

Dhupuma Plateau Bauxite Mine Surface Water Baseline Monitoring January 2017

Gulkula Mining Company Pty Ltd

www.ecoz.com.au

This page intentionally blank

Document Control Record

Document Code:	EZ16121-C0301-SWS-R-0002
Catalogue Number:	D000076865
Project Manager:	Emma Smith
Author(s):	Emma Smith
Approved by:	Ray Hall
	AND
Approval date:	28 February 2017

DOCUMENT HISTORY

Version	Issue Date	Brief Description	Reviewer/Approver/Author
1.A	23 Feb 2017	Report preparation by author	E. Smith
1.B	27 Feb 2017	EcOz internal review	G. Ewers
1.C	28 Feb 2017	Sent to client for review	S. Vellacott
1.D	6 Mar 2017	Client comments incorporated	E.Smith

Recipients are responsible for eliminating all superseded documents in their possession.

EcOz Pty Ltd. ABN: 81 143 989 039 Winlow House, 3rd Floor 75 Woods Street DARWIN NT 0800 GPO Box 381, Darwin NT 0800

 Telephone:
 +61
 8
 981
 1100

 Facsimile:
 +61
 8
 981
 1102

 Email:
 ecoz@ecoz.com.au
 Internet:
 www.ecoz.com.au

RELIANCE, USES and LIMITATIONS

This report is copyright and is to be used only for its intended purpose by the intended recipient, and is not to be copied or used in any other way. The report may be relied upon for its intended purpose within the limits of the following disclaimer.

This study, report and analyses have been based on the information available to EcOz Environmental Consultants at the time of preparation. EcOz Environmental Consultants accepts responsibility for the report and its conclusions to the extent that the information was sufficient and accurate at the time of preparation. EcOz Environmental Consultants does not take responsibility for errors and omissions due to incorrect information or information not available to EcOz Environmental Consultants at the time of preparation of the study, report or analyses.

This page intentionally blank

Table of Contents

1	In	troduction1
	1.1	Mining project summary1
	1.2	Potential risks to surface water quality and mitigation measures
	1.3	Surface water monitoring objectives
2	S	urface Water Monitoring Program5
	2.1	Climate and rainfall summary5
	2.2	Surface water monitoring sites
	2.	2.1 Surface water monitoring site access information
	2.3	Water quality parameters
	2.4	Monitoring frequency11
	2.5	Water quality assessment criteria11
3	В	aseline Surface Water Monitoring Results12
	3.1	Rainfall and site conditions12
	3.2	Baseline physical parameters12
	3.3	Baseline laboratory parameters13
	3.4	Summary of baseline surface water quality15
4	С	onclusions and Recommendations16
5	А	cronyms17
6	R	e fe renc es

Tables

Table 2-1.	Routine surface water monitoring site details	8
Table 2-2.	Water quality parameters to be monitored	.10
Table 3-1.	Physical parameter results for April 2016 and January 2017 monitoring rounds	.12
Table 3-2.	Laboratory parameter results for April 2016 and January 2017 monitoring rounds	.14

Figures

Figure 1-1.	Location of Dhupuma Plateau Bauxite Mine, associated infrastructure, and boundaries of EL30)226
and ML310	25	4
Figure 2-1.	Climate data – Gove Airport (Station 14508)	5
Figure 2-2.	Location of surface water monitoring sites and catchment boundaries	7
Figure 2-3.	Routes taken to surface water monitoring sites during January 2017 monitoring round	9

Appendices

Appendix A Laboratory Documentation for 7 April 2016 and 23 and 24 January 2017 Sampling

1 Introduction

Baseline surface water monitoring of watercourses draining the proposed Dhupuma Plateau Bauxite Mine was undertaken by EcOz Environmental Consultants (EcOz) on 23 and 24 January 2017. The Gulkula Mining Company Pty Ltd (GMC) commissioned EcOz to undertake this work, which is a component of the environment protection measures included in GMC's *Mining Management Plan* (MMP) and *Water Management Plan* (WMP). The preparation and approval of these plans is required under the Northern Territory (NT) *Mining Management Act* prior to the commencement of mining.

This report outlines the:

- Objectives of surface water monitoring,
- Justification for sample site locations, water quality parameters measured, and frequency of sampling,
- Site access information relevant to the on-going monitoring program,
- Water quality assessment guidelines to be used for on-going monitoring,
- Baseline surface water monitoring results for 23 and 24 January 2017, data interpretation, assessment, and implications for on-going monitoring, and
- Other relevant recommendations for surface water monitoring to be undertaken prior to, and during, mining operations.

This work builds on that undertaken and reported in *EL 30226 Hydrology and Hydrogeology Assessment*, prepared for GMC by EcOz, April 2016 (EcOz 2016).

1.1 Mining project summary

The proposed bauxite mine is located on the Dhupuma Plateau, approximately 30 km south of Nhulunbuy and 16 km south-west of Yirrkala (Figure 1-1). The plateau is encompassed by Exploration Licence EL30226. The area within EL30226 planned for mining and associated infrastructure is encompassed by Mineral Lease ML31025; granted 25 January 2017.

Mining operations are scheduled to start mid-2017 and will comprise surface strip mining of bauxite (maximum depth ~4.5 m), using front-end loaders (or similar), with a disturbance area of 35 ha planned in the first four years; including mining areas and associated infrastructure. The mine will have a life of up to 15 years, and involve a ramp-up from 100,000 to 500,000 tonnes per annum over the first four years. From project year five onwards, an estimated 15 ha per year are planned to be disturbed, predominantly from mining, with a total of less than 260 ha to be temporarily disturbed over the life of the mine.

Rehabilitation will be performed progressively, with pit voids mined and then back-filled and seeded within 12 months of initial clearing.

Acid mine drainage (AMD) potential is very low given the surface lateritic bauxite layer, mined to a maximum 4.5 m depth, is oxidised and contains negligible sulfide minerals (based on exploration drilling results).

There will be no ore processing activities on-site; the ore will be hauled to the Rio Tinto Alcan Gove hard stand ore stockpile, approximately 14 km from the Dhupuma plateau. The mining operation will not require any process / mine water dams and will also not generate waste rock, residues or tailings, and therefore no storage facility is required. Explosives will not be used; front end loaders, or other similar machinery will dig and load the ore, and haul it directly to Rio Tinto.

Infrastructure at the mine site includes an admin office, workshops, power supply, a water tank and worker accommodation facilities (Figure 1-1).

Water supply for the mine will be an existing groundwater bore; Production Bore 2 (Garma Bore). The majority of water use at the mine will be for dust suppression; estimated at 50 kL/day during the dry season and 25 kL/day during the wet season. Other minor water use includes for on-site office amenities (approx. 1.25 kL per day for the five employees working onsite at any one time), and for accommodation at the nearby college for 25 workers using approx. 6.25 kL per day.

Wastewater from the on-site office amenities and accommodation goes to a septic system and associated absorption trench.

1.2 Potential risks to surface water quality and mitigation measures

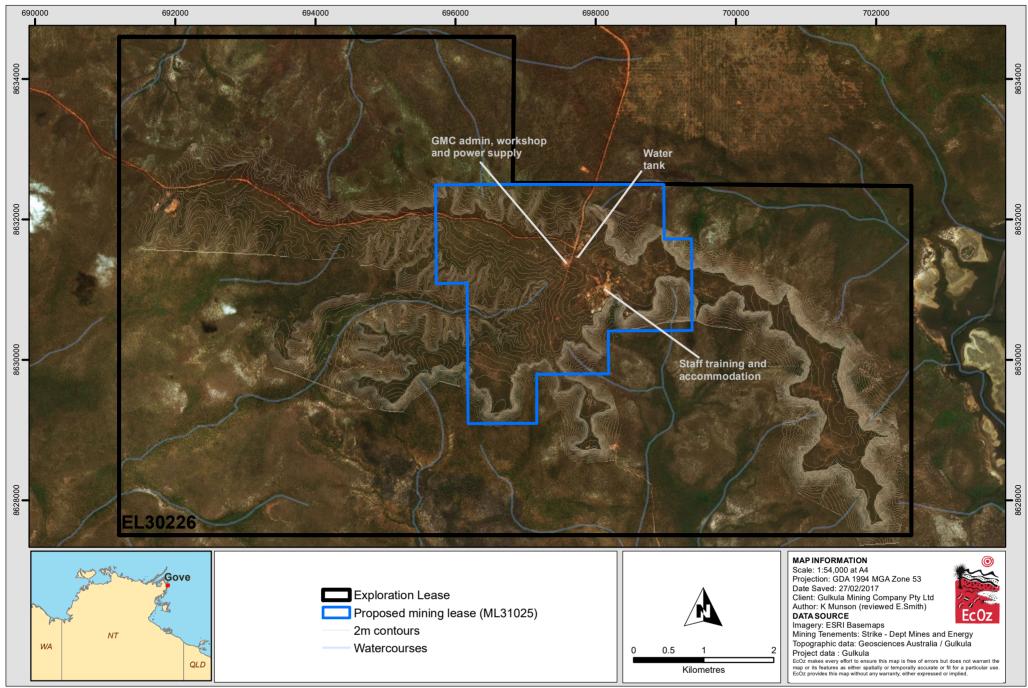
Mine surface water monitoring programs must be designed with regard to the potential risks to downstream surface water bodies. Based on the small-scale mining operations outlined above, potential risks to downstream surface water quality are considered low. Given that AMD risk is negligible, there will be no ore processing on site, and no requirement for tailings dams, process dams or waste stockpiles, potential risks are limited to:

- Erosion of exposed soil within mining and other operational areas leading to sedimentation and increased turbidity and other contaminants in run-off into surface water bodies.
- Pumping out of water that accumulates in mining pits after rainfall to allow mining to continue, and subsequent discharge of this potentially poorer quality water to the environment. Note that groundwater levels will remain well below the base of mining pits for the majority of time and pit dewatering will only be required during the wet season.
- Spills or leakage of fuels, oils, lubricants, or other hazardous materials used and stored on site into run-off leading to surface water bodies.

In regards to groundwater extraction for mine water requirements, groundwater aquifers and groundwaterdependant flows to surface water bodies will not be affected, based on the hydrogeological assessment by EcOz 2017a. The volume of groundwater used is extremely small in comparison to annual groundwater aquifer recharge during the wet season – i.e. annual wet season recharge across the plateau is estimated as 1645 ML, compared to annual groundwater extraction for mining of 16.5 ML (1%).

The following mitigation measures, included in the mine's MMP, aim to minimise the potential risks listed above:

- Maintenance of a 20 m-wide buffer zone from the edge of the plateau, within which no mining will occur.
- Mining pits will be progressively rehabilitated to minimise the active area of mining at any one time.
- An Erosion and Sediment Control Plan will be developed, and all erosion and sediment control measures installed, prior to ground disturbance. Surface water flows will be mapped and down-slope erosion potential evaluated. Sediment basins and diversion banks will be established where high flows are expected. Clean run-off will be diverted around the site.
- The volume of water accumulating within pits will be minimised by diverting clean water around pits, and minimising pit area through progressive rehabilitation. All water must be tested and meet the assessment criteria prior to release.
- All fuels, oils, lubricants etc. will be managed in accordance with the mine's Hydrocarbon Management Plan. Hydrocarbon and chemical storage areas will be monitored daily and/or weekly to detect and respond to any leaks or spills. All hydrocarbons and chemicals will be stored in approved bunded enclosures in accordance with Australian Standards and Government Regulations.



- In the event of a spill, the area will be isolated, all contaminated soil removed and taken to a licensed waste facility. Spill response kits will be maintained on site and staff trained in their use.
- All hazardous wastes will be stored in dedicated storage areas on site for a limited period, before transport to the Nhulunbuy Corporation Waste Disposal Facility, in accordance with the Corporation's standards. All hazardous waste will be stored and transported in compliance with the NT *Dangerous Goods Act*.

1.3 Surface water monitoring objectives

Surface water monitoring aims to protect the environment downstream of the mine by providing early warning of impacts to surface water quality arising from bauxite mining operations including the potential risks identified in Section 1.2 above. The surface water monitoring program is outlined in Section 2 below and includes the:

- Establishment of routine surface water monitoring sites representative of all catchments receiving run-off from the mine.
- Selection of water quality parameters relevant to the detection of mining impacts and the identified potential risks.
- Collection of baseline (pre-mining) surface water quality data at the routine monitoring sites to enable differentiation of impacts caused by mining from pre-existing conditions and to determine appropriate assessment criteria (trigger values).
- Regular sampling of routine surface water quality monitoring sites during operations to assess the results against baseline conditions and detect any impacts.
- Maintenance of all surface water quality results in a central database.
- Analysis and interpretation of long-term surface water quality trends using the database in order to satisfy annual MMP reporting required by the regulator.

Path: Z:101 EcOz_Documents\04 EcOz Vantage GIS\EZ16005 - Dhupuma Surface and Groundwater Studies\01 Project Files\Figure 1-1 Location of Dhupuma Plateau Bauxite Mine, associated infrastructure, and boundaries of EL30220 and proposed ML31025.mxd

Figure 1-1. Location of Dhupuma Plateau Bauxite Mine, associated infrastructure, and boundaries of EL30226 and proposed ML31025

2 Surface Water Monitoring Program

2.1 Climate and rainfall summary

Climate and rainfall is a major consideration in designing the surface water monitoring program. The Dhupuma Plateau has a tropical climate with a distinct dry season (approximately May to November) and wet season (December to April). Figure 2-1 depicts climate data from Gove Airport (station 14508) located approximately 30 km north-west of the site.

Annual average rainfall is 1450 mm, the bulk of which occurs during the wet season, with negligible rain between June and October. The wettest months are January, February and March with averages of 274 mm, 281 mm and 280 mm, respectively.

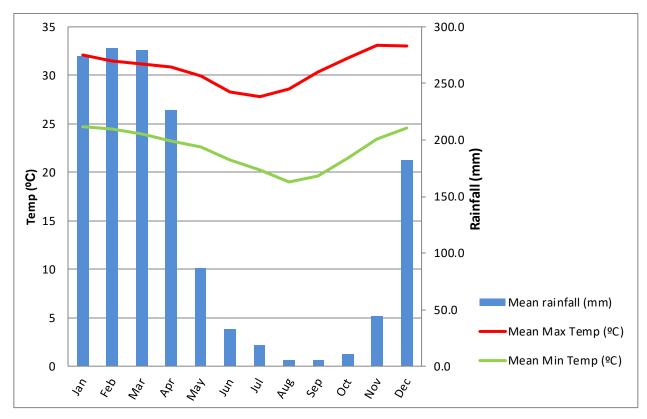


Figure 2-1. Climate data – Gove Airport (Station 14508)

2.2 Surface water monitoring sites

Figure 2-2 shows the location of surface water monitoring sites and catchment boundaries in relation to the proposed mining area. The catchments north and west of the proposed mining area drain into the Latram and Giddy Rivers respectively, which flow into Melville Bay. The two un-named catchments to the south and east (labelled A and B respectively) drain into the Gulf of Carpentaria. The proposed mining area lies almost entirely within the un-named catchment A, with a very small proportion in the Latram River catchment.

