorly constrained. Kositcin and Carson (2024) 
present multiple hypotheses for an alternative stratigraphic 
interpretation, with a preferred model that assigns all the 
rocks below a depth of 345.55 m to the Ware Group of the 
Tanami Region. Other hypotheses include correlation with 
the Tanami Group of the Tanami Region, or with units of the 
Pine Creek Orogen. The identity of the rocks interpreted by 
Muir (2011) as Inverway Metamorphics remains untested.

In this study, two samples were taken from drillhole 
LBD2 in the Birrindudu Basin to provide additional 
constraints: sample LB23BLR001 in the interval 
451.5– 459.41 m, and sample LB23BLR002 in the interval 
386.2–391.9 m. These intervals were logged by Muir (2011) 
as metashale with quartz, cordierite, biotite, andalusite, 
chlorite, pyrite, graphite and chalcopyrite; they are in the 
interval interpreted by Schmid and Baumgartner (2024) as 
mafic volcaniclastic rocks.

Limbunya 
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Inverway 
Metamorphics¹

< ca 1.87 Ga⁴ (?)

Ware2 or 
Tanami3 group

Birrindudu Group¹
< ca 1.81 Ga

Ware Group2

ca 1.83–1.82 Ga
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ca 1.86–1.82 Ga

0 m
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Figure 4. Simplified geological log of drillhole LBD2 after 
Kositcin and Carson (2024). The log depicts the high level 
stratigraphy interpreted by Muir (2011), the revised stratigraphy 
proposed by Kositcin and Carson (2024) and the location of 
the two samples discussed in this Record. Grey text represents 
interpretations that are now considered unlikely.
1 preferred interpretation of Muir (2011)
2 preferred interpretation of Kositcin and Carson (2024)
3 alternate interpretation of Kositcin and Carson (2024)
4 Kositcin and Carson (2017)  
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LB23BLR001

Sample information
Sample ID: LB23BLR001
Collector: Barry Reno
1:250 000 mapsheet: LIMBUNYA
1:100 000 mapsheet: Gregorys Depot
Province/Region: unassigned
Longitude (GDA94): 130.128319
Latitude (GDA94): -17.46228
Drill hole: LBD2
Depth from (m): 451.5
Depth to (m): 459.41
Formal name: unassigned
Lithology: meta-mudstone

Interpreted age summary
Fabric development: at or after ca 1.86–1.70 Ga
Thermal overprint: ca 1.62 Ga
Thermal, hydrothermal, or alteration: 234 ± 34 Ma

Sample context

Sample LB23BLR001 is a mudstone that records an 
amphibolite facies metamorphic overprint (see Ashley 
et al 2025 for a detailed petrographic description). The 
interval is compositionally layered (Figure 5) with layers 
defined by variable amounts of graphite (Figure 6). A thin 
section from 459.0 m within the sampled interval reveals 
an early metamorphic assemblage, comprising cordierite–

muscovite–quartz–graphite±rutile, that forms a weak grain 
shape fabric defined by graphite and cordierite oriented 
co-planar to compositional layering. Andalusite (Figure 6) 
and rutile (Figure 7a,b) form randomly-oriented elongate 
porphyroblasts that overprint both the grain shape 
fabric defined by the early metamorphic assemblage 
and the compositional layering; the size and number of 
porphyroblasts relates to local composition within the 
interval, with andalusite laths up to 5–8 mm in length, and 
rutile up to 300 μm in length. Andalusite porphyroblasts 
have an inclusion assemblage of graphite and rutile 
(Figure 7c). Andalusite and cordierite are both retrogressed 
and generally occur as pseudomorphs of sericite ± clay 
replacing andalusite or cordierite. Minor sub-mm wide 
quartz veins (Figure 5) and faults (Figures 5, 6) are 
discordant from the compositional layering, the fabric, and 
the andalusite porphyroblasts. Rutile is estimated to be 
approximately 1% by volume of the rock. Rutile separated 
from the entire interval includes both laths and irregular 
shaped or ovoid shaped grains up to 1 mm in diameter.
 
