SantonianResources

Santonian Resources Pty Ltd

Second Annual Report for EL31971

The Aladdin Project

V – Fe – Ti – Al

11/04/2020 to 10/04/2021

Prepared by Holdfast Exploration Pty Ltd

Table of Contents

1	A	Abstract	1
2	C	Copyright	1
3	L	ocation	2
4	Т	Title History	3
5	A	Access	3
6	(Geological Setting	3
7	E	Exploration History	5
8	C	Geological Activities and Office Studies	6
	8.1	Rock Chip Sampling	6
	8.2	Thin Section Analysis	8
	8.3	Wet Tabling	8
9	S	Summary	9
10) F	References	9
11	A	Appendix 1 – Rock Chip Sampling	10
12	2 A	Appendix 2 – Thin Section Analysis Report	1
13	S A	Appendix 3 – Geochemical Results from Wet Tabling	1

List of Figures

Figure 1: Locality Plan	.2
Figure 2: Tenement Location	.3
Figure 3: Regional Geology	.4
Figure 4: Stylised cross-section	.4
Figure 5 - Interpreted Regolith-landform Model of the Project Area	.5
Figure 6 Rock Chip Sampling Photos	.7
Figure 7 Rock Chip Sampling Location Plan	.7
Figure 8 Wet Tabling a crushed Duricrust Sample	.9

1 Abstract

Mineral Exploration License (EL) 31971 was granted to Santonian Resources Pty Ltd on 11th April 2019 for a term of 6 years. The Aladdin Project is located 40 km South East of the settlement of Top Springs and 240km South from Katherine. Historically the area has been suspected to have bornite mineralisation due to iridescent stains found within the laterite. Recent field trips conducted by Santonian Resources have found that the erroneous reports are mineralised laterite that comprises of high anomalous Vanadium, Iron, Titanium and Aluminium content. Furthermore, metallurgical studies have also shown that the mineralisation can be economically processed through leaching and magnetic separation processes. Second year operations consisted of exploratory investigations of strata differing to the duricrust which included rock chip sampling and thin section analysis. In addition, wet tabling of the duricrust was also explored to investigate upgrading Vanadium content. Rock chip sampling and thin section analysis showed a typical deeply weathered laterite profile is present where vanadium concentration exists as a solid solution substitution within the iron oxide where the titanium is hosted mostly within disseminated ilmenite and rutile. Wet tabling the duricrust sample was not effective to upgrade vanadium content.

2 Copyright

- A. Subject to 2, the tenure holder acknowledges that this Report, including the material, information and data incorporated in it, has been made under the direction or control of the Northern Territory (NT) within the meaning of section 176 of the Copyright 1968 (Cwth).
- B. To the extent that copyright in any material included in this Report is not owned by NT, the tenure holder warrants that it has the full legal right and authority to grant, and does hereby grant, to NT, subject to any confidentiality obligation undertaken by NT, the right to do (including to authorise any other person to do) any act in the copyright, including to:
- Use;
- Reproduce;
- Publish; and
- Communicate in electronic format to the public, such material, including any data and information included in the material.

Without limiting the scope of A and B above, the tenure holder warrants that all relevant authorisations and consents have been obtained for all acts referred to in 1 and 2 above, to ensure that the doing of any of the acts is not unauthorised within the meaning of section 29(6) of the Copyright Act (Cwth).

3 Location

The Aladdin Project is located 40 km South East of the settlement of Top Springs and 240km South from Katherine. The tenement comprises of 249 blocks covering an area of 818 square kilometres within the Montejinni East, Dungowan and Birrimba Pastoral Leases. Tenement EL 31971 is shown in Figure 2

Figure 1: Locality Plan

Figure 2: Tenement Location

4 Title History

EL 31971 was granted on to Santonian Resources Pty Ltd, a 100% wholly owned subsidiary of Holdfast Exploration, on 11th April 2019 by the Department of Primary Industries and Resources.

EL 31971 was applied to cover the extremities of the interpreted mineralised laterite containing anomalous Vanadium, Iron, Titanium and Aluminium content.

5 Access

The Aladdin Project is primarily accessed by graded stations tracks via the Buchanan Highway using 4x4 vehicles. Access to the project can become limited during seasonal monsoons and heavy rains between the months of November to April.

6 Geological Setting

The Daly Waters geological sheet (SE 53-1) shows an area that is geomorphically and tectostratigraphically dominated by several distinct and denuded Cretaceous-age lateritic-bauxite palae-land surfaces. Regionally, the topography comprises of isolated (dissected) low-amplitude mesas

separated by Tertiary drainages. The mesa tables appear to be capped by a laterally contiguous ferrigunous horizon that may be a potential host to base minerals. Multi-element anomalies comprising chemically inert and immobile elements (e.g. Ni, Al, V, Ti, REE), typically concentrate in laterally extensive ferruginous duricrust horizons lying atop bauxitic plateaux.

The stylised cross section shown in Figure 4 is an interpreted understanding of the stratifications that underly the lateritic occurrences. Isolated mesas form the remnant Cretaceous surface topography where Cambrian-aged Limestones and tholeiitic volcanics underlie the Cretaceous Sediments. The area is technically stable which is an important factor in the development of lateritic regoliths.