Two surface water monitoring sites were established and sampled in April 2016 during a previous field survey; DPSW1 and DPSW2 (see EcOz 2016). Both these sites are located within un-named catchment A. DPSW1 lies on a watercourse that drains the eastern side of the proposed mine site and includes the staff training and accommodation facilities and associated amenities and septic absorption trench. DPSW2 lies on a watercourse that drains the majority of the proposed mining pit area, associated roads, office and workshops.

The watercourse of DPSW1 is considered perennial, and maintains waterholes and some flow even at the end of the dry season (see Prowse et al 1999). The watercourse of DPSW2 may dry up by the end of the dry season depending on total rainfall during the previous wet season and consequent groundwater aquifer recharge and maintenance of flows from groundwater seepage. Similarly, the extent of flow remaining in the perennial watercourse of DPSW1 at the end of the dry season would depend on the amount of groundwater aquifer recharge during the previous wet season.

Surface water monitoring sites DPSW4 and DPSW5 were established and sampled for the first time during the recent monitoring round on 23 and 24 January 2017. These are both within the Latram River catchment located on tributaries north and northeast of the mine respectively. The watercourse of DPSW4 drains a small proportion of the proposed mining area, and DPSW5 does not receive any run-off from the mining area and will hence be used as a background reference site.

Proposed surface water monitoring site DPSW6 has not yet been visited or sampled. This site will be included in future monitoring rounds. It is located west of the mine site on an upper tributary of the Giddy River. The watercourse of DPSW6 does not receive any run-off from the mine and will represent an additional background reference site.

The watercourses of DPSW4, DPSW5 and DPSW6 would likely dry up during most dry seasons depending on total rainfall for the previous wet season.

Table 2-1 summarises the details of the five routine surface water monitoring sites.

Two sites have been visited and sampled but deemed unsuitable for the ongoing monitoring program. DPS1 was sampled during the April 2016 field survey and is located south of the mine in a small drainage line, or soak (referred to as the 'west soak'), fed by a spring (Figure 2-2). The soak supports an area of rainforest at the base of the plateau and has been the subject of habitat surveys for the endangered Gove Crow Butterfly, *Euploea alcathoe enastri* (see EcOz 2017b). The soak is not considered suitable as a surface water monitoring site because it has poor surface water flow, and is not representative of surface water run-off from the mining area. It is more representative of groundwater, which will be covered in the mine's groundwater monitoring program. The final design of this monitoring program will be developed following the drilling of groundwater monitoring bores in April / May 2017 and may include this soak as a groundwater monitoring site.

A site identified as DPSW3 was sampled during the January 2017 monitoring round but due to difficult access was later deemed as unsuitable as an ongoing monitoring site and was replaced by DPSW5. Original site names are retained to be consistent with laboratory documentation (Appendix A) and field data documentation.

Path: Z:\01 EcOz Documents\04 EcOz Vantage GIS\EZ16005 - Dhupuma Surface and Groundwater Studies\01 Project Files\Figure 2-2. Location of surface water monitoring sites and catchment boundaries.mxd

Figure 2-2. Location of surface water monitoring sites and catchment boundaries.

Site ID	Coord MGA Z	inates one 53	Catchment	Monitoring Purpose	Flows		
	Easting	Northing					
DPSW1	136.8285	-12.4028	Un-named catchment A – site receives run-off from eastern side of mine, staff training and accommodation facilities and associated amenities and septic absorption trench.	Early detection of surface water impacts from mining, in particular eastern side of mining area, staff training and accommodation facilities.	Likely to flow throughout the year.		
DPSW2	136.7952	-12.3788	Un-named catchment A – site receives run-off from majority of mine pit area, associated roads, office and workshops.	Early detection of surface water impacts from mining, in particular mine pit area, office and workshop.	May dry up towards end of dry season.		
DPSW4	136.8051	-12.3549	Latram River catchment – site receives run-off from small proportion of mine pit area.	Early detection of surface water impacts from mining, in particular northern edge of mine.	Likely to dry up in dry season.		
DPSW5	136.7909	-12.3544	Latram River catchment – site does not receive any run-off from mine.	Background reference site	Likely to dry up in dry season.		
DPSW6	136.7762	-12.3774	Giddy River catchment – site does not receive any run-off from mine.				

2.2.1 Surface water monitoring site access information

The following site access information is provided to assist those undertaking future surface water sampling.

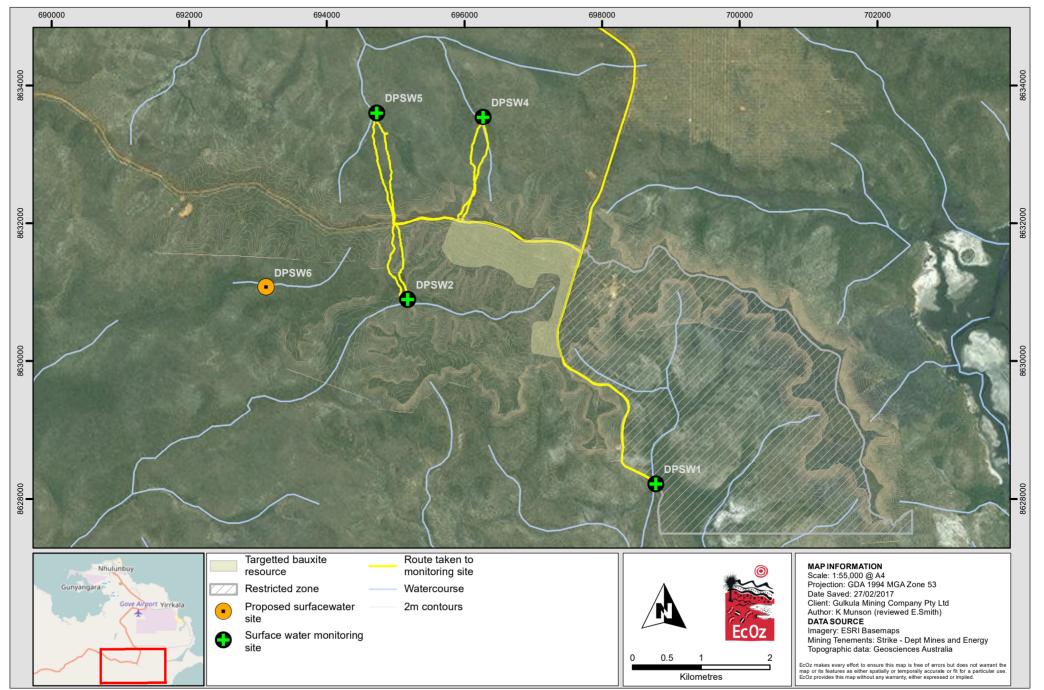
DPSW1

Surface water monitoring site DPSW1 is located approximately 3.6 km south-east of the old Dhupuma College (Garma) site (Figure 2-3). DPSW1 can be accessed using a vehicle via the Port Bradshaw Road and sampled from the boxed culvert bridge on the median strip.

DPSW2

DPSW2 is located approximately 1.2 km south of the Central Arnhem Highway or 2.5 km west-south-west of the Dhupuma College site (Figure 2-3). DPSW2 can be accessed using a vehicle via the existing drill lines (tracks); followed by a short hike of approximately 1 km through the bush. Vehicle access using the existing drill lines during the wet season is limited and often not possible. At these times, the site can be accessed via a short 1.2 km hike through the bush from the Central Arnhem Highway; as was done during the January 2017 monitoring round (Figure 2-3).

DPSW4


DPSW4 is located approximately 1.5 km north of the Central Arnhem Highway (Figure 2-3). This site can only be accessed on foot through the bush; there are no existing tracks or drill lines.

DPSW5

DPSW5 is located approximately 1.6 km north of the Central Arnhem Highway (Figure 2-3). This site can only be accessed on foot through the bush; there are no existing tracks or drill lines.

DPSW6

DPSW6 has not yet been visited, but an approximate location has been chosen for future sampling (Figure 2-3, coordinates in Table 2-1). Access to this site will require a short hike of approximately 1 km through the bush from the Central Arnhem Highway; there are no existing tracks or drill lines.

Red box in

Path: Z:\01 EcOz_Documents\04 EcOz Vantage GIS\EZ16005 - Dhupuma Surface and Groundwater Studies\01 Project Files\Figure 2-3. Routes taken to surface water monitoring sites during January 2017 monitoring.mxd

Figure 2-3. Routes taken to surface water monitoring sites during January 2017 monitoring.

2.3 Water quality parameters

Water quality parameters selected for monitoring are based on the risks identified in Section 1.2, and listed in Table 2-2.

Physical parameters are measured in-situ using hand-held field meters and provide basic information on current water quality condition. Parameters such as temperature, pH and oxidation reduction potential (ORP) can influence the form of other parameters, such as the solubility of metals and amount of ammonia versus ammonium. Dissolved oxygen (DO) levels can indicate the water source and/or presence of algal blooms, or excessive organic loads. Turbidity indicates possible erosion and sedimentation issues; as does electrical conductivity (EC), total dissolved solids (TDS) and salinity. EC, pH and ORP can also indicate the water source (surface or groundwater) or AMD issues.

Samples for laboratory analysis are collected into laboratory-supplied bottles for required sample preservation, and delivered to the laboratories for analysis. Cations, anions and alkalinity reflect the water source and can indicate major changes in water chemistry due to catchment impacts. Dissolved metals may increase due to the discharge of mine pit water. Nutrients may increase due to erosion and sedimentation, or seepage from septic systems. Hydrocarbons can indicate pollution from vehicles, machinery, workshops or fuel storages.

Table 2-2. Water quality parameters to be monitored

Physical Parameters

Temperature, pH, Dissolved Oxygen (DO), Electrical Conductivity (EC), Total Dissolved Solids (TDS), Salinity, Turbidity, Oxidation Reduction Potential (ORP). Also record flow conditions, L/s if possible, or fast/medium/slow and any other relevant site observations such as algae, pollutants, odour, water colour etc.

Laboratory Parameters

Major Anions: Hydroxide Alkalinity as CaCO₃, Carbonate Alkalinity as CaCO₃, Bicarbonate Alkalinity as CaCO₃, Total Alkalinity as CaCO₃, Sulfate as SO₄, Chloride

Major Cations: Calcium, Magnesium, Sodium, Potassium

Nutrients: Ammonia (NH₃) as N, Nitrite (NO₂) as N, Nitrate (NO₃) as N, Nitrite + Nitrate (NO_x) as N, Total Kjeldahl Nitrogen (TKN) as N, Total Nitrogen (TN) as N, Total Phosphorus (TP) as P, Reactive Phosphorus as P

Dissolved Metals: Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Zinc, Mercury

Hydrocarbons:

<u>Total Petroleum Hydrocarbons (TPH) NEPM 1999 Fractions:</u> C6 - C9 Fraction, C10 - C14 Fraction, C15 - C28 Fraction, C29 - C36 Fraction, C10 - C36 Fraction (sum)

<u>Total Recoverable Hydrocarbons NEPM 2013 Fractions:</u> C6 - C10 Fraction, C6 - C10 Fraction minus BTEX (F1), >C10 - C16 Fraction, >C16 - C34 Fraction, >C34 - C40 Fraction, >C10 - C40 Fraction (sum), >C10 - C16 Fraction - Naphthalene (F2)

<u>BTEXN:</u> Benzene, Toluene, Ethylbenzene, meta- & para-Xylene, ortho-Xylene, Total Xylenes, Sum of BTEX, Naphthalene

2.4 Monitoring frequency

Surface water monitoring will be undertaken at least three times during the wet season and once during the dry season at sites where flow is maintained. Sampling frequency and timing will be reviewed after a year of data collection.

Suggested timing of monitoring rounds in 2017 / 2018:

2017 mid-late wet season: January (already completed), March, May - all five monitoring sites.

2017 dry season: August – only sites with flow, probably only DPSW1, possibly DPSW2.

<u>2017/2018 wet season</u>: November/December (depending on rainfall and flows), January/February, March/April – all five monitoring sites.

2.5 Water quality assessment criteria

Until adequate baseline reference data is collected, the ANZECC 2000 *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* (ANZECC 2000 guidelines) will be used for comparison purposes. This includes Tables 3.3.4-3.3.5 *Tropical Australia: default trigger values for physical and chemical stressors for tropical Australia for slightly disturbed ecosystems*, in particular those for "Upland river" systems, and Table 3.4.1 *Trigger values for toxicants*, in particular those for "freshwater, 95% species protection". The specific trigger values are listed in Tables 3-1 and 3-2 below.

Baseline reference data will be important for defining site-specific trigger values for the monitoring program. This reference data will include the pre-mining monitoring data collected from all five routine monitoring sites, and on-going data collected from the two reference sites (DPSW5 and DPSW6) which are located outside any influences from mining operations but subject to similar catchment conditions as the sites downstream of mining operations (DPSW1, DPSW2, DPSW4).

It is important to note that the limited baseline data collected so far (April 2016 and January 2017) indicate that some parameters are already outside the ANZECC 2000 trigger values (see Section 3 below). As such, a breach in these trigger values during mining operations would not necessarily indicate impacts from mining.

3 Baseline Surface Water Monitoring Results

3.1 Rainfall and site conditions

The latest January 2017 monitoring round coincided with typically the wettest period of the wet season (see Figure 2-1), whereas the previous April 2016 monitoring round coincided with the late wet season when rainfalls are reducing.

At the time of sampling on 23 and 24 January 2017, the site was experiencing heavy monsoon rainfall conditions. Based on rainfall records from the nearest BoM Station at Gove Airport (14508), around 185 mm had fallen between 1 January 2017 and the start of sampling on 23 January. Another 71 mm fell during the two days of sampling. All sites were flowing rapidly at the time of sampling.

In contrast, prior to sampling on 7 April 2016 there had been a period of 20 days with little rainfall. The 2015/2016 wet season had also been very unusual, with no rain until mid-December when 360 mm fell, then almost no rain in January, and below average rainfall in March and February. The three sites sampled had slow to moderate water flow.

3.2 Baseline physical parameters

Table 3-1 provides physical parameter results for the April 2016 and January 2017 baseline monitoring rounds compared against the ANZECC 2000 guidelines.

The discontinued monitoring site DPS1 stands out as having a high proportion of groundwater inflow with much higher EC, TDS, salinity, and lower DO than the other sites. The higher turbidity may be caused by the shallowness of this watercourse.