Analytical results

A total of 100 analyses were carried out on rutile separated 
from sample LB23BLR001. The isotope data are presented in 
Appendix 1 and Figures 8–11. A plot of Sn and Nb for all 
analyses (Figure 8a) reveals two discrete rutile populations: 
Population 1 that forms a cluster of 47 analyses with Nb of 
750–1500 ppm; and Population 2 that forms a cluster of 40 
analyses with Nb < 350 ppm and Sn < 23 ppm. Likewise, a 

A2
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a

b

Figure 5. Selected HyLogger core imagery of drillhole LBD2, showing sampled interval (451.5–459.41 m). 
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Figure 6. Thin section of sample LB23BLR001 from 459.0 m depth within the sampled interval of drillhole LBD2. The dark and light 
banding relates to the amount of graphite in the sample and the transparent lath or diamond shaped porphyroblasts are sericite±clay-after-
andalusite. 

plot of Zr and Nb for all analyses (Figure 8b) shows that Zr 
concentration varies between the populations: Population 1 
having a narrow range of Zr, with 80% of Population 1 having 
Zr concentrations between 236–352 ppm; and Population 2 
having a wider range of Zr concentration that spans 4 
orders of magnitude in the range ~50–11 000 ppm. Thirteen 
analyses are outliers and not included in either population. 

A concordia plot shows that the two chemical populations 
define two distinct common Pb age trends (Figure 9): 
Population 1 defines a trend with a lower intercept 
1645 ± 47 Ma; and Population 2 defining a trend with a 
lower intercept at 243 ± 34 Ma. The two rutile populations 
have identical (or very similar) common Pb sources, 
with (207Pb/206Pb)c of 0.763 ± 0.007 for Population 1 and 
0.755 ± 0.008 for Population 2 (Figure 9). A kernel density 
estimate (KDE) using concordia calculated for each analysis 
by projecting an isochron from the common Pb composition 
through each individual analysis to the concordia line is 
shown in Figure 10. The KDE reveals that Population 1 is not 
normally distributed, and instead has a clear peak and an older 
tail; this indicates that the isochron fit through this population 
is a maximum estimate for the peak, and that the main age 
component in Population 1 is younger than the isochron 
lower intercept age of ca 1.65 Ga (Figure 10). The discrete 
mixture modelling algorithm of Galbraith and Laslett (1993), 
using the Bayes Information Criteria to choose the number of 
peaks (Vermeesch 2018), gives modelled age components of 
1863 ± 6 Ma (13%), 1792 ± 1 Ma (12%), 1697 ± 1 Ma (28%), 
1617 ± 3 Ma (34%), and 1504 ± 2 Ma (12%) (Figure 11). 

Interpretation

There are multiple populations of rutile in sample 
LB23BLR001 that are clearly defined by a combination of 
petrographic setting, trace element chemistry, and age. 

On a Tera-Wasserburg concordia diagram the two 
chemical populations correspond to two distinct common 
lead trends that both originate from the same initial common 
Pb composition: Population 1 with a lower intercept of 
ca 1643 Ma and Population 2 with a lower intercept of 
ca 243 Ma (Figure 9). 

A KDE of projected concordia ages reveals that 
Population 1 is not normally distributed, and instead has a 

strong peak and an older tail. This indicates that the lower 
intercept age is a maximum estimate for the main peak, and 
that the main peak is younger than ca 1.65 Ga. The ca 1.62 Ga 
age component from mixture modelling best estimates the 
peak and is interpreted to represent the main age component in 
Population 1. The uncertainty of ± 3 Ma on that age component 
represents the uncertainty on the peak deconvolution and does 
not fully estimate geological or analytical uncertainty; the 
true uncertainty is higher than this but is not estimated here. 

Population 2 forms a single age peak with the lower 
intercept age of 234 ± 34 Ma interpreted to best estimate 
the age for this population.  