Figure 3: Regional Geology

Figure 4: Stylised cross-section

An interpret regional geological model for such enriched lateritic residua on relict regolith landforms is shown in Figure 5.

Figure 5 - Interpreted Regolith-landform Model of the Project Area

7 Exploration History

Historically, the Daly Waters geological map, published in 1969, noted iridescent stains in laterite leading to erroneous reports of copper mineralization in the area (Brown, 1969). It was believed that the iridescent stains resembled bornite mineralisation, however, geochemical analysis had shown low copper content throughout the laterite. The laterite has since been used for road construction material where numerous roadside quarries are present.

Other commodities of interest within the vicinity was explore by R W A Crowe in search for coober pedy style opals, Stockdale Prospecting Ltd and Aberfoyle Exploration Pty Ltd in search for diamonds and C.R.A. Pty Ltd in search for gold mineralisation.

8 Geological Activities and Office Studies

In conjunction with the Aladdin Projects drilling program that was being undertaken East of EL 31971, further exploratory investigations were undertaken which included rock chip sampling, thin section analysis and wet tabling. Such investigations were required to determine the Aladdin Projects ore genesis that will guide future exploration targets within the tenure.

8.1 Rock Chip Sampling

Exploration reconnaissance was undertaken throughout EL 31971 to search for rocks and strata that were different to the duricrust, which has dominated the Aladdin Projects exploration. Two strata of interest were found, the first (Rock 1-1 to Rock 1-3) being a Breccia that appears to have a thin coating of iron oxide with iridescent staining, the second (White Kaolin) appears to be kaolin clay that varies in colour from milky white to a milky purple. Both the Breccia and White Kaolin samples are shown in Figure 6. In addition, a layout map and coordinates of the rock chip samples are shown in Figure 7 and Table 1, respectively.

A portable XRF analysis was used on site to determine the mineral composition of the Rock Chip sampling where the results are attached in Appendix 1. Rock Chip 1-1 was rich in titanium content, especially for a lower grade Iron content. The White Kaolin, consisted of high silica and aluminium typical a kaolin clay, however, there was a consistent grade of Titanium at 0.5%. The varying strata below shows a strong indication of a pallid zone similar to a deeply weathered laterite profile as described by (Nahon, 1986).

White Kaolin

Purple Kaolin

Figure 6 Rock Chip Sampling Photos

Figure 7 Rock Chip Sampling Location Plan

Somelo ID	Coordinates (
Sample ID	Latitude	Longitude					
White Kaolin	16 20020	121 07962					
Purple Kaolin	10.00000	151.97002					
Rock 1-1							
Rock 1-2	16.69894	132.10369					
Rock 1-3							

Table 1 Rock Chip Sampling Coordinates

8.2 Thin Section Analysis

Both Breccia and Kaolin samples were submitted for thin section analysis to determine the mineralisation and elemental composition. The final thin section report is attached in Appendix 2 for reference. Key findings found that Vanadium ranged from 0.4% to 2.5% within the textual banding of the iron oxides. Furthermore, it was suggested that the Vanadium content of the Iron oxides is mostly as solid solution substitution. The titanium was observed to be within ilmenite, rutile and occasional traces of solid solution within the Iron oxides.

The Kaolin sample contained Iron oxide blebs that contained vanadium grades ranging from 0.5% to 1.9% presented as a solid solution similar to the iron oxide within the Breccia sample. The Titanium content is attributed to fine grains of rutile and ilmenite that are rarely disseminated within the sample.

8.3 Wet Tabling

Previous exploration programs had undertaken magnetic separation metallurgical work to upgrade the grade in vanadium from the duricust. However, simple gravity separation had not yet been explored to separate iron oxide from the duricrust. A representative duricrust sample was taken from rock chip sampling from Year 1 operation year and was crushed down to less than 2mm. The sample was then processed through a weta table classing the sample into 3 groups being, concentrate, tailings and slimes. All three 3 groups were submitted for geochemical analysis and is attached in Appendix 3 for reference. The findings were inconclusive as the grade of vanadium was distributed evenly throughout the sample.

Figure 8 Wet Tabling a crushed Duricrust Sample

9 Summary

The Aladdin Project has shown high anomalous Vanadium, Iron, Titanium and Aluminium content through multiple field trips. Furthermore, preliminary metallurgical test work warrants that the style of mineralisation can allow Vanadium to be extracted from economical mining processes including magnetic separation and leaching. In addition, the thin section analysis reinforces the metallurgical test work demonstrating that the Vanadium content is distributed free throughout the laterite.

The rock chip sampling identified varying strata including a pallid zone similar to a typical weathered laterite profile. Furthermore, thin section analysis suggests that the vanadium enrichment within the iron oxide is mostly as a solid solution substitution ranging from 0.4 to 2.5% in grade. The wet tabling results showed that this process was ineffective to upgrade the vanadium content from the duricrust.

10 References

Brown, M. (1969). Daly Waters, Northern Territory: explanatory notes.