For DPSW1 and DPSW2, the concentration of most parameters is similar during both the April 2016 and January 2017 monitoring rounds. The only change is a more acidic pH and slightly lower DO during January 2017. The more acidic pH is likely due to the greater input of fresh rainwater, which is naturally acidic in tropical regions (see Ayers et al. 1993, Galloway et al. 1982, Gillet et al. 1990, Noller et al. 1990), and the lower DO may be from a higher organic / nutrient load in runoff into the waterways increasing oxygen demand (see Section 3.3 below).

Notable baseline results for site DPSW4, located on the northern side of the proposed mine, are a lower EC and ORP compared to the other sites, and a higher turbidity.

Site			DPSW1	DPSW2	DPS1	DPSW1	DPSW2	DPSW4	DPSW5
Date Sam	pled	ANZECC 2000	7/04/2016	7/04/2016	8/04/2016	23/01/2017	24/01/2017	24/01/2017	23/01/2017
Time	24 hrs	Trigger Values	1300	1700	1000	1030	1040	1215	1615
Flow	L/s or fast/med/slow		58.5	2.0-5.0	<1	fast	fast	fast	fast
рН	pH unit	6.0-7.5	6.72	6.24	6.58	5.34	5.25	6.14	5.60
Temp	°C		30.8	31.5	28.0	26.8	27.4	27.0	27.4
ORP	mV		161.0	169.0	184.0	139.9	130.2	11.1	134.7
EC	μS/cm	250	92.1	65.1	473	89.7	53.3	33.3	71.4
TDS	g/L		0.06	0.04	0.30	0.06	0.03	0.02	0.05
Salinity	ppt		0.00	0.00	0.20	0.04	0.02	0.01	0.03
DO	%sat	90-120	104	94	67	88	76	100	91
Turbidity	NTU	15	7.5	2.9	21.0	9.4	2.8	30.3	12.7

 Table 3-1. Physical parameter results for April 2016 and January 2017 monitoring rounds

 Highlighted concentrations are outside ANZECC 2000 (Tables 3.3.4-3.3.5) Tropical Australia default trigger values for

physical and chemical stressors for tropical Australia for slightly disturbed ecosystems "Upland river".

3.3 Baseline laboratory parameters

Table 3-2 provides laboratory parameter results for the April 2016 and January 2017 baseline monitoring rounds compared against the ANZECC 2000 guidelines.

Similarly to the physical parameter results, the discontinued monitoring site DPS1 stands out as having a high proportion of groundwater inflow with much higher alkalinity, chloride, sodium, and potassium concentrations; whereas all anion and cation concentrations were low at all other sites in both April 2016 and January 2017.

All hydrocarbon and dissolved metal concentrations were below detection limits at all sites in both April 2016 and January 2017, except for a low zinc concentration at DPS1.

Nutrient concentrations were commonly above the ANZECC 2000 guidelines; in particular nitrogen species. Ammonia was above the trigger value at all sites in both April 2016 and January 2017, except DPSW1 in April 2016. DPSW4 had a much higher ammonia concentration than the other sites. Ammonia was also higher in January 2017 than in April 2016 at sites DPSW1 and DPSW2.

Due to the laboratory limits of reporting for NOx, it is not possible to determine if the April 2016 results were above the ANZECC 2000 trigger value. The January 2017 results, however, were above the trigger value at DPSW2 and DPSW4.

The TKN concentration and TN concentration is measured as the same at all sites in both April 2016 and January 2017. Therefore, the nitrogen present is predominantly in two forms – either ammonia or organic N – since TKN is the sum of ammonia and organic N. Subtracting the ammonia concentration from the TKN concentration shows that the majority of nitrogen in surface water is organic in for example, organic tannins and fine organic debris. Notably, site DPS1, which is predominantly groundwater, not surface water, has low TKN and slightly higher TP compared to the other sites.

 Table 3-2.
 Laboratory parameter results for April 2016 and January 2017 monitoring rounds

Highlighted concentrations are outside ANZECC 2000 (Table 3.4.1) *Trigger values for toxicants* "freshwater, 95% species protection" for metals and hydrocarbons, and ANZECC 2000 (Tables 3.3.4-3.3.5) *Tropical Australia default trigger values for physical and chemical stressors for tropical Australia for slightly disturbed ecosystems* "Upland river" for

nutrients.										
Site	ANZECC 2000	DPSW1	DPSW2	DPS1	DPSW1	DPSW2	DPSW4	DPSW5		
Date Sampled		Trigger Values	7/04/2016	7/04/2016	8/04/2016	23/01/2017	24/01/2017	24/01/2017	23/01/2017	
Time	24 hrs		1300	1700	1000	1030	1040	1215	1615	
Major Anions										
Hydroxide Alkalinity as CaCO3	mg/L		<10	<10	<10	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	mg/L		<10	<10	<10	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	mg/L		<20	<20	23	3	5	2	<1	
Total Alkalinity as CaCO3	mg/L		<20	<20	23	3	5	2	<1	
Sulfate as SO4	mg/L		<1	<1	<1	1	<1	<10	7	
Chloride	mg/L		24	14	130	20	10	5	16	
Major Cations										
Calcium	mg/L		1	<0.5	5.7	<1	<1	<1	<1	
Magnesium	mg/L		1.4	0.9	6.3	1	<1	<1	1	
Sodium	mg/L		13	8.5	61	12	8	5	13	
Potassium	mg/L		<0.5	< 0.5	2.8	<1	<1	<1	<1	
Dissolved Metals										
Arsenic	mg/L	0.013	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Cadmium	mg/L	0.0002	<0.0002	< 0.0002	< 0.0002	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Copper	mg/L	0.0014	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Lead	mg/L	0.0034	<0.001	<0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001	
Nickel	mg/L	0.0004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Zinc	mg/L	0.008	<0.001	<0.001	0.002	< 0.001	<0.001	<0.001	< 0.001	
Mercury	mg/L	0.0006	<0.0001	<0.0001	<0.002	< 0.0001	<0.0001	<0.0001	<0.0001	
Nutrients	iiig/L	0.0000	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
Ammonia as N	mg/L	0.0060	0.02	<0.01	0.02	0.06	0.08	0.11	0.04	
Nitrite as N	mg/L	0.0000	< 0.02	<0.02	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	
Nitrate as N	mg/L		<0.02	<0.02	<0.02	<0.01	0.05	0.04	0.01	
Nitrite + Nitrate as N	mg/L	0.03	<0.02	<0.02	<0.02	<0.01	0.05	0.04	0.01	
TKN as N	mg/L	0.05	0.14	0.13	<0.05	0.2	0.00	0.3	0.01	
Total Nitrogen as N	mg/L	0.15	0.14	0.13	<0.1	0.2	0.2	0.3	0.1	
Total Phosphorus as P	mg/L	0.13	<0.01	<0.01	0.02	<0.2	< 0.2	0.01	<0.01	
Reactive Phosphorus as P			< 0.01	<0.01	<0.02	<0.01		< 0.01	<0.01	
Total Petroleum Hydrocarbons NEPM	mg/L	0.005	<0.05	<0.05	<0.05	<0.01	<0.01	<0.01	<0.01	
1999 Fractions										
C6 - C9 Fraction	µg/L		-	-	-	<20	<20	<20	<20	
C10 - C14 Fraction	µg/L		<50	<50	<50	<50	<50	<50	<50	
C15 - C28 Fraction	µg/L		<100	<100	<100	<100	<100	<100	<100	
C29 - C36 Fraction	µg/L		<100	<100	<100	<50	<50	<50	<50	
C10 - C36 Fraction (sum)	µg/L		<100	<100	<100	<50	<50	<50	<50	
Total Recoverable Hydrocarbons										
NEPM 2013 Fractions										
C6 - C10 Fraction	µg/L		-	-	-	<20	<20	<20	<20	
C6 - C10 Fraction minus BTEX (F1)	µg/L		-	-	-	<20	<20	<20	<20	
>C10 - C16 Fraction	µg/L		<50	<50	<50	<100	<100	<100	<100	
>C16 - C34 Fraction	µg/L		<100	<100	<100	<100	<100	<100	<100	
>C34 - C40 Fraction	µg/L		<100	<100	<100	<100	<100	<100	<100	
>C10 - C40 Fraction (sum)	µg/L		-	-	-	<100	<100	<100	<100	
>C10 - C16 Fraction - Naphthalene (F2)	µg/L		-	-	-	<100	<100	<100	<100	
BTEXN										
Benzene	µg/L	950	-	-	-	<1	<1	<1	<1	
Toluene	µg/L		-	-	-	<2	<2	<2	<2	
Ethylbenzene	µg/L		-	-	-	<2	<2	<2	<2	
meta- & para-Xylene	µg/L		-	-	-	<2	<2	<2	<2	
ortho-Xylene	µg/L	350	-	-	-	<2	<2	<2	<2	
Total Xylenes	µg/L		-	-	-	<2	<2	<2	<2	
Sum of BTEX	µg/L		-	-	-	<1	<1	<1	<1	
Naphthalene	μg/L		-	-	-	<5	<5	<5	<5	
	F3/ -			1	I		.0			

3.4 Summary of baseline surface water quality

The following points are highlighted in regards to baseline surface water quality:

- pH can be slightly acidic (between 4 and 6) due to the input of rainfall, which is naturally acidic in tropical regions.
- DO levels may be lower during wet season rains due to the input of nutrients and organic matter increasing oxygen demand.
- Turbidity can, at times, be moderately above the ANZECC 2000 trigger value due to wet season rainfall and runoff, such as at DPSW4 in January 2017.
- The water quality at discontinued monitoring site DPS1 indicates a high groundwater input with much higher EC, lower DO and higher alkalinity, chloride, sodium and potassium concentrations than the other sites.
- Nitrogen species concentrations (ammonia, NO_x and TN) are already above the ANZECC 2000 guidelines at all sites (except the discontinued DPS1). Most nitrogen in surface water exists as organic nitrogen, from sources such as natural plant tannins and fine organic debris.
- Dissolved metal and hydrocarbon concentrations were all below detection limits at all sites in both April 2016 and January 2017 (except a low zinc concentration at discontinued DPS1).

4 **Conclusions and Recommendations**

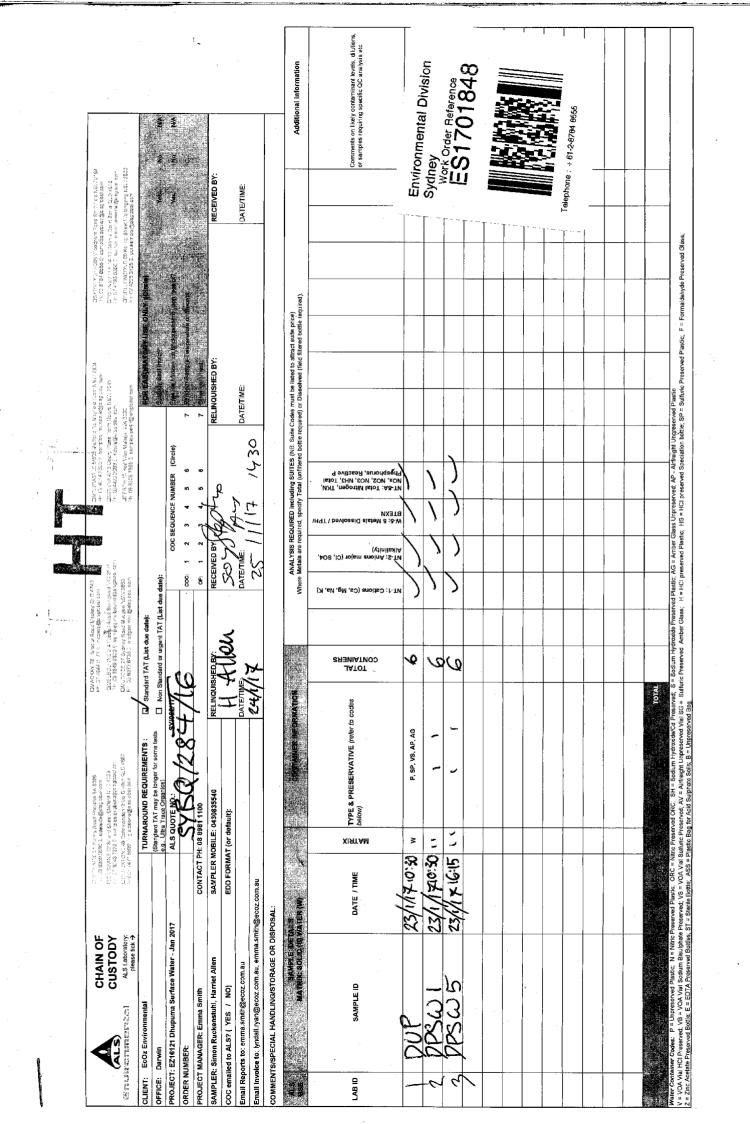
This report outlines the surface water monitoring program to be undertaken before and during mining operations, and the results of two pre-mining baseline monitoring rounds. It is recommended the monitoring program be implemented as specified in this plan in order to detect any mining impacts on downstream environments at an early stage, and to allow time for early corrective action. Undertaking this monitoring program will also allow GMC to demonstrate the mine is not impacting downstream environments; assuming the mitigation measures outlines in Section 1.2 are effective.

The baseline surface water quality results indicate that some parameters are already outside the default ANZECC 2000 guidelines despite the absence of mining activity. This highlights the importance of collecting adequate baseline water quality data for calculating site-specific trigger values that would represent a better measure for detecting mining impacts than the ANZECC 2000 guidelines. It is recommended that at least two more pre-mining monitoring rounds are undertaken in order to obtain this data. These monitoring rounds would need to occur before the end of the 2016/2017 wet season to ensure good flows at all five monitoring sites.