Petrography shows that rutile occurs in two main 
settings: an older setting where rutile occurs as inclusions 
in porphyroblasts or is aligned in the fabric, and a younger 
population where rutile is randomly oriented and overprints 
the fabric. As age data presented here was collected from 
mineral separates and not in situ, it is not possible to directly 
link the two petrographic populations to ages. 

Nonetheless, there are several key interpretations that 
can be made confidently:

1. The older age populations associated with the older 
age tail on Population 1 (eg, the mixture model ages of 
ca 1.86 Ga, 1.79 Ga and 1.67 Ga) most likely pre-date, or 
represent the timing of fabric development in the rock. 
The specific ages may not have geological meaning but 
are instead consistent with rutile that spans these ages.

2. The main ca 1.62 Ga peak most likely represents a 
(hydro-)thermal overprint. This age likely post-dates 
the timing of fabric development because the overlying 
ca 1.64 Ga Limbuya Group rocks are undeformed.

3. The youngest age of ca 243 Ma post-dates fabric and 
andalusite development, and represents rutile associated 
with a (hydro-)thermal overprint. This overprint was not 
sufficient to reset the U–Pb system in rutile throughout 
the rock and could represent the timing of the minor 
discordant quartz veins and faults (Figures 5, 6) 
observed in the interval.

Future in situ analysis may further resolve the individual 
age components in the old tail and provide evidence to 
constrain the timing of deformation.
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Figure 7. Plane-polarised photo-
micrographs of rutile in sample 
LB23BLR001. (a) and (b) show 
examples of randomly-oriented rutile 
that overprints the graphite fabric; 
(c) is an example of rutile inclusion in a 
sericite-after-andalusite porphyroblast.
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Figure 9. Tera-Wasserburg concordia 
diagram for rutile in sample 
LB23BLR001. Black dots show 
individual isotope analyses, and the 
ellipses show 2σ confidence intervals. 
Ellipses and discordia are coloured 
based on the populations discussed in 
the text, with blue ellipses representing 
the low-Nb-low-Sn population, and 
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were excluded from age calculations. 
The black lines are discordia through 
the data calculated using the maximum 
likelihood algorithm of Ludwig (1998); 
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Figure 10. Kernel density estimate 
(curves) and histogram (bars) 
for concordia ages from sample 
LB23BLR001 calculated using the 
common.Pb = 2 method in IsoplotR; 
this method removes common Pb 
by projecting data along an inverse 
isochron from the calculated common 
Pb composition for each analysis point. 
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LB23BLR002

Sample information
Sample ID: LB23BLR002
Collector: Barry Reno
1:250 000 mapsheet: LIMBUNYA
1:100 000 mapsheet: Gregorys Depot
Province/Region: unassigned
Longitude (GDA94): 130.128319
Latitude (GDA94): -17.46228
Drill hole: LBD2
Depth from (m): 386.2
Depth to (m): 391.9
Formal name: unassigned
Lithology: metatuff or metamudstone

Interpreted age summary
Volcanism or maximum deposition, or recrystallisation: 
ca 2.06 Ga
Metamorphism: ca 1.72 Ga

Sample context

Sample LB23BLR002 was taken from an interval of fine-
grained, cream-colored meta-sedimentary rock in drillhole 
LBD2 (Figure 12). The interval has mm- to cm-scale 
bedding defined by Fe-staining within the rock, probably due 
to variable hematite composition or sulphide veins. Joints 
and cracks within the interval are Fe-altered. A thin section 
from a depth of 391.0 m (within the sampled interval) is 
sericite-rich with subordinate intergrown quartz-hematite, 
minor chlorite, and trace carbonate minerals (Figure 13). 
The interval has a low-grade metamorphic overprint that 
led to pervasive fine-grained recrystallisation of all phases 
obscuring primary sedimentary microstructures. Based on 
sample mineralogy, Ashley et al (2025) speculate that the 
interval is either an altered fine-grained tuff or has an Fe-
rich mudstone protolith. Although neither rutile or zircon 
were observed in thin section below a depth of 391 m, the 
mineral separate from the whole interval yielded abundant 
rutile up to 120 μm in diameter; individual rutile grains 
had both equant ovoil or sub-round, and elongate lath-like 
grain shapes. Forty-seven zircon grains large enough for 
analysis were found, with the largest grains 50–100 μm in 
diameter. Individual zircon grains include a range of grain 