Nahon, D. (1986). Evolution of iron crusts in tropical landscapes. *Rates of Chemical Weathering of Rocks and Minerals.*

11 Appendix 1 – Rock Chip Sampling

The Aladdin Project Drilling Program July 2020 Rock Samples Near Cluster Portable XRF Results Model: Olympus VANTA VMR (803071) Date Recorded: 26/07/2020 Mode: Geochem(2)

	Reading #	Mg	Al	Si	Р	S	К	Са	Ti	V	Cr	Mn	Fe	Со
поле-тр		PPM	%	%	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	%	PPM
Rock 1-1	41	0	1.8%	4.8%	138	502	0	609	0.6%	533	0	37	10.5%	0
Rock 1-2	42	0	0.8%	29.9%	0	0	0	0	1.7%	140	0	0	3.3%	0
Rock 1-3	43	0	9.6%	20.8%	0	0	0	0	1.5%	73	0	39	0.8%	0

The Aladdin Project Drilling Program July 2020 Rock Samples Near Cluster Portable XRF Results Model: Olympus VANTA VMR (803071) Date Recorded: 26/07/2020 Mode: Geochem(2)

	Reading #	Ni	Cu	Zn	As	Se	Rb	Sr	Y	Zr	Nb	Мо	Ag	Cd
поне-пр		PPM												
Rock 1-1	41	0	0	12	33	3	0	7	8	339	36	27	0	0
Rock 1-2	42	0	18	7	9	0	0	10	11	443	38	19	0	0
Rock 1-3	43	9	9	7	4	0	5	14	11	313	35	22	0	0

The Aladdin Project

Drilling Program July 2020 Rock Samples Near Cluster Portable XRF Results Model: Olympus VANTA VMR (803071) Date Recorded: 26/07/2020 Mode: Geochem(2)

	Pooding #	Sn	Sb	W	Hg	Pb	Bi	Th	U
HUIE-ID	Reduing #	PPM							
Rock 1-1	41	0	0	0	0	34	0	0	6
Rock 1-2	42	0	0	0	0	14	0	13	5
Rock 1-3	43	0	0	0	0	15	0	21	5

The Aladdin Project Rock Chip Sampling Purple/White Kaolin Clay

Portable XRF Results Model: Olympus VANTA VMR (803071) Date Recorded: 27/07/2020 Mode: Geochem(2)

	Pooding #	Mg	Al	Si	Р	S	К	Са	Ti	V	Cr	Mn	Fe
Hole-ID	Reduing #	PPM	%	%	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	%
White Strata	1	0	7.5%	27.9%	0	0	1859	0	0.7%	50	82	726	1.6%
White Strata	2	0	7.8%	28.6%	0	0	1236	0	0.6%	111	72	197	2.1%
Purple Strata	3	0	7.2%	29.2%	0	0	225	0	0.4%	170	88	41	2.7%
Purple Strata	4	0	8.0%	31.0%	0	0	334	0	0.4%	186	119	49	3.6%

White Kaolin

The Aladdin Project Rock Chip Sampling

Portable XRF Results Model: Olympus VANTA VMR (803071) Date Recorded: 27/07/2020 Mode: Geochem(2)

	0	0	
Purple/\	Nhite Ka	iolin Cla	зy

	Pooding #	Со	Ni	Cu	Zn	As	Se	Rb	Sr	Y	Zr	Nb	Мо
HUIE-ID	Reauling #	PPM											
White Strata	1	0	10	15	11	6	0	41	34	9	193	14	0
White Strata	2	0	6	14	9	8	0	38	33	9	199	12	0
Purple Strata	3	0	0	10	5	16	1	29	36	6	124	5	0
Purple Strata	4	0	8	13	9	21	3	28	36	6	134	5	0

White Kaolin

The Aladdin Project

Portable XRF Results Model: Olympus VANTA VMR (803071) Date Recorded: 27/07/2020 Mode: Geochem(2)

Rock Chip Sampling
Purple/White Kaolin Clay

	Pooding #	Ag	Cd	Sn	Sb	W	Hg	Pb	Bi	Th	U
HOIE-ID	Reduing #	PPM									
White Strata	1	0	0	0	0	0	0	8	0	8	0
White Strata	2	0	0	0	0	0	0	8	0	0	0
Purple Strata	3	0	0	0	0	0	0	19	9	0	0
Purple Strata	4	0	0	0	0	0	0	23	18	0	0

White Kaolin

12 Appendix 2 – Thin Section Analysis Report

Final Report Titanium and Vanadium analysis

Date: 26th November 2020 Reference: GB-20-J261

RIGHT SOLUTIONS | RIGHT PARTNER

www.alsglobal.com

THIS REPORT contains analyses, opinions or interpretations which are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Petrolab, and ALS Petrophysics (all errors and omissions excepted); ALS Petrophysics, Petrolab, and their officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well, or sand in connection which such report is used or relied upon.

Contents

Report key findings	iii
Introduction	1
Scope	1
Samples / fractions	1
Methods of investigation	2
Scanning electron microscopy	2
SEM results	3
VAS-01	3
VAS-02	7

List of figures

Figure 1: SEM analysis points for the VAS-01 sample	.4
Figure 2: Table of results for the VAS-01 sample	.5
Figure 3: Long acquisition elemental map for VAS-01 site of interest	.6
Figure 4: SEM analysis points for the VAS-02 sample	.8
Figure 5: Table of results for the analysis points in VAS-02	.9
Figure 6: Long acquisition elemental map for VAS-02 site of interest 3	10

Report key findings

Two samples were supplied for detailed mineralogical investigation, to characterise the likely mineral hosts of V and Ti within the samples.