5 Acronyms

AMD	Asid Mine Drainage
	Acid Mine Drainage
ANZECC	Australian New Zealand Environment and Conservation Council
BoM	Bureau of Meteorology
BTEXN	Benzene, Toluene, Ethylbenzene, Xylene, Naphthalene
DO	Dissolved Oxygen
EC	Electrical Conductivity
EL	Exploration Licence
EPBC	Environment Protection and Biodiversity Conservation Act
GMC	Gulkula Mining Company Pty Ltd
ML	Mineral Lease
MMP	Mining Management Plan
NH ₃	Ammonia
NO ₂	Nitrite
NO ₃	Nitrate
NOx	Nitrite + Nitrate
ORP	Oxidation Reduction Potential
TDS	Total Dissolved Solids
TKN	Total Kjeldahl Nitrogen
TN	Total Nitrogen
ТР	Total Phosphorus
WMP	Water Management Plan

6 References


- ANZECC 2000, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Paper No. 4, Volume 1, The Guidelines, Chapters 1-7, National Water Quality Management Strategy, October 2000, Australian and New Zealand Environment and Conservation Council (ANZECC), Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), Canberra, ACT.
- Ayers, G.P., Gillett, R.W., Selleck, P., Warne, J.O., Huysing, P. & Forgan, B.W. 1993, *A pilot study on rainwater composition at Darwin Airport*. Australian Meteorological Magazine 42 (1993), 143-150.
- EcOz 2016, *EL 30226 Hydrology and Hydrogeology Assessment*, report prepared for Gulkula Mining Company Pty Ltd by EcOz Environmental Consultants Pty Ltd, April 2016, Darwin, NT.
- EcOz 2017a, Response to EPBC Act Referral Request for Additional Groundwater Information, Dhupuma Plateau Bauxite Mine Project, Gove NT, report prepared for Gulkula Mining Company Pty Ltd by Simon Fulton, consultant to EcOz Environmental Consultants Pty Ltd, February 2017, Darwin, NT.
- EcOz 2017b, *Gove Crow Butterfly habitat assessment*, report prepared for Gulkula Mining Company Pty Ltd by EcOz Environmental Consultants Pty Ltd, February 2017, Darwin, NT.
- Galloway, J.N., Linkens, G.E., Keene, W.C. and Miller, J.M. 1982, The composition of precipitation in remote areas of the world. *Journal of Geophysical Research* 87, 8771-86.
- Gillett R.W., Ayers G.P. & Noller B.N. 1990, Rainwater acidity at Jabiru, in the wet season of 1983/84. *The Science of the Total Environment* 92, 129-144.
- Noller B.N., Currey N.A., Ayers G.P. & Gillett R.W. 1990, Chemical composition and acidity of rainfall in the Alligator Rivers region, Northern Territory, Australia. *The Science of the Total Environment* 91, 23-48.
- Prowse, G, Zaar, U, Tickell, S and Matthews, I, 1999, *Water resources of East Arnhem Land 1:250,000 map*, Department of Lands, Planning and Environment, Palmerston, NT.

Appendix A Laboratory Documentation for 7 April 2016 and 23 and 24 January 2017 Sampling

Includes for each monitoring round: Chain of Custody (COC) Sample Receipt Notification (SRN) Certificate of Analysis (COA) QA/QC Documentation

Water Conti V = VOA Via Z = Zinc Ace									4		LABID		COMMEN	Email Invu	Email Rep	COC ema	SAMPLE	PROJECT	ORDER NUMBER:	PROJECT	CLIENT:	
TOTAL Were Container Codes: P = Unpreserved Plastic; N = Nthic Preserved Plastic; ORC = Nthic Preserved ORC, SH = Sodium Hydroxide/CQ Preserved; S = Sodium									DPSW4	DPWS2	SAMPLE ID		COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	Email Invoice to: lyndall.ryan@ecoz.com.au, emma.smith@ecoz.com.au	Email Reports to: emma.smith@ecoz.com.au,	COC emailed to ALS? (YES / NO)	SAMPLER: Simon Ruckenstuhl, Harriet Allen	PROJECT MANAGER: Emma Smith	UMBER:	OFFICE: Darwin PROJECT: EZ16121 Dhupuma Surface Water - Jan 2017	EcOz Environmental	CHAIN OF CUSTODY ALS CUSTODY Als Laboratory please lick +>
Preserved Plastic; ORC = Ni Preserved VS = VOA Vial S									24/01/2017 12:15	24/01/2017 10:40	DATE / TIME		SPOSAL:	ith@ecoz.com.au		EDD FORMAT (or default):	SAMPLER MOBILE: 0430835540	L CONTACT PH: 08 8981 1100		017		
tric Preserve											MATRIX					VT (or defa	NOBILE: 0	H: 08 898		tests e.g.	TURNA	0850 E. Juela 1222 Shaha Sh 1222 Shaha Sh 1222 Shaha Sh 1222 Shaha 1500 Shaha 1500 Shaha
TOTAL 2d ORC; SH = Sodium Hydroxide/Cd F									P,SP,VS,AP,AG	P,SP,VS,AP,AG	TYPE & PRESERVATIVE (refer to codes below)				04	ult):		1 1100		ALS DUDTE NO SYRO/284/16		P. (J6 5539-5680 E. Jeleidel@argional.com Diskloskell.23 Grand Street statefund GLD 4633 P. G. 7. And 7225 E. Benose busitere Galage Optic zon DISJECTONE 46 Calemonicati Enviro Unition OLD 4680 F. (J7 747 F 2002 E. gleditrora@blegtetal.com
Preserved' S									a	a	TOTAL CONTAINERS		-	100	DATERIN	X	RELINQUISHED		#10	Non Standard or urgent TAT (List due date): 284/16	Standard TA	Ph.C
									×	×	NT-1;Cations (Ca, Mg, Na,K)		.	4			увү:			d or urgent TA	Standard TAT (List due date):	Fb. 07 * 5940 dr 777 E. mackay@alaglebal.com OMELBOURNE E-4. Vieelail. Road Spin-grade VIC 3171 Ph. 03 854-9800 E. esnolesine bacharin@alaglebal.com DVUDGEE 27 Sydney Road Mudgen VISVI 2250 EN 121 637 5735 E. mudget.mail@alaglebal.com Fbt. 121 637 5735 E. mudget.mail@alaglebal.com
									×	×	NT-2;Anions major (Cl, SO4, Alkalinity)	Where I		3(DATI	T	REC	9	8	\T (List due	:(ate	nackay@alsgle Alestall Road S samplesune.bo y Road Muldgo hudgocumali@i
									×	x	W-5: 8 Metais Dissolved/TPH/BTEXN	MALYSIS R		30-01-1	ETIME:	SNG	RECEIVED BY:	<u>ь</u> .	د			ibal com pringvale VIC 3 ume@aleglabai ume@aleglabai aleglobal.com
									×	×	NT-8A;Total Nitrogen, TKN, Nox, NO2, NO3,NH3, Total Phosphorus, Reactive P	EQUIRED ind quired, specify		Ļ Ļ	•		>		2 3 4 5			171
ass Unpreserved AP - Airf												uding SUITES (NB. Suite C Total (unfiltered bottle requ		1200		AL	>		S A			Pri 02 4014 2014 Pri 02 4014 2015 Pri 02 4473 5085 E Pri 02 4423 2083 E OFERTH 10 Hod V Pri 08 9209 7655
Sodium Hydroxide Preserved Plastic; AG = Amber Gless Unpreserved; AP - Airfreight Unpreserved Plastic	Telephone : + 61-2-8784 8555			ESI/019	Work Order Reference	Sydney	Environmental Division					AVALVSS RECURED including SUITES (NB Suite Codes must be listed to attract suits price) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).			DATE/TIME:		RELINQUISHED BY:					P=102 4014 2500 L: sonyability and the Television of the Construction of the Construct
				C)»]					-	· ·			2	DATE/TIME:	Scy M	RECEIVED ÉXE					Pio Toter 12 Scale wordsplark (Kaga Similaritiatie Kaw / Pio Phy 02 852 (KSSE) E. samples 240-240, and 140 Phy 02 853 (KSSE) E. Starting and Scale Scale (Scale Scale
						المالي الم	DARWIN	LAB OF OHIGIN.		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Comments on likely contaminant levels, diucions, or samples requiring specific GC analysis etc. ESITOI9995	Additional Information	-	persi fill	¥. u		Ma-					term NSVV 2100

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES1701995								
Client : ECOZ ENVIRON Contact : MS EMMA SMIT Address : PO BOX 381 DARWIN NT, AL	Address	 Environmental Division Sy Customer Services ES 277-289 Woodpark Road NSW Australia 2164 						
E-mail : emma.smith@ec Telephone : +61 08 89811100 Facsimile : +61 08 89811100	0 Telephone	: ALSEnviro.Sydney@alsgl : +61-2-8784 8555 : +61-2-8784 8500	obal.com					
Project : EZ16121 Dhuput Jan 2017	ma Surface Water - Page	: 1 of 2						
Order number :	Quote num	ber : ES2016ECOZENV0008 (SYBQ-284-16)					
C-O-C number :	QC Level	: NEPM 2013 B3 & ALS Q	13 B3 & ALS QC Standard					
Site :								
Sampler : Harriet Allen, Sin	non Ruckenstuhl							
Dates								
Date Samples Received : 31-Jan-201	17 15:00 Issue Date	: 31-Jan-201	7					
Client Requested Due : 06-Feb-20 Date	17 Scheduled	Reporting Date : 06-Feb-2	2017					
Delivery Details								
Mode of Delivery : Undefined	Security Sec	eal : Intact.						
No. of coolers/boxes : 1	Temperatu	re : 12.6'c - Ice	: 12.6'c - Ice present					
Receipt Detail	No. of sam	ples received / analysed : 2 / 2						

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time NT-01 & 02 component

Matrix: WATER

component			iine	1 & 02 Cl, SO	08A + NO2	Metals
Matrix: WATER				: - NT-0 Na, K,	- NT-	- W-05 EXN/81
Laboratory sample ID	Client sampling date / time	Client sample ID		WATER Ca, Mg,	WATER Total Nit	WATER TRH/BT
ES1701995-001	24-Jan-2017 10:40	DPWS2		✓	✓	1
ES1701995-002	24-Jan-2017 12:15	DPSW4		✓	✓	✓

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Matrix: WATER				Evaluation: × = Ho	olding time bro	each ; 🗸 = Within	holding time.	
Method		Due for	Due for	Samples Received		Samples Received Instructions Received		
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation	
EK057G: Nitrite as N by Discrete Analyser								
DPSW4	Clear Plastic Bottle - Natural		26-Jan-2017	31-Jan-2017	×			
DPWS2	Clear Plastic Bottle - Natural		26-Jan-2017	31-Jan-2017	×			
EK071G: Reactive Phosphorus as P-By Discrete Analyser								
DPSW4	Clear Plastic Bottle - Natural		26-Jan-2017	31-Jan-2017	×			
DPWS2	Clear Plastic Bottle - Natural		26-Jan-2017	31-Jan-2017	×			

Fmail

Email

Email

Email

Email

Email

Email

Email

Email

NT-08A 3gen + NO2 + NO3 + NH3 + Total P +

Alkalinity

S04,

Requested Deliverables

EMMA SMITH

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental HT (SRN)
- A4 AU Tax Invoice (INV)
- Chain of Custody (CoC) (COC)
- EDI Format ENMRG (ENMRG)
- EDI Format ESDAT (ESDAT)

LYNDALL RYAN

- A4 - AU Tax Invoice (INV)

emma.smith@ecoz.com.au emma.smith@ecoz.com.au emma.smith@ecoz.com.au emma.smith@ecoz.com.au emma.smith@ecoz.com.au emma.smith@ecoz.com.au emma.smith@ecoz.com.au emma.smith@ecoz.com.au

Lyndall.ryan@ecoz.com.au

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES1701848				
Client Contact Address	E ECOZ ENVIRONMENTAL SERVICES MS EMMA SMITH PO BOX 381 DARWIN NT, AUSTRALIA 0801	Contact : C Address : 2	 Environmental Division Sydney Customer Services ES 277-289 Woodpark Road Smithfield NSW Australia 2164 		
E-mail Telephone Facsimile	: emma.smith@ecoz.com.au : +61 08 89811100 : +61 08 89811102	Telephone : -	ALSEnviro.Sydney@alsglobal.com +61-2-8784 8555 +61-2-8784 8500		
Project	EZ16121 Dhupuma Surface Water - Jan 2017	Page : ·	1 of 2		
Order number	:	Quote number :	ES2016ECOZENV0008 (SYBQ-284-16)		
C-O-C number	:	QC Level :	NEPM 2013 B3 & ALS QC Standard		
Site	:				
Sampler	: HARRIET ALLEN, SIMON RUCKENSTUHL				
Dates					
Date Samples Receiv	d : 25-Jan-2017 14:30	Issue Date	: 25-Jan-2017		
Client Requested Due Date	: 01-Feb-2017	Scheduled Reporting Date	e 01-Feb-2017		
Delivery Detai	5				
Mode of Delivery	: Carrier	Security Seal	: Intact.		
No. of coolers/boxes	: 1	Temperature	: 22.2 - Ice Bricks present		
Receipt Detail	:	No. of samples received /	analysed : 3/3		

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

Matrix: WATER

tasks, that are inclu If no sampling default 00:00 on	ation of moisture uded in the package. time is provided, the date of samplin sampling date wi	content and preparation the sampling time will ig. If no sampling date Il be assumed by the	TER - NT-01 & 02 Mg, Na, K, Cl, SO4, Alkalinity	WATER - NT-08A Total Nitrogen + NO2 + NO3 + NH3 + Total P +	WATER - W-05 TRH/BTEXN/8 Metals
ID	date / time	•	WATER Ca, Mg,	WAT Tota	WAT TRH
ES1701848-001	23-Jan-2017 10:30	DUP	✓	✓	✓
ES1701848-002	23-Jan-2017 10:30	DPSW1	✓	✓	✓
ES1701848-003	23-Jan-2017 16:15	DPSW5	✓	✓	1

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

EMMA SMITH

 *AU Certificate of Analysis - NATA (COA) 	Email	emma.smith@ecoz.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	emma.smith@ecoz.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	emma.smith@ecoz.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	emma.smith@ecoz.com.au
- A4 - AU Tax Invoice (INV)	Email	emma.smith@ecoz.com.au
- Chain of Custody (CoC) (COC)	Email	emma.smith@ecoz.com.au
- EDI Format - ENMRG (ENMRG)	Email	emma.smith@ecoz.com.au
- EDI Format - ESDAT (ESDAT)	Email	emma.smith@ecoz.com.au
LYNDALL RYAN		
- A4 - AU Tax Invoice (INV)	Email	Lyndall.ryan@ecoz.com.au