morphologies including euhedral laths, ovoid shaped grains 
and irregularly shaped grains. CL imagery reveals a range of 
internal zonation patterns, including concentric, patchwork 
and irregular, and some grains have distinct cores and rims.

Analytical results – rutile

A total of 208 analyses were carried out on rutile from 
sample LB23BLR002. The isotope data are presented in 
Appendix 1 and Figures 14–17. A plot of Sn and Nb, shaded 
using the zirconium concentration for all rutile analyses 
(Figure 14), shows that most analyses form a tight cluster 
with Nb concentrations in the range 400–750 ppm and 
Sn < 5 ppm. However, there is also a spread of data to higher 
Sn or higher Nb contents and trace element chemistry does 
not reveal any clear populations. 

A concordia plot reveals that the rutile data form a clear 
but broad common Pb age trend (Figure 15). An isochron fit 
through the data has a lower intercept at 2094 ± 26 Ma, and a 
common lead composition of (207Pb/206Pb)c of 0.940 ± 0.004. 
A kernel density estimate (KDE) using concordia dates 
calculated for each analysis, done by projecting an isochron 
from the common Pb composition through each individual 
analysis to the concordia line, is shown in Figure 16. The 
KDE reveals that the ages are not normally distributed, but 
instead have a major peak at around 2.0 Ga, a substantial 
older tail, and a discrete, subordinate, younger peak; this 
indicates that the isochron fit through this population is 
most likely a maximum estimate for the peak, and that the 
main age in this population is younger than the isochron 
lower intercept age of ca 2.09 Ga. The discrete mixture 
modelling algorithm of Galbraith and Laslett (1993), using 
the Bayes Information Criteria to choose the number of 
peaks (Vermeesch 2018), gives modelled age components of 
3022 ± 51 Ma (3%), 2645 ± 10 Ma (20%), 2205 ± 5 Ma (30%), 
2057 ± 3 Ma (38%), and 1717 ± 29 Ma (9%) (Figure 17).

Analytical results – zircon

A total of 46 analyses were carried out on zircons separated 
from sample LB23BLR002. The isotope data are presented 
in Appendix 1 and Figure 18. All but one grain analysed 
appear to be metamict – with increased concentrations of 
Fe, La, Ti, and P – and experienced Pb loss and/or addition 
of common Pb. A concordia plot (Figure 18) does not 

Figure 12. Selected HyLogger core imagery of drillhole LBD2 showing sampled interval (386.2–391.9 m). 
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reveal a clear trend. A single concordant analysis for a non-
metamict grain has a 207Pb/206Pb date of 1919 ± 10 Ma. 

Interpretation

Based on rutile chemistry, there is no clear way to identify 
distinct populations in the data. Moreover, there was no rutile 
found in the thin section for sample LB23BLR002. As such, 
there are no petrographic or microstructural constraints on 
rutile petrogenesis. A KDE plot of projected concordia shows 
that the data are not normally distributed, with a main age 
peak at around 2 Ga, an older tail, and a discrete younger 
population around 1.7 Ga. Accordingly, the lower intercept 
age ca 2.09 Ga is not geologically meaningful because it is 
an average of all populations. Instead, the ca 2.06 Ga age 
component from mixture modelling best estimates the peak 
and is interpreted to represent the main age component. The 
uncertainty of ± 3 Ma on that age component represents 
the uncertainty on the peak deconvolution and does not 
fully estimate geological or analytical uncertainty; the true 
uncertainty is higher than this but is not estimated here. 