The samples represents two different types of weathered iron-oxide rich samples. The first sample contains four principal minerals, namely quartz, rutile, ilmenite and Fe oxides, with variable amounts of clays. This has the appearance of a breccia with the Fe oxides, rutile and ilmenite present as a banded stockwork cutting a matrix dominated by disseminated clasts of rounded quartz. The second sample appears to represent a concretion or nodule with a thin Fe-oxide crust and internal disseminated blebs of Fe oxides.

For both samples the highest V grades are observed in the Fe-oxides (whether magnetite, hematite or goethite). Across the two samples the V grades range from 0.4 wt% to 2.5 wt%. Within the second sample V was also observed within chamosite (Fe-rich chlorite) at slightly lower concentrations (0.5 - 1.0 wt%), which may be either adsorbed vanadium or solid solution vanadium. The textural banding of the Fe oxides in sample 1 and of the crust in sample 2 suggest precipitation from solution and it is therefore considered likely that the V content of the Fe oxides is mostly as solid solution substitution. Within sample 2 the internal Fe oxide blebs may represent alteration of a pre-existing phase (e.g. sulfides). The similar V content suggests both the internal blebs and external crust were formed at the same time.

The titanium hosts are slightly different between the two samples. Within the breccia sample the hosts were ilmenite, rutile and as occasional trace solid solution within the Fe oxides. Texturally it appears to form as an interstitial phase, also within the breccia but as an earlier crystallizing phase than the later Fe oxides, which in places appear to mantle the Ti-oxide phases. For the second sample titanium is primarily hosted in clasts of rutile and ilmenite that are rarely disseminated within the sample and the oxide crust. There is also evidence for traces of titanium within the Fe oxide blebs that are widely disseminated within the sample.

It is important to note that V displays a strong overlap with Ti during EDX analysis and therefore the apparent hosts within rutile and ilmenite are not proven. This occurs because the secondary peak of Ti overlaps with the primary peak of V and can produce false positives. These are marked in red and italics within the results tables and further analysis with more sensitive equipment would be required to verify this occurrence. From experience, even if both phases were confirmed to contain V it would not be at those concentrations.

Introduction

Scope

Two samples were supplied for detailed mineralogical investigation, to characterise the likely mineral hosts of V and Ti within the samples.

This report presents the findings of a mineralogical investigation by scanning electron microscopy (SEM) on polished sections prepared from selected field sub-samples, with special reference to potential V and Ti hosts.

Samples / fractions

Sample / fraction	Туре	Date received
VAS-01	Rock chip	15/10/2020
VAS-02	Rock chip	15/10/2020

Sample VAS-02

В

General view of sample as received.

Image B Nikon D7000 digital camera Daylight balanced oblique light

Methods of investigation

Scanning electron microscopy

One polished block was prepared from each selected sample and coated with 20nm of carbon. The prepared samples were analysed using a ZEISS EVO MA 25 scanning electron microscope (SEM)¹ fitted with two Bruker xFlash 6|60 x-ray detectors for energy-dispersive X-ray spectroscopy (EDX) analysis. Six locations of interest were analysed from the sample focussed on analysing the range of minerals present. A long acquisition time was used to improve the detection levels for elements present at low levels (i.e. V). In addition to this a long acquisition elemental map was undertaken to attempt to display the spatial distribution of the elements of interest.

SEM results

VAS-01

The six fields of interest analysed are shown overpage (Figure 1) along with the named analysis points. The elemental data for each of the analysis points (Figure 2) are shown on the subsequent page, along with an elemental map of a site of interest on the last page (Figure 3).

The highest vanadium grades are observed in the Fe-oxide bands of which the most dominant form is magnetite based on the normalised Fe values (see site of interest 4 in particular). It is likely that some of the spectra reported as magnetite represent hematite or goethite due to the lower BSE response and the reason for the high Fe normalisation is uncertain. The V grades within the Fe-oxides range from 0.4 wt% to 2.5 wt%. The textural banding of the Fe oxides suggest precipitation from solution and it is therefore considered likely that the V content of the Fe oxides is mostly as solid solution substitution.

Titanium was observed within ilmenite, rutile and as occasional trace solid solution within the Fe oxides. Texturally it appears to form as an interstitial phase, also within the breccia but as an earlier crystallizing phase than the later Fe oxides, which in places appear to mantle the Ti-oxide phases.

It is important to note that V displays a strong overlap with Ti during EDX analysis and therefore the apparent hosts within rutile and ilmenite are not proven. This occurs because the secondary peak of Ti overlaps with the primary peak of V and can produce false positives. These are marked in red and italics within Figure 2 and further analysis with more sensitive equipment would be required to verify this occurrence. From experience, even if both phases were confirmed to contain V it would not be at those concentrations.