CERTIFICATE OF ANALYSIS

Work Order	ES1701995	Page	: 1 of 6
Client	ECOZ ENVIRONMENTAL SERVICES	Laboratory	: Environmental Division Sydney
Contact	: MS EMMA SMITH	Contact	: Customer Services ES
Address	: PO BOX 381	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	DARWIN NT, AUSTRALIA 0801		
Telephone	: +61 08 89811100	Telephone	: +61-2-8784 8555
Project	: EZ16121 Dhupuma Surface Water - Jan 2017	Date Samples Received	: 31-Jan-2017 15:00
Order number	:	Date Analysis Commenced	: 31-Jan-2017
C-O-C number	:	Issue Date	: 03-Feb-2017 12:42
Sampler	: Harriet Allen, Simon Ruckenstuhl		Iac-MRA NATA
Site	:		
Quote number	: SYBQ-284-16		Accordition No. 025
No. of samples received	: 2		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Dian Dao Edwandy Fadiar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW Sydney Organics, Smithfield, NSW
Euwaliuy Faujai	Organic Coordinator	Sydney Organics, Smithield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	DPWS2	DPSW4				
	Cl	lient sampli	ing date / time	24-Jan-2017 10:40	24-Jan-2017 12:15				
Compound	CAS Number	LOR	Unit	ES1701995-001	ES1701995-002				
				Result	Result				
ED037P: Alkalinity by PC Titrator									
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1				
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1				
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	5	2				
Total Alkalinity as CaCO3		1	mg/L	5	2				
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA									
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	<10				
ED045G: Chloride by Discrete Analyser									
Chloride	16887-00-6	1	mg/L	10	5				
ED093F: Dissolved Major Cations									
Calcium	7440-70-2	1	mg/L	<1	<1				
Magnesium	7439-95-4	1	mg/L	<1	<1				
Sodium	7440-23-5	1	mg/L	8	5				
Potassium	7440-09-7	1	mg/L	<1	<1				
EG020F: Dissolved Metals by ICP-MS									
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001				
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001				
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001				
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001				
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001				
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001				
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005				
EG035F: Dissolved Mercury by FIMS									
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001				
EK055G: Ammonia as N by Discrete Ana									
Ammonia as N	7664-41-7	0.01	mg/L	0.08	0.11				
EK057G: Nitrite as N by Discrete Analys			-						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01				
EK058G: Nitrate as N by Discrete Analys			5						
Nitrate as N	14797-55-8	0.01	mg/L	0.05	0.04				
EK059G: Nitrite plus Nitrate as N (NOx) Nitrite + Nitrate as N	by Discrete Ana	0.01	mg/L	0.05	0.04				
		0.01	ing/L	0.00	0.04				
EK061G: Total Kjeldahl Nitrogen By Disc		0.1	mc/l	0.2	0.2				
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	0.3				

Analytical Results

EK062G: Total Nitrogen as N (TKN + NOx) by D ^ Total Nitrogen as N EK067G: Total Phosphorus as P by Discrete Ar Total Phosphorus as P EK071G: Reactive Phosphorus as P by discret	AS Number Discrete Ana Analyser 	LOR alyser 0.1 0.01 0.01	ng date / time Unit mg/L mg/L mg/L	24-Jan-2017 10:40 ES1701995-001 Result 0.2 <0.01 <0.01	24-Jan-2017 12:15 ES1701995-002 Result 0.3 0.01 <0.01	 	
EK062G: Total Nitrogen as N (TKN + NOx) by D ^ Total Nitrogen as N EK067G: Total Phosphorus as P by Discrete An Total Phosphorus as P EK071G: Reactive Phosphorus as P by discrete Reactive Phosphorus as P EN055: Ionic Balance Total Anions Total Cations	Discrete Ana Analyser te analyser 14265-44-2	alyser 0.1 0.01 0.01	mg/L mg/L mg/L	Result 0.2 <0.01	Result 0.3 0.01	 	
^ Total Nitrogen as N EK067G: Total Phosphorus as P by Discrete Al Total Phosphorus as P EK071G: Reactive Phosphorus as P by discrete Reactive Phosphorus as P 1 EN055: Ionic Balance Total Anions Total Cations	Analyser kte analyser 14265-44-2	0.1	mg/L mg/L	0.2 <0.01	0.3	 	
^ Total Nitrogen as N EK067G: Total Phosphorus as P by Discrete Al Total Phosphorus as P EK071G: Reactive Phosphorus as P by discrete Reactive Phosphorus as P 1 EN055: Ionic Balance Total Anions Total Cations	Analyser kte analyser 14265-44-2	0.1	mg/L mg/L	<0.01	0.01	 	
EK067G: Total Phosphorus as P by Discrete A Total Phosphorus as P EK071G: Reactive Phosphorus as P by discrete Reactive Phosphorus as P 1 EN055: Ionic Balance Total Anions Total Cations	Analyser te analyser 14265-44-2	0.01	mg/L mg/L	<0.01	0.01	 	
Total Phosphorus as P EK071G: Reactive Phosphorus as P by discret Reactive Phosphorus as P 1 EN055: Ionic Balance Total Anions Total Cations	 ete analyser 14265-44-2 	0.01	mg/L				
Total Phosphorus as P EK071G: Reactive Phosphorus as P by discret Reactive Phosphorus as P 1 EN055: Ionic Balance Total Anions Total Cations	 ete analyser 14265-44-2 	0.01	mg/L				
Reactive Phosphorus as P 1 EN055: Ionic Balance 1 Total Anions 1 Total Cations 1	14265-44-2	0.01		<0.01	<0.01	 	
Reactive Phosphorus as P 1 EN055: Ionic Balance 1 Total Anions 1 Total Cations 1	14265-44-2	0.01		<0.01	<0.01	 	
Total Anions Total Cations							
Total Anions Total Cations							
		0.01	meq/L	0.38	0.18	 	
EP080/071: Total Petroleum Hydro <u>carbons</u>		0.01	meq/L	0.35	0.22	 	
C6 - C9 Fraction		20	µg/L	<20	<20	 	
C10 - C14 Fraction		50	µg/L	<50	<50	 	
C15 - C28 Fraction		100	µg/L	<100	<100	 	
C29 - C36 Fraction		50	µg/L	<50	<50	 	
^ C10 - C36 Fraction (sum)		50	µg/L	<50	<50	 	
EP080/071: Total Recoverable Hydrocarbons -	- NEPM 2013	3 Fraction	ıs				
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	 	
^ C6 - C10 Fraction minus BTEX C6_	_C10-BTEX	20	µg/L	<20	<20	 	
(F1)							
>C10 - C16 Fraction		100	µg/L	<100	<100	 	
>C16 - C34 Fraction		100	µg/L	<100	<100	 	
>C34 - C40 Fraction		100	µg/L	<100	<100	 	
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	<100	 	
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	<100	 	
(F2)							
EP080: BTEXN							
Benzene	71-43-2	1	µg/L	<1	<1	 	
Toluene	108-88-3	2	µg/L	<2	<2	 	
Ethylbenzene	100-41-4	2	µg/L	<2	<2	 	
	-3 106-42-3	2	µg/L	<2	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	 	
-	1330-20-7	2	µg/L	<2	<2	 	
^ Sum of BTEX		1	µg/L	<1	<1	 	
Naphthalene EP080S: TPH(V)/BTEX Surrogates	91-20-3	5	µg/L	<5	<5	 	

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Client sample ID			DPSW4			
Client sampling date / time				24-Jan-2017 10:40	24-Jan-2017 12:15			
Compound	CAS Number	LOR	Unit	ES1701995-001	ES1701995-002			
				Result	Result			
EP080S: TPH(V)/BTEX Surrogates - Continued								
1.2-Dichloroethane-D4	17060-07-0	2	%	95.8	94.1			
Toluene-D8	2037-26-5	2	%	101	98.0			
4-Bromofluorobenzene	460-00-4	2	%	99.8	94.9			

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)		
Compound	CAS Number	Low	High
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

CERTIFICATE OF ANALYSIS

Work Order	ES1701848	Page	: 1 of 6
Client	ECOZ ENVIRONMENTAL SERVICES	Laboratory	Environmental Division Sydney
Contact	: MS EMMA SMITH	Contact	: Customer Services ES
Address	: PO BOX 381	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	DARWIN NT, AUSTRALIA 0801		
Telephone	: +61 08 89811100	Telephone	: +61-2-8784 8555
Project	: EZ16121 Dhupuma Surface Water - Jan 2017	Date Samples Received	: 25-Jan-2017 14:30
Order number	:	Date Analysis Commenced	: 25-Jan-2017
C-O-C number	:	Issue Date	: 02-Feb-2017 09:12
Sampler	: HARRIET ALLEN, SIMON RUCKENSTUHL		Iac-MRA NATA
Site	:		
Quote number	: SYBQ-284-16		Accorditation No. 025
No. of samples received	: 3		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 3		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Dian Dao		Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	DUP	DPSW1	DPSW5	
	Ci	ient sampli	ng date / time	23-Jan-2017 10:30	23-Jan-2017 10:30	23-Jan-2017 16:15	
Compound	CAS Number	LOR	Unit	ES1701848-001	ES1701848-002	ES1701848-003	
				Result	Result	Result	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	3	3	<1	
Total Alkalinity as CaCO3		1	mg/L	3	3	<1	
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	1	1	7	
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	1	mg/L	20	20	16	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	<1	<1	<1	
Magnesium	7439-95-4	1	mg/L	1	1	1	
Sodium	7440-23-5	1	mg/L	13	12	13	
Potassium	7440-09-7	1	mg/L	<1	<1	<1	
EG020F: Dissolved Metals by ICP-MS							
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	
EG035F: Dissolved Mercury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	
EK055G: Ammonia as N by Discrete Ana							
Ammonia as N	7664-41-7	0.01	mg/L	0.07	0.06	0.04	
EK057G: Nitrite as N by Discrete Analys							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	
EK058G: Nitrate as N by Discrete Analy Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	0.01	
				-0.01	-0.01	0.01	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana		mc/l	<0.01	<0.01	0.01	
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.01	
EK061G: Total Kjeldahl Nitrogen By Dis		0.1					
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	0.2	0.1	

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	DUP	DPSW1	DPSW5	
	Cl	ient sampli	ng date / time	23-Jan-2017 10:30	23-Jan-2017 10:30	23-Jan-2017 16:15	
Compound	CAS Number	LOR	Unit	ES1701848-001	ES1701848-002	ES1701848-003	
				Result	Result	Result	
EK062G: Total Nitrogen as N (TKN + N	lOx) by Discrete Ar	nalyser					
↑ Total Nitrogen as N		0.1	mg/L	0.2	0.2	0.1	
EK067G: Total Phosphorus as P by Di	screte Analyser						
Total Phosphorus as P		0.01	mg/L	0.20	<0.01	<0.01	
EK071G: Reactive Phosphorus as P b	v discrete analvser						
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.02	<0.01	<0.01	
EN055: Ionic Balance							
Total Anions		0.01	meq/L	0.64	0.64	0.60	
Total Cations		0.01	meq/L	0.65	0.60	0.65	
EP080/071: Total Petroleum Hydrocart	oons						
C6 - C9 Fraction		20	µg/L	<20	<20	<20	
C10 - C14 Fraction		50	μg/L	<50	<50	<50	
C15 - C28 Fraction		100	μg/L	<100	<100	<100	
C29 - C36 Fraction		50	μg/L	<50	<50	<50	
^ C10 - C36 Fraction (sum)		50	μg/L	<50	<50	<50	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio					
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	<20	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20	<20	<20	
(F1)	-						
>C10 - C16 Fraction		100	µg/L	<100	<100	<100	
>C16 - C34 Fraction		100	μg/L	<100	<100	<100	
>C34 - C40 Fraction		100	μg/L	<100	<100	<100	
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	<100	<100	
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	<100	<100	
(F2)							
EP080: BTEXN							
Benzene	71-43-2	1	µg/L	<1	<1	<1	
Toluene	108-88-3	2	µg/L	<2	<2	<2	
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	
∖ Total Xylenes	1330-20-7	2	µg/L	<2	<2	<2	
[^] Sum of BTEX		1	µg/L	<1	<1	<1	
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	DUP	DPSW1	DPSW5	
	Cli	ient sampli	ng date / time	23-Jan-2017 10:30	23-Jan-2017 10:30	23-Jan-2017 16:15	
Compound	CAS Number	LOR	Unit	ES1701848-001	ES1701848-002	ES1701848-003	
				Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates -	Continued						
1.2-Dichloroethane-D4	17060-07-0	2	%	129	122	127	
Toluene-D8	2037-26-5	2	%	111	98.3	102	
4-Bromofluorobenzene	460-00-4	2	%	98.5	90.6	89.3	

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	71	137	
Toluene-D8	2037-26-5	79	131	
4-Bromofluorobenzene	460-00-4	70	128	

QUALITY CONTROL REPORT

Work Order	: ES1701995	Page	: 1 of 7	
Client	ECOZ ENVIRONMENTAL SERVICES	Laboratory	: Environmental Division Sydney	
Contact	: MS EMMA SMITH	Contact	: Customer Services ES	
Address	: PO BOX 381 DARWIN NT, AUSTRALIA 0801	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164	
Telephone	: +61 08 89811100	Telephone	: +61-2-8784 8555	
Project	: EZ16121 Dhupuma Surface Water - Jan 2017	Date Samples Received	: 31-Jan-2017	
Order number	:	Date Analysis Commenced	: 31-Jan-2017	\wedge
C-O-C number	:	Issue Date	03-Feb-2017	
Sampler	: Harriet Allen, Simon Ruckenstuhl		Hac-MRA NA	
Site	:			
Quote number	: SYBQ-284-16		Accreditatio	n No. 925
No. of samples received	: 2		Accredited for complia	
No. of samples analysed	: 2		ISO/IEC 17025	- Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Dian Dao		Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

ub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
D037P: Alkalinity b	by PC Titrator (QC Lot:	739512)							
ES1701915-009	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	4	4	0.00	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	4	4	0.00	No Limit
ES1701300-012	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	442	458	3.44	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	442	458	3.44	0% - 20%
ED041G: Sulfate (Tu	urbidimetric) as SO4 2-	by DA (QC Lot: 738223)							
ES1702141-003	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	180	182	1.17	0% - 20%
ES1701995-001	DPWS2	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	<1	0.00	No Limit
ED045G: Chloride b	y Discrete Analyser (C	C Lot: 738224)							
ES1702141-003	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	44	44	0.00	0% - 20%
ES1701995-001	DPWS2	ED045G: Chloride	16887-00-6	1	mg/L	10	11	0.00	0% - 50%
ED093F: Dissolved I	Major Cations (QC Lot	: 738577)							
ES1701940-002	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	240	238	1.00	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	35	32	7.05	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	77	73	5.76	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	16	16	0.00	0% - 50%
ES1702042-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	10	10	0.00	0% - 50%
		ED093F: Magnesium	7439-95-4	1	mg/L	6	6	0.00	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	16	17	0.00	0% - 50%
		ED093F: Potassium	7440-09-7	1	mg/L	2	2	0.00	No Limit

Page	3 of 7
Work Order	: ES1701995
Client	: ECOZ ENVIRONMENTAL SERVICES
Project	: EZ16121 Dhupuma Surface Water - Jan 2017