The sampled interval was interpreted by Schmid 
and Baumgartner (2024) to have a metamorphosed or 
hydrothermally altered volcaniclastic protolith, consistent 
with the petrographic observation of a pervasively 

recrystallised volcaniclastic rock or Fe-rich mudstone 
by Ashley et al (2025). The old tail in the rutile KDE is 
consistent with the sample having an inherited component.  

If the interpretation that the rock has a volcaniclastic 
protolith is correct, then it is likely that rutile would preserve 
chronologic evidence for both: (1) volcanism (and so by 
proxy deposition); and (2) the pervasive recrystallisation 
experienced by the sample. The two most probable ways to 
interpret the ages given these observations are:

1. The main peak at ca 2.06 Ga could record the timing of 
rutile crystallisation during volcanism, in which case 
the pervasive recrystallisation occurred at ca 1.72 Ga.

2. The pervasive recrystallisation could have had a 
significant effect on rutile in the sample. If so, the main 
peak at ca 2.06 Ga could record the timing of pervasive 
recrystallisation. In this case, the timing of volcanism 
and deposition would be older than ca 2.06 Ga, and 
the younger ca 1.72 Ga peak would relate to a younger 
overprint, similar to that experienced by sample 
LB23BLR001. 

If the hypothesis that the interval is volcaniclastic is 
incorrect, the deposition ages would instead be interpreted 
as a maximum deposition ages.

b
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Figure 13. (a) Thin section of sample 
LB23BLR002 from 391.0 m depth 
within the sampled interval of drillhole 
LBD2, and (b) photomicrograph 
showing diffuse aggregates of chlorite 
within a sericite-dominated matrix and 
irregularly distributed hematite. Chl = 
chlorite; Hem = hematite; Ser = sericite.
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Figure 14. Sn vs Nb chemistry, coloured 
by zirconium concentration for rutile in 
sample LB23BLR002.

Figure 15. Tera-Wasserburg 
concordia diagram for rutile in sample 
LB23BLR002. Black dots show 
individual isotope analyses, and the 
ellipses show 2σ confidence intervals. 
The black line is a discordia through 
the data calculated using the maximum 
likelihood algorithm of Ludwig (1998), 
and the grey buffer shows a 95% 
confidence interval on the regression. 
The uncertainties on the lower intercept 
and common lead calculations are 2σ 
absolute uncertainties, and 2σ absolute 
uncertainties augmented by √mswd to 
account for any overdispersion.
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Figure 16. Kernel density estimate 
(curve) and histogram (bars) 
for concordia ages from sample 
LB23BLR002 calculated using the 
common.Pb = 2 method in IsoplotR; 
this method removes common Pb by 
projecting the data along an inverse 
isochron from the calculated common 
Pb composition for each analysis point. 

Figure 17. Radial plot and discrete 
mixture modelling results for rutile data 
from sample LB23BLR002.
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Implications for LBD2

The rutile and zircon chronologic data presented here, 
together with that of Kositcin and Carson (2024), suggest 
that the basement to the Limbunya Group below 345.55 m 
in drillhole LBD2 is likely older than the Ware or Tanami 
groups (Figures 19, 20). 

The rutile age of approximately 2.06 Ga comes 
from a pervasively recrystallised interval with a likely 
volcaniclastic protolith (Schmid and Baumgartner 2024, 
Ashley et al 2025). There are two probable interpretations 
for this age: (1) it may record the timing of volcanism 
and sample deposition; or (2) it may record pervasive 
metamorphism and recrystallisation. A deposition age of, 
or older than, ca 2.06 Ga suggests that the interval does 
not belong to any known lithostratigraphic unit within the 
Tanami Region (Figure 20). It may instead correlate with 
the Woodcutters Supergroup in the Pine Creek Orogen – 
which is suggested to be ca 2.02 Ga based on limited zircon 
data (Figure 20; Worden et al 2004, Worden et al 2008) – 
or it may represent an older stratigraphic unit. However, this 
correlation is tentative and further data are needed. This 
age also provides a minimum deposition age for the rocks 
deeper than ~391.9 m. 