			Figure 2.	Table Of	Tesuits it		-vi samp			
Site of Interest	Spectrum	о	Si	S	Ті	v	Fe	Zr	Ва	Mineral
	VAS-01-1	24.9			70.9	3.6	0.7			Rutile
	VAS-01-2	25.5			69.3	3.5	1.8			Rutile
	VAS-01-3	24.7			38.4	2.3	34.6			Rutile
1	VAS-01-4	26.2			40.5	2.4	30.9			Rutile
-	VAS-01-5	23.1			40.2	2.4	34.2			Rutile
	VAS-01-6	19.3			2.3	0.5	77.9			Magnetite
	VAS-01-7	24.8	6.4		10.4	0.8	57.7			Ilmenite
	VAS-01-8	24.0			40.4	2.4	33.2			Ilmenite
	VAS-01-9	19.9		16.8					63.3	Baryte
	VAS-01-10	24.3			43.0	2.4	30.3			Ilmenite
	VAS-01-11	23.9	15.3		35.6	2.1	23.1			Ilmenite
	VAS-01-12	15.0			0.2	0.4	84.4			Magnetite
	VAS-01-13	26.3			0.6	0.4	72.7			Magnetite
2	VAS-01-14	18.2			0.5	0.4	80.9			Magnetite
	VAS-01-15	21.5			0.7	0.4	77.5			Magnetite
	VAS-01-16	21.0			0.4	0.4	78.2			Magnetite
	VAS-01-17	21.5			46.2	2.6	29.6			Ilmenite
	VAS-01-18	21.0	16.1		34.1	2.0	26.9			Ilmenite
	VAS-01-19	25.8			41.4	2.3	30.5			Ilmenite
	VAS-02-19	38.1	61.9							Quartz
	VAS-01-20	16.0	16.7					67.3		Zircon
	VAS-01-21	25.9			31.2	2.0	40.9			Ilmenite
3	VAS-01-22	26.2			41.7	2.4	29.7			Ilmenite
	VAS-01-23	25.3			42.9	2.5	29.3			Ilmenite
	VAS-01-24	23.2			41.8	2.5	32.5			Ilmenite
	VAS-01-26	26.9	30.6		18.3	1.1	23.1			Mixed Spectra
	VAS-01-26	18.6				1.4	80.0			Magnetite
	VAS-01-28	16.3				1.4	82.3			Magnetite
	VAS-01-29	18.9				2.4	78.6			Magnetite
	VAS-01-30	24.5	9.4		34.6	2.0	29.5			Ilmenite
	VAS-01-31	23.8	10.9		33.5	2.0	29.8			Ilmenite
	VAS-01-32	23.6	6.7		37.1	2.1	30.4			Ilmenite
	VAS-01-33	15.5				2.7	81.8			Magnetite
4	VAS-01-34	15.8				2.5	81.7			Magnetite
	VAS-01-35	14.4				1.1	84.5			Magnetite
	VAS-01-36	14.8				1.1	84.1			Magnetite
	ALS 01 37	15.1				1.3	83.6			Magnetite
	ALS 01 38	18.0				1.8	80.2			Magnetite
	ALS 01 39	18.8				0.9	80.3			Magnetite
	ALS 01 40	17.9				1.7	80.3			Magnetite
	ALS 01 41	23.8	10.4		35.3	2.0	28.5			Mixed Spectra
	VAS-01-41	45.6	54.4							Quartz
	VAS-01-43	23.2			41.8	2.5	32.5			Ilmenite
	VAS-01-44	22.1			42.8	2.5	32.5			Ilmenite
5	VAS-01-45	23.0			41.4	2.5	33.1			Ilmenite
-	VAS-01-46	24.4			43.7	2.5	29.5			Ilmenite
	VAS-01-47	21.7			43.0	2.6	32.7			Ilmenite
	VAS-01-48	23.1			44.1	2.6	30.3			Ilmenite
	ALS 01 49	22.1			44.5	2.7	30.7			Ilmenite
	VAS-01-57	13.3	13.1					73.6		Zircon
	VAS-01-58	12.9	13.1					73.9		Zircon
	VAS-01-59	24.1			44.1	2.6	29.2			Ilmenite
6	VAS-01-60	36.3	63.7							Quartz
	VAS-01-61	21.0			42.6	2.5	33.9			Ilmenite
	VAS-01-62	41.5	58.5							Quartz
	VAS02 63	36.2	63.8							Quartz

Figure 2: Table of results for the VAS-01 sample

VAS-02

The four fields of interest analysed are shown overpage (Figure 4) along with the named analysis points. The elemental data for each of the analysis points (Figure 5) are shown on the subsequent page, along with an elemental map of a site of interest on the last page (Figure 6).

The highest vanadium grades are observed in the Fe-oxide blebs which include magnetite, hematite and goethite. The V grades within the Fe-oxides range from 0.5 wt% to 1.9 wt%. V was also observed within chamosite (Fe-rich chlorite) at slightly lower concentrations (0.5 - 1.0 wt%), which may be either adsorbed vanadium or solid solution vanadium. The textural development of the Fe oxides is distinct from the banding observed in the first sample, with more blebs and less pervasive internal fill. The external crust does include the same level of V as the internal blebs suggesting they were formed at a similar time, though possibly with the internal blebs altering a pre-existing phase (e.g. sulfides).

Titanium is hosted within clasts of rutile and ilmenite that are rarely disseminated within the sample and the oxide crust. There is also evidence for traces of titanium within the Fe oxide blebs that are widely disseminated within the sample.