EG020F: Dissolved Metals by ICP-M9 (QC Lot: 738570) Comminue 740-439 0.0001 mgL 0.0001 N.0.1mit E0020A-F: Ised 7440-830 0.0011 mgL 0.006 0.005 21.2 N.0.1mit E0020A-F: Ised 7440-830 0.0011 mgL 0.006 0.005 21.2 N.0.1mit E0020A-F: Ised 7440-	Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report	1	
B3701940-011 Anonymous EG020A F: Comput 740-0.30 0.001 mg/L 0.0011 0.0011 0.001 0.0011 0.001 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.00	Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EXPLANE FC0200-F: Ansen: 740-0347 0.001 0.017 0.001 0.001 EG2020-F: Chonum 740-0475 0.001 mgL -0.001 -0.001 0.000 No. Limit EG2020-F: Chonum 740-0465 0.001 mgL -0.001 -0.001 0.000 No. Limit EG2020-F: Chantin 740-0465 0.001 mgL -0.005 -0.003 4.04 0% 29% ES020A-F: Instel 740-0466 0.001 mgL -0.005 -0.005 4.00 No. Limit ES020A-F: Instel 740-046 0.001 mgL 0.001 mgL 0.001 8.2 No. Limit EG020A-F: Chantin 740-042 0.001 mgL 0.001 0.001 No. Limit EG020A-F: Chantin 740-042 0.001 mgL 0.006 0.005 No. Limit EG020A-F: Instel 740-042 0.001 mgL 0.006 0.000 No. Limit EG020A-F: Instel 749-074 0.001 mgL 0.001	EG020F: Dissolved	Metals by ICP-MS (QC Lot: 738576) - continued							
E0020AF: Copenium 740-07 0001 mgL 40.001 40.001 0.00 No.Limit E0020AF: Lead 743-040 0.001 mgL 40.001 40.001 0.00 No.Limit E0020AF: Lead 743-040 0.001 mgL 40.001 40.001 0.002 40.00 No.Limit E0020AF: Lead 744-040 0.001 mgL 0.003 40.005 0.000 No.Limit E0020AF: Lead 744-040 0.001 mgL 0.0003 40.005 0.000 No.Limit E0020AF: Copen 744-040 0.001 mgL 0.000 0.000 No.Limit E0020AF: Copen 744-047 0.01 mgL 0.001 40.01 0.00 No.Limit E0020AF: Lead 740-040 0.01 mgL 0.008 0.008 0.00 No.Limit E0020AF: Lead 740-040 0.01 mgL 0.008 0.008 0.00 No.Limit E0020AF: Lead 740-040 0.01 mgL	ES1701940-011	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
E0020AF: Cooper 749-050 0011 mgL 4-0011 4-001 0.00 No Limit E0020AF: Load 749-020 0011 mgL 4-001 4-000 4-000 4-000 4-000 4-000 4-000 4-000 4-000 4-000 No Limit 4-000 4-000 4-000 4-000 No Limit 4-000<			EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.017	0.017	0.00	0% - 50%
E3023-F. Load 7438-92 0.01 mgl. 0.001 40.001 0.001 No.1mi E3020A-F. Load 7440-02 0.001 mgl. 0.003 4.001 892 No.1mi E3020A-F. Zuce 7440-84 0.001 mgl. 0.003 4.0001 892 No.1mi E3020A-F. Zuce 7440-84 0.001 mgl. 0.003 4.0001 892 No.1mi E3020A-F. Zuce 7440-84 0.001 mgl. 0.001 4.0001 6.002 1.01 No.1mi E3020A-F. Codmium 7440-54 0.001 mgl. 0.004 4.0001 4.0001 4.0001 4.0001 No.1mi E3020A-F. Icad 7440-54 0.001 mgl. 0.002 4.0001 0.00 No.1mi E3020A-F. Icad 7440-54 0.001 mgl. 0.003 0.00 No.1mi E3020A-F. Icad 7490-75 0.001 mgl. 0.001 7000 0.00 No.1mi E3020A-F. Icad Morgyma			EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
Edd20.hr Edd20.hr Edd20.hr Partial Partia Partial Partial			EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
Entrol beside Field beside			EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
ES1701940-002 Aparymous EC020AF: Casimum 7440-83 0.001 mgL 0.003 40.001 80.2 No Limit EG020AF: Ansainc 7440-832 0.001 mgL 0.006 0.005 21.2 No Limit EG020AF: Commun 7440-873 0.001 mgL 0.006 0.005 21.2 No Limit EG020AF: Commun 7440-873 0.001 mgL 0.004 0.003 43.0 No Limit EG020AF: Lock 7440-680 0.011 mgL 0.002 4.0.001 No Limit EG022AF: Struct 740-666 0.001 mgL 0.008 0.000 No Limit EG022AF: Struct 740-666 0.001 mgL 0.000 n.000 No Limit EG023AF: Struct 740-666 0.001 mgL 0.000 n.000 No Limit EG035F: Minita as N by Discrete Analyser (QC Lot: 73853) EG035F: Minita as N by Discrete Analyser, CQC Lot: 73853) EG035F: Minita as N by Discrete Analyser, CQC Lot: 73853) ES0750: Nitrite As N anymous EK0557: Nitrite As N anymous EK0575: Ni			EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.031	0.032	4.94	0% - 20%
Experiment 1400.38-2 0.001 mgL 0.006 0.005 21.2 No Limit EG020AF: Chromium 7440-38-2 0.001 mgL 0.006 <0.005			EG020A-F: Zinc		0.005	mg/L	<0.005	<0.005	0.00	No Limit
Edisplay Edisplay 7440473 Edisplay 0.001 mg/L 0.001 -0.001 0.00 No Limit Edisplay Edisplay 7449624 0.001 mg/L 0.004 0.003 43.0 No Limit Edisplay 7449624 0.001 mg/L 0.002 <0.001	ES1701940-002	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0003	<0.0001	89.2	No Limit
Endpand Endpand 740-90-8 0.001 mg/L 0.002 <0.001 0.00 E0320A-F: Lead 7439-921 0.001 mg/L 0.002 <0.001			EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.006	0.005	21.2	No Limit
EG020A-F: Load 743 92-1 0.01 mgt. 0.02 0.00 No.Limit EG020A-F: Nickel 740-02-0 0.01 mgt. 0.088 0.008 0.00 No.Limit EG020F: Dissolved Mercury by FMS (QC Lot: 73857) EG020F: Call 740-02-0 0.001 mgt. 0.001 0.001 0.001 No.Limit EG020F: Dissolved Mercury by FMS (QC Lot: 73857) EG020F: Marcury CC EG020F: Marcury CC 0.001 mgt. <d0.001< td=""> 0.00 No.Limit ES1701995-001 DPWS2 EG026F: Marcury CC EG026F: Marcury CC EG026F: Marcury CC <d0.001< td=""> No.Limit ES1701995-001 DPWS2 EK056G: Ammonia as N 7664417 0.01 mgt. 0.037 0.00 No.Limit ES170204007 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mgt. <d.01< td=""> d.01 d.01 No.Limit ES170204-007 Anonymous EK0563: Nitrite as N 0.01 mgt. <d.01< td=""></d.01<></d.01<></d0.001<></d0.001<>			EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.001	<0.001	0.00	No Limit
EG020A-F: Nicket 7440-02-0 EG020A-F: Zinc 0.001 7440-66 mg/L 0.008 0.008 0.00 No Limit EG035F: Dissolved Mercury by FIMS (OC Lot: 73857a) EG035F: Marcury 7439-97.6 0.0001 mg/L <0.0001			EG020A-F: Copper		0.001	mg/L	0.004	0.003	43.0	No Limit
EG020A-F; Zinc 7440-66-6 0.005 mg/L 0.037 0.038 0.00 No Limit EG03SF: Dissolved Mercury by FIMS (QC Lot: 73857) EG03SF: Mercury 7439-97-6 0.0001 mg/L <0.0001			EG020A-F: Lead			mg/L				No Limit
EG035F: Dissolved Mercury by FIMS (QC Lot: 738578) Colored Mercury by FIMS (QC Lot: 738578) ES1701995:001 DPWS2 EG039F: Mercury 7439-97-6 0.0001 mg/L <0.0001			EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.008	0.008	0.00	No Limit
ES1701995-001 DPWS2 EG335F: Mercury 7439-97-6 0.0001 mg/L <0.0001 <0.001 0.00 No Limit EK055G: Ammonia as N by Discrete Analyser (QC Lot: 73852) EK055G: Ammonia as N 7664-41-7 0.01 mg/L 0.08 0.08 0.00 No Limit ES170200-007 Anonymous EK055G: Ammonia as N 7664-41-7 0.01 mg/L 0.07 0.07 0.00 No Limit ES170200-007 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01			EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.037	0.038	0.00	No Limit
EK055G: Ammonia as N by Discrete Analyser (QC Lot: 738522) EK055G: Ammonia as N 7664-41-7 0.01 mg/L 0.08 0.00 No Limit EK055G: Ammonia as N 7664-41-7 0.01 mg/L 0.08 0.00 No Limit ES170200-007 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L ES1701995-001 DPWS2 EK057G: Nitrite as N 14797-65-0 0.01 mg/L No Limit EK057G: Nitrite as N 14797-65-0 0.01 mg/L Colspan="2">Colspan="2">Colspan="2">Colspan="2" EK057G: Nitrite as N 14797-65-0 0.01 mg/L Colspan="2" Colspan="2" EK057G: Nitrite + Nitrate as N	EG035F: Dissolved	Mercury by FIMS (C	QC Lot: 738578)							
ES1701995-001 DPWS2 EK055G: Ammonia as N 7664-41-7 0.01 mg/L 0.08 0.08 0.00 No Limit ES1702004-007 Anonymous EK055G: Ammonia as N 7664-41-7 0.01 mg/L 0.07 0.00 No Limit EK057G: Nitrite as N by Discrete Analyser (QC Lot: 738221) EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01	ES1701995-001	DPWS2	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EST02004-007 Anonymous EX035G: Ammonia as N 7664-41-7 0.01 mg/L 0.07 0.00 No Limit EX035G: Nitrite as N by Discrete Analyser (QC Lot: 738221) EX057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01	EK055G: Ammonia	as N by Discrete An	alyser (QC Lot: 738532)							
EX057G: Nitrite as N by Discrete Analyser (QC Lot: 73822) V	ES1701995-001	DPWS2	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.08	0.08	0.00	No Limit
ES1702004-007 Anonymous EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01 <0.01 0.00 No Limit ES1701995-001 DPWS2 EK057G: Nitrite as N 14797-65-0 0.01 mg/L <0.01	ES1702004-007	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.07	0.07	0.00	No Limit
EST001995-001 DPWS2 EX057G: Nirite as N 14797-65-0 0.01 mg/L <0.01 0.00 No Limit EX059G: Nirite plus Nirite as N (NOx) by Discrete Analyser (QC Lot: 738533) 0.01 mg/L 0.05 0.04 0.00 No Limit ES1701995-001 DPWS2 EK059G: Nirite + Nitrate as N 0.01 mg/L 0.04 0.04 0.00 No Limit ES1702004-007 Anonymous EK059G: Nirite + Nitrate as N 0.01 mg/L 0.04 0.04 0.00 No Limit ES1702004-007 Anonymous EK061G: Total Kjeldahl Nitrogen as N 0.01 mg/L 0.04 0.04 0.00 No Limit EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L 0.2 0.1 0.00 No Limit EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 738513) 0.1 mg/L 40.01 40.01 0.00 No Limit ES1702007-001 Anonymous EK067G: Total Phosphorus as P 0.01	EK057G: Nitrite as	N by Discrete Analy	vser (QC Lot: 738221)							
EKOS9G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 738533) ES1701995-001 DPWS2 EK059G: Nitrite + Nitrate as N 0.01 mg/L 0.05 0.04 0.00 No Limit ES1701995-001 DPWS2 EK059G: Nitrite + Nitrate as N 0.01 mg/L 0.04 0.04 0.00 No Limit ES1702004-007 Anonymous EK059G: Nitrite + Nitrate as N 0.01 mg/L 0.04 0.04 0.00 No Limit EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QC Lot: 738514) 0.1 mg/L 0.2 0.1 0.00 No Limit ES170207-001 Anonymous EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L 0.3 0.4 0.00 No Limit ES170207-001 Anonymous EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L 0.2 0.1 0.00 No Limit ES170207-001 Anonymous EK067G: Total Phosphorus as P 0.01 mg/L <0.01	ES1702004-007	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
ES1701995-001 DPWS2 EK059G: Nitrite + Nitrate as N 0.01 mg/L 0.05 0.04 0.00 No Limit ES1702004-007 Anonymous EK059G: Nitrite + Nitrate as N 0.01 mg/L 0.04 0.04 0.00 No Limit ES1702004-007 Anonymous EK059G: Nitrite + Nitrate as N 0.01 mg/L 0.04 0.04 0.00 No Limit EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QC Lot: 738514) EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L 0.2 0.1 0.00 No Limit ES1701995-001 DPWS2 EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L 0.3 0.4 0.00 No Limit EK07G: Total Phosphorus as P by Discrete Analyser (QC Lot: 738513) 0.01 mg/L <0.01	ES1701995-001	DPWS2	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
ENCODE Anonymous ENCODE Nitrate as N 0.01 mg/L 0.04 0.04 0.00 No Limit EK061G: Total Kjeldah DPWS2 EK061G: Total Kjeldah Nitrate as N 0.1 mg/L 0.2 0.1 0.00 No Limit ES1701995-001 DPWS2 EK061G: Total Kjeldah Nitrogen as N 0.1 mg/L 0.3 0.4 0.00 No Limit ES1702007-001 Anonymous EK061G: Total Kjeldah Nitrogen as N 0.1 mg/L 0.3 0.4 0.00 No Limit EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 738513) 0.01 mg/L <0.01	EK059G: Nitrite plu	us Nitrate as N (NOx)) by Discrete Analyser (QC Lot: 738533)							
EKo61G: Total Kjeldah Nitrogen By Discrete Analyser QC Lot: 738514) ES1701995-001 DPWS2 EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L 0.2 0.1 0.00 No Limit ES1701995-001 Anonymous EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L 0.3 0.4 0.00 No Limit ES1701995-001 Anonymous EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L 0.3 0.4 0.00 No Limit ES1701995-001 DPWS2 EK067G: Total Kjeldahl Nitrogen as P 0.01 mg/L <0.01	ES1701995-001	DPWS2	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.05	0.04	0.00	No Limit
ES1701995-001 DPWS2 EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L 0.2 0.1 0.00 No Limit ES1701095-001 Anonymous EK061G: Total Kjeldahl Nitrogen as N 0.1 mg/L 0.3 0.4 0.00 No Limit ES1701095-001 DPWS2 EK067G: Total Phosphorus as P 0.01 mg/L <0.01	ES1702004-007	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.04	0.04	0.00	No Limit
Extractive Provide Management Extraction Magement Magemen	EK061G: Total Kjel	dahl Nitrogen By Dis	screte Analyser (QC Lot: 738514)							
EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 738513) 0.01 mg/L <0.01 <0.01 0.00 No Limit ES1701995-001 DPWS2 EK067G: Total Phosphorus as P 0.01 mg/L <0.01	ES1701995-001	DPWS2	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	0.1	0.00	No Limit
ES1701995-001 DPWS2 EK067G: Total Phosphorus as P 0.01 mg/L <0.01 <0.01 0.00 No Limit ES1702007-001 Anonymous EK067G: Total Phosphorus as P 0.01 mg/L <0.01	ES1702007-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3	0.4	0.00	No Limit
ES1702007-001 Anonymous EK067G: Total Phosphorus as P 0.01 mg/L <-0.01 0.01 0.00 No Limit EK071G: Reactive Phosphorus as P by discrete analyser (QC Lot: 738222) EK071G: Reactive Phosphorus as P 14265-44-2 0.01 mg/L 0.02 <0.01 0.00 No Limit ES1701095-001 DPWS2 EK071G: Reactive Phosphorus as P 14265-44-2 0.01 mg/L <0.01 <0.00 No Limit EP080/071: Total Petroleum Hydrocarbons (QC Lot: 738602) EP080: C6 - C9 Fraction 20 µg/L <20 <20 0.00 No Limit ES170126-002 Anonymous EP080: C6 - C9 Fraction 20 µg/L <20 <20 0.00 No Limit	EK067G: Total Pho	sphorus as P by Dis	crete Analyser (QC Lot: 738513)							
EK071G: Reactive Phosphorus as P by discrete analyser (QC Lot: 738222) mg/L 0.02 <0.01 0.00 No Limit ES1702004-007 Anonymous EK071G: Reactive Phosphorus as P 14265-44-2 0.01 mg/L 0.02 <0.01	ES1701995-001	DPWS2	EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.00	No Limit
ES1702004-007 Anonymous EK071G: Reactive Phosphorus as P 14265-44-2 0.01 mg/L 0.02 <0.01 0.00 No Limit ES1701995-001 DPWS2 EK071G: Reactive Phosphorus as P 14265-44-2 0.01 mg/L <0.01	ES1702007-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	0.01	0.00	No Limit
ES1701995-001 DPWS2 EK071G: Reactive Phosphorus as P 14265-44-2 0.01 mg/L <0.01 <0.01 0.00 No Limit EP080/071: Total Petroleum Hydrocarbons (QC Lot: 738602) EP080: C6 - C9 Fraction 20 µg/L <20 <20 0.00 No Limit ES1701296-002 Anonymous EP080: C6 - C9 Fraction 20 µg/L <20 <20 0.00 No Limit	EK071G: Reactive I	Phosphorus as P by	discrete analyser (QC Lot: 738222)							
EP080/071: Total Petroleum Hydrocarbons (QC Lot: 738602) EP080: C6 - C9 Fraction 20 μg/L <20 <20 0.00 No Limit ES1702126-002 Anonymous EP080: C6 - C9 Fraction 20 μg/L <20	ES1702004-007	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.02	<0.01	0.00	No Limit
EB1701699-001 Anonymous EP080: C6 - C9 Fraction 20 μg/L <20 <20 0.00 No Limit ES1702126-002 Anonymous EP080: C6 - C9 Fraction 20 μg/L <20	ES1701995-001	DPWS2	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
ES1702126-002 Anonymous EP080: C6 - C9 Fraction 20 µg/L <20 <20 0.00 No Limit	EP080/071: Total P	etroleum Hydro <u>carbo</u>	ons (QC Lot: 738602)							
	EB1701699-001	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 738602)	ES1702126-002	Anonymous			20	-	<20	<20	0.00	No Limit
	EP080/07 <u>1: Total R</u>	ecoverabl <u>e Hydroca</u>	rbons - NEPM 2013 Fractions (QC Lot: 738602)			·				