A third possible interpretation is that ca 2.06 Ga age 
represents a maximum deposition age for the sample; this 
is considered a less likely scenario given the volcaniclastic 
nature of the protolith and evidence for pervasive 
recrystallisation of the sample.

The ca 2.06 Ga rutile age from 391.9 m indicates 
that the basement of LBD2 below 634.4 m cannot be the 
same unit interpreted as Inverway Metamorphics by 
Kositcin and Carson (2017) and cannot be correlative of 
the ca 1.86– 1.82 Ga (Ahmad et al 2013) Tanami Group 
(Figure 20). Further work is required to establish the units’ 
age and identity.

Both samples experienced at least one metamorphic 
overprint. Sample LB23BLR001 preserves a grain shape 
foliation defined by graphite and cordierite, along with 
some rutile. It also shows a late thermal overprint defined 
by randomly-oriented andalusite and rutile that overprints 
the graphite-cordierite fabric. The older tail between 

Figure 19. Simplified geological log of drillhole LBD2 after 
Figure 2, summarising the available chronologic data. Previously 
published interpretations now considered unlikely are not shown. 
A volcanic age of ca 2.06 Ga for sample LB23BLR002 would 
require the interval beneath the Limbunya Group to be older 
than either the Ware or Tanami groups of the Tanami Region. 
Regionally, it might be coeval with the Woodcutters Supergroup. 
Further work is required to confidently assign an age and 
lithostratigraphic interpretation to this interval.

Figure 20. Timeline of events experienced by rocks below the unconformity with the overlying Birrindudu Basin (at 345.55 m) in drillhole 
LBD2. The events shown in italic black text at the bottom of the timeline are based on data from this Record except for the ca 1.82 Ga 
igneous intrusion age of Kositcin and Carson (2024). The timing of deposition of regional stratigraphic units is indicated by bold colour 
text above the timeline.

around 1.8 and 1.7 Ga may record fabric development in 
sample LB23BLR001. The youngest peak of approximately 
1.72 Ga in LB23BLR002 would relate to recrystallisation of 
that sample if the deposition age is ca 2.06 Ga, or otherwise 
to a later thermal or deformation event. This age range 
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indicates that this terrane was affected by tectonic events 
that occurred regionally throughout the North Australian 
Craton at this time (eg Ahmad and Scrimgeour 2013).

The youngest Proterozoic age of ca 1.62 Ga in sample 
LB23BLR001 likely post-dates deformation, as the 
overlying undeformed Limbunya Group is known to have 
been deposited by ca 1.64 Ga (Figure 20). This suggests 
a thermal or hydrothermal overprint at around 1.62 Ga 
that may record the timing of andalusite porphyroblast 
development potentially related to subsidence associated 
with development of the overlying Birrindudu Basin. 
Further in situ geochronology is required to confirm this.

The youngest age of 234 ± 34 Ma indicates a thermal 
or hydrothermal event affected the sample during the 
Permian–Triassic. As this age is rare in this part of 
Australia the regional significance of this overprint is not 
yet clear. However, apatite fission track ages from the Pine 
Creek Orogen and the Arnhem Province show a strong age 
component of ca 400–200 Ma, which Nixon et al (2020) 
proposed to be related to mantle-induced subsidence and 
the onset of sedimentation on the Money Shoal Basin, as 
well as regional uplift as a far-field effect of orogenesis in 
the Tasmanides. Rocks of drillhole LBD2 are likely to have 
been affected by the same processes.
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APPENDIX 1

Imagery of mineral grains and analysis locations in external attached .tiff and .png files.

APPENDIX 2

LA–ICP–MS U-Pb data in external attached Microsoft Excel files and R script used to process data.
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