It is important to note that V displays a strong overlap with Ti during EDX analysis and therefore the apparent host within ilmenite is not proven. This occurs because the secondary peak of Ti overlaps with the primary peak of V and can produce false positives. This is marked in red and italics within Figure 5 and further analysis with more sensitive equipment would be required to verify this occurrence. From experience, even if ilmenite was confirmed to contain V it would not be at that concentration.

		Figure 5.		suits ior th	e allalysis	s points in	VA3-02		
Site of interest	Spectrum	о	AI	Si	Р	Ti	v	Fe	Mineral
	VAS-02 60	25.1					1.9	72.9	Magnetite
	VAS-02 61	26.4		7.0			1.6	65.0	Hematite
	VAS-02 62	26.7					1.8	71.6	Hematite
	VAS-02 63	42.7	25.7	31.6					Kaolinite
1	VAS-02 64	42.9		57.1					Quartz
	VAS-02 65	28.7					1.7	69.6	Hematite
	VAS-02 66	26.8					1.7	71.5	Hematite
	VAS-02 67	26.5					1.2	72.3	Hematite
	VAS-02 68	25.2					1.6	73.2	Magnetite
	VAS-02 69	23.4					1.8	74.8	Magnetite
	VAS-02 70	25.7					1.8	72.6	Magnetite
	VAS-02 71	35.1	12.2	14.7				38.1	Chlorite
2	VAS-02 72	44.4		55.6					Quartz
2	VAS-02 73	43.3		56.7					Quartz
	VAS-02 74	26.5		6.9			1.7	64.9	Hematite
	VAS-02 75	33.9	8.1	15.6				42.4	Chlorite
	VAS-02 76	27.4					1.7	70.9	Hematite
	VAS-02 77	25.4	7.2	8.6	2.4		1.1	55.3	Goethite
	VAS-02 78	43.5		56.5					Quartz
	VAS-02 79	31.9				41.9	2.2	23.9	Ilmenite
	VAS-02 80	27.4		10.7			1.6	60.3	Goethite
	VAS-02 81	40.3	26.4	30.9				2.5	Kaolinite
3	VAS-02 82	24.8					1.9	73.3	Magnetite
	VAS-02 83	26.8	5.5	7.9			1.5	58.3	Goethite
	VAS-02 84	40.1	27.2	32.7					Kaolinite
	VAS-02 85	40.0	17.0	21.5	7.8			13.7	Chlorite
	VAS-02 86	35.3	9.3	23.8				31.7	Chlorite
	VAS-02 87	43.5		56.5					Quartz
	VAS-02 88	29.2	8.6	13.7			1.0	47.4	Chlorite
	VAS-02 89	29.4	10.6	36.5		2.4	0.5	20.6	Chlorite
4	VAS-02 90	18.9		9.3			1.5	70.3	Hematite
	VAS-02 91	21.7	3.0	6.5			1.5	67.3	Hematite
	VAS-02 92	39.2		60.8					Quartz
	VAS-02 93	15.8					1.8	82.1	Hematite
	VAS-02 94	19.1					1.5	79.1	Hematite
E	VAS-02 95	14.4					2.0	83.4	Magnetite
5	VAS-02 96	15.5				4.2	2.2	78.2	Magnetite
	VAS-02 97	23.6				71.5	3.2	1.6	Rutile
	VAS-02 98	14.8					2.0	83.0	Magnetite
	VAS-02 99	22.7				40.2	1.9	35.2	Ilmenite
	VAS-02 100	44.9				31.4	1.7	22.0	Ilmenite
6	VAS-02 101	41.1				53.8	2.4	2.7	Rutile
	VAS-02 102	45.0				0.7	1.0	53.2	Goethite
		13.0				0.7	1.0	55.2	Socume

Figure 5:	Table of results	for the analysis	points in	VAS-02
-----------	------------------	------------------	-----------	---------------

13 Appendix 3 – Geochemical Results from Wet Tabling

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 7 3243 7222 Fax: +61 7 3243 7218 www.alsglobal.com/geochemistry

ALS Perth is a NATA Accredited Testing Laboratory. Corporate Accreditation No: 825, Corporate Site No: 23001.

CERTIFICATE PH20302316

Project: 344702

This report is for 3 Concentrate samples submitted to our lab in Perth, WA, Australia on 18-DEC-2020.

The following have access to data associated with this certificate:

PETER PIROMANSKI	BEN PIROMANSKI	PETER PIROMANSKI
BEN PIROMANSKI		

To:HOLDFAST EXPLORATION PTY LTD 1 BEELARA WAY WANEROO WA 6065 Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-JAN-2021 This copy reported on 20-JAN-2021 Account: HOLDFAST

SAMPLE PREPARATION						
ALS CODE	DESCRIPTION					
WEI-21	Received Sample Weight					
PUL-QC	Pulverizing QC Test					
LEV-01	Waste Disposal Levy					
LOG-22	Sample login - Rcd w/o BarCode					
BAG-01	Bulk Master for Storage					
PUL-31h	Pulverize 750g to 85% < 75 um					
SPL-22	Split sample - rotary splitter					
PUL-23	Pulv Sample - Split/Retain					
SPL-21	Split sample - riffle splitter					

ANALYTICAL PROCEDURES								
ALS CODE	DESCRIPTION							
ME-MS61	48 element four acid ICP-MS							

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Cameron Brosnan, Laboratory Manager, Perth

***** See Appendix Page for comments regarding this certificate *****

32 Shand Street

WEI-21

Recvd Wt.

Method

Stafford Brisbane QLD 4053 Phone: +61 7 3243 7222 Fax: +61 7 3243 7218 www.alsglobal.com/geochemistry

PUL-QC

Pass75um

To: HOLDFAST EXPLORATION PTY LTD **1 BEELARA WAY** WANEROO WA 6065

Project: 344702

ME-MS61

Ca

ME-MS61

Cd

ME-MS61

Bi

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-JAN-2021 Account: HOLDFAST

ME-MS61

Cs

ME-MS61

Cu

ALS Perth is a NATA Accredited Testing Laboratory. Corporate Accreditation No: 825, Corporate Site No: 23001.

ME-MS61

Al

ME-MS61

As

ME-MS61

Ba

ME-MS61

Be

ME-MS61

Ag

CERTIFICATE OF ANALYSIS	PH20302316

ME-MS61

Co

ME-MS61

Cr

ME-MS61

Ce

Analyte Units LOD	Recvd Wt. kg 0.02	Pass75um % 0.01	Ag ppm 0.01	AI % 0.01	As ppm 0.2	Ba ppm 10	Ве ppm 0.05	Bi ppm 0.01	Ca % 0.01	Cd ppm 0.02	Ce ppm 0.01	Co ppm 0.1	Cr ppm 1	Cs ppm 0.05	Cu ppm 0.2
	1.12 5.74 0.79	91.0	0.08 0.08 0.08	7.07 6.86 6.96	54.0 51.3 47.7	130 130 130	1.03 0.99 0.92	0.54 0.53 0.53	0.03 0.03 0.03	<0.02 <0.02 <0.02	33.4 32.5 33.9	1.2 1.2 1.1	144 142 140	1.14 1.13 1.19	22.2 21.4 20.6
	Analyte Units LOD	Analyte Units LOD 1.12 5.74 0.79	Analyte Units LOD Recvd Wt. Pass75um kg % 0.02 0.01 1.12 91.0 5.74 0.79	Analyte Units LOD Recvd Wt. kg Pass 75um % Ag ppm 1.12 91.0 0.08 5.74 0.08 0.79 0.08	Analyte Units Recvd Wt. kg Pass75um % Ag Al LOD 0.02 0.01 0.01 0.01 1.12 91.0 0.08 7.07 5.74 0.08 6.86 0.79 0.08 6.96	Analyte Units Recvd Wt. Pass7Sum g Ag Al As LOD 0.0 0.01 0.01 0.01 0.2 1.12 91.0 0.08 7.07 54.0 5.74 0.08 6.86 51.3 0.79 0.08 6.96 47.7	Analyte Units Recvd Wt. by Pass75um % Ag ppm Al As Ba 1.0D 0.02 0.01 0.01 0.2 10 1.12 91.0 0.08 7.07 54.0 130 5.74 0.08 6.86 51.3 130 0.79 0.08 6.36 47.7 130	Analyte Units Revol % Mag % Ag ppm Ag ppm Mag % Ag ppm Mag % Ba Ba Be 1.00 0.02 0.01 0.01 0.01 0.2 10 0.05 1.112 91.0 0.08 7.07 54.0 130 1.03 5.74 0.08 6.96 47.7 130 0.99 0.79 0.08 6.96 47.7 130 0.92	Analyte Units LOD Reced Wt. Pass7sum % Ag ppm Al ppm As ppm Ba Be Bi 1.02 0.01 0.01 0.01 0.2 10 0.05 0.01 1.12 91.0 0.08 7.07 54.0 130 1.03 0.54 5.79 0.08 6.86 51.3 130 0.92 0.53 1.12 91.0 0.08 6.96 47.7 130 0.92 0.53 0.79 0.08 6.96 47.7 130 0.92 0.53	Analyte Record Wt. Pass72um Ag Al As Ba Be Bi Ca Units kg % ppm ppm ppm ppm ppm ppm ppm ppm ppm 0.01 0.01 0.01 0.2 10 0.05 0.01 0.01 1.12 91.0 0.08 6.86 65.3 130 1.03 0.54 0.03 5.74 0.08 6.96 47.7 130 0.92 0.53 0.03 0.79 0.08 6.96 47.7 130 0.92 0.53 0.03	Analyte Recv4 tv. Pass75um Ag Al As Ba Be Bit Ca Cd Units 0.02 0.01 0.01 0.01 0.02 10 0.05 0.01 0.01 0.02 1.12 91.0 0.08 7.07 54.0 130 1.03 0.54 0.03 <0.02	Analysis Record WL Pess 25 km Ag Al As Ba Be Bi Ca Cd Ce 100 0.02 0.01 0.01 0.01 0.02 10 0.05 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 33.4 0.02 33.5 0.03 -0.02 33.9 0.03 -0.02 33.9 0.03 -0.02 33.9 0.03 -0.02 33.9 0.03 -0.02 33.9 0.03 -0.02 33.9 0.03 -0.02 33.9 0	Analyte UO Becod Wt. Pass/2 sum (0.02) Ag Al As Ba Be Bit Ca Cd Cc Co 100 93 W pom pon 0.01 0.02 0.03 0.03 -0.02 33.4 1.2 0.79 0.08 6.96 47.7 130 0.92 0.03 -0.02 33.9 1.1	Analyse Record WL Pass75 wm Ag Al As Ba Be Bi Ca <thca< th=""> Ca <thca< th=""> Ca<td>Analyse Record Wite Pissy Stam Ag Al As Ba Be Bit Ca <thc< td=""></thc<></td></thca<></thca<>	Analyse Record Wite Pissy Stam Ag Al As Ba Be Bit Ca <thc< td=""></thc<>

32 Shand Street

Stafford Brisbane QLD 4053 Phone: +61 7 3243 7222 Fax: +61 7 3243 7218 www.alsglobal.com/geochemistry

To:HOLDFAST EXPLORATION PTY LTD 1 BEELARA WAY WANEROO WA 6065

Project: 344702

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-JAN-2021 Account: HOLDFAST

ALS Perth is a NATA Accredited Testing Laboratory. Corporate Accreditation No: 825, Corporate Site No: 23001.

CERTIFICATE OF ANALYSIS PH20302316

Sample Description	Method	ME-MS61														
	Analyte	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
	LOD	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10
AVI-005-CONCENTRATE		32.7	25.1	0.54	4.3	0.158	0.29	20.8	5.1	0.04	<5	4.44	0.04	9.0	6.3	320
AVI-005-TAILINGS		31.8	24.0	1.39	3.9	0.144	0.29	20.0	4.8	0.04	6	4.51	0.04	8.9	6.0	310
AVI-005-SLIMES		31.3	23.7	0.66	4.3	0.139	0.30	20.9	4.9	0.04	7	4.19	0.04	9.0	5.9	310

32 Shand Street

Stafford Brisbane QLD 4053 Phone: +61 7 3243 7222 Fax: +61 7 3243 7218 www.alsglobal.com/geochemistry

To:HOLDFAST EXPLORATION PTY LTD 1 BEELARA WAY WANEROO WA 6065

Project: 344702

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-JAN-2021 Account: HOLDFAST

ALS Perth is a NATA Accredited Testing Laboratory. Corporate Accreditation No: 825, Corporate Site No: 23001.

ΝΛΙ Υςις	DU20202216
INALISIS	FH20302310

Sample Description	Method	ME-MS61														
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	Tl	U
	Units	ppm	ppm	ppm	%	ppm	%	ppm	ppm							
	LOD	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1
AVI-005-CONCENTRATE		36.1	17.2	<0.002	0.05	0.39	18.6	5	2.6	47.6	0.66	0.15	15.05	0.436	0.10	2.5
AVI-005-TAILINGS		35.7	16.0	<0.002	0.05	0.38	17.7	5	2.5	45.9	0.66	0.18	14.20	0.426	0.10	2.3
AVI-005-SLIMES		35.4	17.1	<0.002	0.05	0.39	17.1	4	2.6	47.6	0.63	0.15	14.20	0.435	0.10	2.2

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 7 3243 7222 Fax: +61 7 3243 7218 www.alsglobal.com/geochemistry

To:HOLDFAST EXPLORATION PTY LTD 1 BEELARA WAY WANEROO WA 6065

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19-JAN-2021 Account: HOLDFAST

ALS Perth is a NATA Accredited Testing Laboratory. Corporate Accreditation No: 825, Corporate Site No: 23001.

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
AVI-005-CONCENTRATE AVI-005-TAILINGS AVI-005-SLIMES		708 683 660	1.5 1.4 1.4	6.9 6.7 6.8	77 35 30	149.5 143.5 146.5	

Project: 344702

CERTIFICATE OF ANALYSIS PH20302316

32 Shand Street Stafford Brisbane QLD 4053 Phone: +61 7 3243 7222 Fax: +61 7 3243 7218 www.alsglobal.com/geochemistry

ALS Perth is a NATA Accredited Testing Laboratory. Corporate Accreditation No: 825, Corporate Site No: 23001.

To:HOLDFAST EXPLORATION PTY LTD 1 BEELARA WAY WANEROO WA 6065

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 19-JAN-2021 Account: HOLDFAST

Project: 344702

CERTIFICATE OF ANALYSIS PH20302316

		CERTIFICATE CO	MMENTS									
	REEs may not be totally solubl	AN. le in this method.	ALYTICAL COMMENTS									
Applies to Method:	ME-MS61											
	ACCREDITATION COMMENTS											
Applies to Method:	NATA Accreditation covers the performance of this service but does not cover the performance of ALS Perth Sample Preparation. Corporate Accreditation No: 825, Corporate Site No: 23001. The Technical Signatory is Wendy Wong, Senior QC Chemist ME-MS61											
	LABORATORY ADDRESSES											
	Processed at ALS Perth located at 31 Denninup Way, Malaga, Australia. Processed at ALS Perth Sample Preparation at 79 Distinction Road,											
Applies to Method:	BAG-01	LEV-01	LOG-22	ME-MS61								
	PUL-23 SPL-22	PUL-31h WEI-21	PUL-QC	SPL-21								