Page	: 4 of 7
Work Order	ES1701995
Client	: ECOZ ENVIRONMENTAL SERVICES
Project	: EZ16121 Dhupuma Surface Water - Jan 2017

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Re	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 738602) - continued							
EB1701699-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.00	No Limit
ES1702126-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.00	No Limit
EP080: BTEXN (QC	: Lot: 738602)								
EB1701699-001	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit
ES1702126-002	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
D037P: Alkalinity by PC Titrator (QCLot: 73951	2)								
D037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	104	81	111	
D041G: Sulfate (Turbidimetric) as SO4 2- by DA	(QCLot: 738223)								
D041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	101	82	122	
D045G: Chloride by Discrete Analyser (QCLot:	738224)								
D045G: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	88.9	81	127	
				<1	1000 mg/L	97.4	81	127	
D093F: Dissolved Major Cations (QCLot: 73857	77)								
D093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	96.3	80	114	
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	96.4	90	116	
D093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	95.9	82	120	
D093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	96.5	85	113	
EG020F: Dissolved Metals by ICP-MS (QCLot: 73	38576)								
G020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	99.0	85	114	
G020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	96.8	84	110	
G020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	95.1	85	111	
G020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	95.7	81	111	
G020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	96.0	83	111	
G020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	94.3	82	112	
G020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	94.9	81	117	
G035F: Dissolved Mercury by FIMS (QCLot: 73	8578)								
G035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	104	83	105	
K055G: Ammonia as N by Discrete Analyser(C	QCLot: 738532)								
K055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	99.1	90	114	
K057G: Nitrite as N by Discrete Analyser (QCL	_ot: 738221)								
K057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	107	82	114	
EK059G: Nitrite plus Nitrate as N (NOx) by Disc	rete Analyser (QCLot: 7385	533)							
K059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	95.6	91	113	
K061G: Total Kjeldahl Nitrogen By Discrete Ana	alvser (QCLot: 738514)								
K061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	97.4	69	101	
, ,			-	<0.1	1 mg/L	101	70	118	
				<0.1	5 mg/L	104	74	118	

Page	: 6 of 7
Work Order	ES1701995
Client	: ECOZ ENVIRONMENTAL SERVICES
Project	: EZ16121 Dhupuma Surface Water - Jan 2017

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK067G: Total Phosphorus as P by Discrete Analyser(Q	CLot: 738513) -	continued						
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	85.8	71	101
				<0.01	0.442 mg/L	92.6	72	108
				<0.01	1 mg/L	99.1	78	118
EK071G: Reactive Phosphorus as P by discrete analyser	(QCLot: 738222)						
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	107	85	117
EP080/071: Total Petroleum Hydrocarbons (QCLot: 7384	35)							
EP071: C10 - C14 Fraction		50	µg/L	<50	2000 µg/L	99.7	76	116
EP071: C15 - C28 Fraction		100	µg/L	<100	3000 µg/L	95.6	83	109
EP071: C29 - C36 Fraction		50	μg/L	<50	2000 µg/L	93.8	75	113
EP080/071: Total Petroleum Hydrocarbons (QCLot: 7386)2)							
EP080: C6 - C9 Fraction		20	µg/L	<20	260 µg/L	92.1	75	127
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	B Fractions (QC	Lot: 738485)						
EP071: >C10 - C16 Fraction		100	µg/L	<100	2500 μg/L	94.5	76	114
EP071: >C16 - C34 Fraction		100	μg/L	<100	3500 µg/L	94.5	81	111
EP071: >C34 - C40 Fraction		100	µg/L	<100	1500 µg/L	98.3	77	119
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	B Fractions (QC	Lot: 738602)						
EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	310 µg/L	94.6	75	127
EP080: BTEXN (QCLot: 738602)								
EP080: Benzene	71-43-2	1	μg/L	<1	10 µg/L	91.7	70	122
EP080: Toluene	108-88-3	2	µg/L	<2	10 µg/L	93.6	69	123
EP080: Ethylbenzene	100-41-4	2	µg/L	<2	10 µg/L	101	70	120
EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	10 µg/L	99.0	69	121
	106-42-3							
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	102	72	122
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 µg/L	92.6	70	120

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER				Matrix Spike (MS) Report			
		Spike	SpikeRecovery(%)	Recovery L	.imits (%)		
Method: Compound	CAS Number	Concentration	MS	Low	High		
23)							
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	103	70	130		
ED045G: Chloride	16887-00-6	250 mg/L	105	70	130		
	23) ED041G: Sulfate as SO4 - Turbidimetric	23) ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8	Spike Method: Compound CAS Number Cas Number Concentration 23) ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 10 mg/L	Spike SpikeRecovery(%) Method: Compound CAS Number Concentration MS 23) ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 10 mg/L 10 mg/L 103	Spike SpikeRecovery(%) Recovery I Method: Compound CAS Number Concentration MS Low 23) ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8 10 mg/L 103 70		

Sub-Matrix: WATER					atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G020F: Dissolved	I Metals by ICP-MS (QCLot: 738576)						
ES1701940-002	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	100	70	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	98.4	70	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	99.9	70	130
		EG020A-F: Copper	7440-50-8	1 mg/L	103	70	130
		EG020A-F: Lead	7439-92-1	1 mg/L	99.5	70	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	100	70	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	102	70	130
G035F: Dissolved	Mercury by FIMS (QCLot: 738578)						
S1701969-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	72.2	70	130
K055G: Ammonia	as N by Discrete Analyser (QCLot: 738532)						
S1701995-001	DPWS2	EK055G: Ammonia as N	7664-41-7	1 mg/L	93.9	70	130
K057G: Nitrite as	N by Discrete Analyser (QCLot: 738221)						
ES1701995-001	DPWS2	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	99.2	70	130
K059G · Nitrite n	us Nitrate as N (NOx) by Discrete Analyser(QCLot: 73			Ū			1
ES1701995-001	DPWS2	EK059G: Nitrite + Nitrate as N		0.5 mg/L	96.6	70	130
		EK059G. Nithte + Nitrate as N		0.5 mg/L	30.0	10	100
	dahl Nitrogen By Discrete Analyser (QCLot: 738514)						
ES1701995-002	DPSW4	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	104	70	130
K067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 738513)						
ES1701995-002	DPSW4	EK067G: Total Phosphorus as P		1 mg/L	104	70	130
K071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 738222	2)					
ES1701995-001	DPWS2	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	98.6	70	130
P080/071: Total P	etroleum Hydrocarbons (QCLot: 738602)						
EB1701699-001	Anonymous	EP080: C6 - C9 Fraction		325 µg/L	111	70	130
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QC			110	1	-	
EB1701699-001	Anonymous	EP080: C6 - C10 Fraction	C6 C10	375 µg/L	110	70	130
			00_010	or o pg/L	110	10	100
P080: BTEXN (Q B1701699-001			71-43-2	25 ug/l	95.6	70	130
EB1701099-001	Anonymous	EP080: Benzene	108-88-3	25 µg/L	95.6	70	130
		EP080: Toluene	108-88-3	25 µg/L	108	70	130
		EP080: Ethylbenzene		25 µg/L	108	70	130
		EP080: meta- & para-Xylene	108-38-3	25 µg/L	100	10	130
			106-42-3 95-47-6	25 µg/L	106	70	130
		EP080: ortho-Xylene	90-47-0	25 µg/L	100	70	130

QUALITY CONTROL REPORT

Work Order	: ES1701848	Page	: 1 of 7	
Client	ECOZ ENVIRONMENTAL SERVICES	Laboratory	: Environmental Division Sy	ydney
Contact	: MS EMMA SMITH	Contact	: Customer Services ES	
Address	: PO BOX 381 DARWIN NT, AUSTRALIA 0801	Address	: 277-289 Woodpark Road	Smithfield NSW Australia 2164
Telephone	: +61 08 89811100	Telephone	: +61-2-8784 8555	
Project	: EZ16121 Dhupuma Surface Water - Jan 2017	Date Samples Received	: 25-Jan-2017	
Order number	:	Date Analysis Commenced	: 25-Jan-2017	
C-O-C number	:	Issue Date	: 02-Feb-2017	
Sampler	: HARRIET ALLEN, SIMON RUCKENSTUHL			Hac-MRA NATA
Site	:			
Quote number	: SYBQ-284-16			Accreditation No. 825
No. of samples received	: 3			Accredited for compliance with
No. of samples analysed	: 3			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Dian Dao		Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED037P: Alkalinity k	by PC Titrator (QC Lot:	733174)							
ES1701840-005	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	4	4	0.00	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	4	4	0.00	No Limit
ES1701795-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	132	148	11.4	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	132	148	11.4	0% - 20%
ED041G: Sulfate (Τι	urbidimetric) as SO4 2-	by DA (QC Lot: 733203)							
EW1604894-009	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	<1	0.00	No Limit
ES1701619-021	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	<1	0.00	No Limit
ED045G: Chloride b	y Discrete Analyser (C	C Lot: 733202)							
EW1604894-009	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	<1	<1	0.00	No Limit
ES1701619-021	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	10	10	0.00	0% - 50%
ED093F: Dissolved	Major Cations (QC Lot	: 734944)							
ES1701699-002	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	71	70	0.00	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	103	103	0.00	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	231	229	0.571	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	477	478	0.287	0% - 20%
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 734943)							
ES1701657-002	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0010	<0.0010	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.010	<0.010	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.010	<0.010	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.010	<0.010	0.00	No Limit

Page Work Order	: 3 of 7 : ES1701848
Client	ECOZ ENVIRONMENTAL SERVICES
Project	: EZ16121 Dhupuma Surface Water - Jan 2017

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020F: Dissolved	I Metals by ICP-MS (QC	Lot: 734943) - continued							
ES1701657-002	Anonymous	EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.010	<0.010	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.010	<0.010	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.069	0.066	3.51	No Limit
EG035F: Dissolved	Mercury by FIMS (QC	Lot: 734945)							
ES1701718-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EK055G: Ammonia	as N by Discrete Analy	vser (QC Lot: 734919)							
ES1701669-005	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.03	98.5	No Limit
ES1701669-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.02	0.00	No Limit
EK057G: Nitrite as	N by Discrete Analyse	r (QC Lot: 733204)							
EW1604894-003	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
ES1701619-021	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK059G: Nitrite pl	us Nitrate as N (NO <u>x)</u> b	y Discrete Analyser (QC Lot: 734918)							
ES1701669-005	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.00	No Limit
ES1701669-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK061G: Total Kjel	dahl Nitrogen By Discre	ete Analyser (QC Lot: 734906)							
ES1701628-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	19.6	16.7	15.8	0% - 20%
ES1701671-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	126	121	4.38	0% - 20%
EK067G: Total Pho	sphorus as P by Discre	te Analyser (QC Lot: 734907)							
ES1701628-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	36.0	37.2	3.28	0% - 20%
ES1701671-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	52.0	50.0	3.82	0% - 20%
EK071G: Reactive	Phosphorus as P by dis	screte analyser (QC Lot: 733206)							
ES1701848-001	DUP	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.02	<0.01	78.1	No Limit
EW1604894-012	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EP080/071: Total P	etroleum Hydrocarbons	s (QC Lot: 734359)							
ES1701705-028	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
ES1701746-002	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
EP080/071: Total R	ecoverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 734359)							
ES1701705-028	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.00	No Limit
ES1701746-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.00	No Limit
EP080: BTEXN (Q	C Lot: 734359)								
ES1701705-028	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit
ES1701746-002	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit

Page	: 4 of 7
Work Order	: ES1701848
Client	: ECOZ ENVIRONMENTAL SERVICES
Project	: EZ16121 Dhupuma Surface Water - Jan 2017

Sub-Matrix: WATER	ub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP080: BTEXN (QC Lot: 734359) - continued											
ES1701746-002	Anonymous	EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.00	No Limit		
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.00	No Limit		
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.00	No Limit		
			106-42-3								
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.00	No Limit		
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit		

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

ub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
ED037P: Alkalinity by PC Titrator (QCLot: 733174)									
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	104	81	111	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA(C	CLot: 733203)								
D041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	99.1	82	122	
D045G: Chloride by Discrete Analyser (QCLot: 73	3202)								
D045G: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	109	81	127	
				<1	1000 mg/L	97.4	81	127	
D093F: Dissolved Major Cations (QCLot: 734944)									
D093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	100	80	114	
D093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	102	90	116	
D093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	102	82	120	
D093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	100	85	113	
G020F: Dissolved Metals by ICP-MS (QCLot: 7349	43)								
G020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	102	85	114	
G020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	101	84	110	
G020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	95.8	85	111	
G020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	98.9	81	111	
G020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	97.2	83	111	
G020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	98.6	82	112	
G020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	97.0	81	117	
G035F: Dissolved Mercury by FIMS (QCLot: 73494	5)								
G035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	105	83	105	
K055G: Ammonia as N by Discrete Analyser(QCL	ot: 734919)								
K055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	103	90	114	
K057G: Nitrite as N by Discrete Analyser (QCLot:	733204)								
K057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	94.8	82	114	
K059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser (QCLot: 734	918)							
K059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	98.2	91	113	
K061G: Total Kjeldahl Nitrogen By Discrete Analys	er (QCLot: 734906)								
		0.1	mg/L	<0.1	10 mg/L	101	69	101	
KU61G: Total Kjeldani Nitrogen as N			-	<0.1	1 mg/L	108	70	118	
K061G: Total Kjeldahl Nitrogen as N				-0.1	i ilig/L	100	70	110	

Page	: 6 of 7
Work Order	: ES1701848
Client	: ECOZ ENVIRONMENTAL SERVICES
Project	: EZ16121 Dhupuma Surface Water - Jan 2017

Sub-Matrix: WATER	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK067G: Total Phosphorus as P by Discrete Analyser (QC	Lot: 734907) -	continued						
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	86.0	71	101
				<0.01	0.442 mg/L	93.4	72	108
				<0.01	1 mg/L	113	78	118
EK071G: Reactive Phosphorus as P by discrete analyser(QCLot: 733206	5)						
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	98.5	85	117
EP080/071: Total Petroleum Hydrocarbons (QCLot: 733969)							
EP071: C10 - C14 Fraction		50	μg/L	<50	2000 µg/L	87.4	76	116
EP071: C15 - C28 Fraction		100	μg/L	<100	3000 μg/L	90.7	83	109
EP071: C29 - C36 Fraction		50	µg/L	<50	2000 µg/L	85.0	75	113
EP080/071: Total Petroleum Hydrocarbons (QCLot: 734359)							
EP080: C6 - C9 Fraction		20	μg/L	<20	260 µg/L	102	75	127
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QC	Lot: 733969)						
EP071: >C10 - C16 Fraction		100	μg/L	<100	2500 μg/L	87.0	76	114
EP071: >C16 - C34 Fraction		100	µg/L	<100	3500 μg/L	91.9	81	111
EP071: >C34 - C40 Fraction		100	µg/L	<100	1500 μg/L	90.0	77	119
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QC	Lot: 734359)						
EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	310 µg/L	103	75	127
EP080: BTEXN (QCLot: 734359)								
EP080: Benzene	71-43-2	1	μg/L	<1	10 µg/L	105	70	122
EP080: Toluene	108-88-3	2	µg/L	<2	10 µg/L	96.8	69	123
EP080: Ethylbenzene	100-41-4	2	µg/L	<2	10 µg/L	87.5	70	120
EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	10 µg/L	85.7	69	121
	106-42-3							
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	87.2	72	122
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 µg/L	89.8	70	120

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	-Matrix: WATER			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA(QCLot: 733203)							
ES1701619-021	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	101	70	130	
ED045G: Chloride I	by Discrete Analyser (QCLot: 733202)							
ES1701619-021	Anonymous	ED045G: Chloride	16887-00-6	250 mg/L	96.4	70	130	

ub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G020F: Dissolve	I Metals by ICP-MS (QCLot: 734943)						
ES1701657-003	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	96.0	70	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	98.5	70	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	98.9	70	130
		EG020A-F: Copper	7440-50-8	1 mg/L	95.2	70	130
		EG020A-F: Lead	7439-92-1	1 mg/L	99.0	70	130
	EG020A-F: Nickel	7440-02-0	1 mg/L	99.5	70	130	
		EG020A-F: Zinc	7440-66-6	1 mg/L	97.9	70	130
G035F: Dissolve	Mercury by FIMS (QCLot: 734945)						
ES1701707-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	81.3	70	130
K055G: Ammoni	a as N by Discrete Analyser (QCLot: 734919)						
ES1701669-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	80.4	70	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 733204)						
ES1701619-021	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	# 39.5	70	130
K059G: Nitrite p	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 7	34918)		_			
ES1701669-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	102	70	130
-K061G: Total Kie	Idahl Nitrogen By Discrete Analyser (QCLot: 734906)						1
ES1701629-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	# Not	70	130
201101020 001	, nonymous			0	Determined		
-K067G: Total Ph	osphorus as P by Discrete Analyser (QCLot: 734907)				Determined		1
ES1701629-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	115	70	130
	Phosphorus as P by discrete analyser (QCLot: 733200			i iligi z	110	10	100
ES1701848-001	DUP		14265-44-2	0.E.ma/l	88.3	70	130
		EK071G: Reactive Phosphorus as P	14200-44-2	0.5 mg/L	00.3	70	130
	etroleum Hydrocarbons (QCLot: 734359)						
ES1701705-028	Anonymous	EP080: C6 - C9 Fraction		325 µg/L	112	70	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	CLot: 734359)					
ES1701705-028	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	112	70	130
EP080: BTEXN (Q	CLot: 734359)						
ES1701705-028	Anonymous	EP080: Benzene	71-43-2	25 µg/L	108	70	130
		EP080: Toluene	108-88-3	25 µg/L	101	70	130
		EP080: Ethylbenzene	100-41-4	25 µg/L	92.4	70	130
		EP080: meta- & para-Xylene	108-38-3	25 µg/L	88.3	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 µg/L	88.4	70	130
		EP080: Naphthalene	91-20-3	25 µg/L	88.0	70	130

QA/QC Compliance Assessment to assist with Quality Review							
: ES1701995	Page	: 1 of 8					
	Laboratory	: Environmental Division Sydney					
: MS EMMA SMITH	Telephone	: +61-2-8784 8555					
: EZ16121 Dhupuma Surface Water - Jan 2017	Date Samples Received	: 31-Jan-2017					
:	Issue Date	: 03-Feb-2017					
: Harriet Allen, Simon Ruckenstuhl	No. of samples received	: 2					
:	No. of samples analysed	: 2					
	: ES1701995 : ECOZ ENVIRONMENTAL SERVICES : MS EMMA SMITH : EZ16121 Dhupuma Surface Water - Jan 2017 : : Harriet Allen, Simon Ruckenstuhl	: ES1701995 Page : ECOZ ENVIRONMENTAL SERVICES Laboratory : MS EMMA SMITH Telephone : EZ16121 Dhupuma Surface Water - Jan 2017 Date Samples Received : Issue Date : Harriet Allen, Simon Ruckenstuhl No. of samples received					

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EK057G: Nitrite as N by Discrete Analys	er						
Clear Plastic Bottle - Natural							
DPWS2,	DPSW4				31-Jan-2017	26-Jan-2017	5
EK071G: Reactive Phosphorus as P by o	liscrete analyser						
Clear Plastic Bottle - Natural							
DPWS2,	DPSW4				31-Jan-2017	26-Jan-2017	5
EP080/071: Total Petroleum Hydrocarbo	ns						
Amber Glass Bottle - Unpreserved							
DPWS2,	DPSW4	01-Feb-2017	31-Jan-2017	1			
EP080/071: Total Recoverable Hydrocarl	oons - NEPM 2013 Fractions						
Amber Glass Bottle - Unpreserved							
DPWS2,	DPSW4	01-Feb-2017	31-Jan-2017	1			

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	ount	Rate	(%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
TRH - Semivolatile Fraction	0	20	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
TRH - Semivolatile Fraction	0	20	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P)								
DPWS2,	DPSW4	24-Jan-2017				01-Feb-2017	07-Feb-2017	✓
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G)								
DPWS2,	DPSW4	24-Jan-2017				31-Jan-2017	21-Feb-2017	✓

Matrix: WATER					Evaluation	n: × = Holding time	breach ; ✓ = With	in holding time	
Method		Sample Date	Ex	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
ED045G: Chloride by Discrete Analyser									
Clear Plastic Bottle - Natural (ED045G)									
DPWS2,	DPSW4	24-Jan-2017				31-Jan-2017	21-Feb-2017	✓	
ED093F: Dissolved Major Cations		1	1			1			
Clear Plastic Bottle - Filtered; Lab-acidified (ED093F) DPWS2.	DPSW4	24-Jan-2017				01-Feb-2017	21-Feb-2017	1	
EG020F: Dissolved Metals by ICP-MS									
Clear Plastic Bottle - Filtered; Lab-acidified (EG020A-F)									
DPWS2,	DPSW4	24-Jan-2017				01-Feb-2017	23-Jul-2017	✓	
EG035F: Dissolved Mercury by FIMS									
Clear Plastic Bottle - Filtered; Lab-acidified (EG035F)						00 E.L. 00/E	04 5-1 0047		
DPWS2,	DPSW4	24-Jan-2017				02-Feb-2017	21-Feb-2017	✓	
EK055G: Ammonia as N by Discrete Analyser		1	1			1			
Clear Plastic Bottle - Sulfuric Acid (EK055G) DPWS2.	DPSW4	24-Jan-2017				01-Feb-2017	21-Feb-2017	1	
EK057G: Nitrite as N by Discrete Analyser									
Clear Plastic Bottle - Natural (EK057G)									
DPWS2,	DPSW4	24-Jan-2017				31-Jan-2017	26-Jan-2017	*	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An	alyser								
Clear Plastic Bottle - Sulfuric Acid (EK059G)									
DPWS2,	DPSW4	24-Jan-2017				01-Feb-2017	21-Feb-2017	✓	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser		1	1			1			
Clear Plastic Bottle - Sulfuric Acid (EK061G) DPWS2.	DPSW4	24-Jan-2017	01-Feb-2017	21-Feb-2017	1	01-Feb-2017	21-Feb-2017	1	
EK067G: Total Phosphorus as P by Discrete Analyser					•				
Clear Plastic Bottle - Sulfuric Acid (EK067G)									
DPWS2,	DPSW4	24-Jan-2017	01-Feb-2017	21-Feb-2017	1	01-Feb-2017	21-Feb-2017	✓	
EK071G: Reactive Phosphorus as P by discrete analyse	Pr								
Clear Plastic Bottle - Natural (EK071G)									
DPWS2,	DPSW4	24-Jan-2017				31-Jan-2017	26-Jan-2017	×	
EP080/071: Total Petroleum Hydrocarbons		1	1			1			
Amber Glass Bottle - Unpreserved (EP071) DPWS2,	DPSW4	24-Jan-2017	01-Feb-2017	31-Jan-2017	×	02-Feb-2017	13-Mar-2017	1	
Amber VOC Vial - Sulfuric Acid (EP080)	DI GWH	24-0411-2017	01-1 00-2017		*	02-1 00-2017		V	
DPWS2,	DPSW4	24-Jan-2017	01-Feb-2017	07-Feb-2017	✓	01-Feb-2017	07-Feb-2017	✓	
EP080/071: Total Recoverable Hydrocarbons - NEPM 20	13 Fractions								
Amber Glass Bottle - Unpreserved (EP071)									
DPWS2,	DPSW4	24-Jan-2017	01-Feb-2017	31-Jan-2017	*	02-Feb-2017	13-Mar-2017	✓	
Amber VOC Vial - Sulfuric Acid (EP080) DPWS2,	DPSW4	24-Jan-2017	01-Feb-2017	07-Feb-2017	1	01-Feb-2017	07-Feb-2017	1	
5, 1152,					*				

Page	: 4 of 8
Work Order	: ES1701995
Client	: ECOZ ENVIRONMENTAL SERVICES
Project	: EZ16121 Dhupuma Surface Water - Jan 2017

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP08	80)							
DPWS2,	DPSW4	24-Jan-2017	01-Feb-2017	07-Feb-2017	1	01-Feb-2017	07-Feb-2017	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		C	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
_aboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	19	10.53	10.00	~	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
lajor Cations - Dissolved	ED093F	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	0	20	0.00	10.00	*	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)						-	
Ikalinity by PC Titrator	ED037-P	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
mmonia as N by Discrete analyser	EK055G	1	19	5.26	5.00		NEPM 2013 B3 & ALS QC Standard
hloride by Discrete Analyser	ED045G	2	20	10.00	10.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	6	16.67	5.00		NEPM 2013 B3 & ALS QC Standard
issolved Metals by ICP-MS - Suite A	EG020A-F	1	18	5.56	5.00		NEPM 2013 B3 & ALS QC Standard
lajor Cations - Dissolved	ED093F	1	15	6.67	5.00		NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00		NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	1	13	7.69	5.00		NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	20	15.00	15.00		NEPM 2013 B3 & ALS QC Standard
otal Phosphorus as P By Discrete Analyser	EK067G	3	19	15.79	15.00		NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
/lethod Blanks (MB)	2. 300						
mmonia as N by Discrete analyser	EK055G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
hloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	6	16.67	5.00		NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	18	5.56	5.00		NEPM 2013 B3 & ALS QC Standard
fajor Cations - Dissolved	ED093F	1	15	6.67	5.00		NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00		NEPM 2013 B3 & ALS QC Standard

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Nitrite as N by Discrete Analyser	EK057G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	20	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	Schedule B(3) In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)

Analytical Methods	Method	Matrix	Method Descriptions
Nitrite and Nitrate as N (NOx) by Discrete	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by
Analyser			Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013)
			Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high
Analyser			temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined
			colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule
Discrete Analyser			B(3)
Total Phosphorus as P By Discrete	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves
Analyser			sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate
			reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and
			its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013)
			Schedule B(3)
Reactive Phosphorus as P-By Discrete	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid
Analyser			medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely
			coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant
			with NEPM (2013) Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4	EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)
DA TRH - Semivolatile Fraction	ED074	WATER	In house Defense and to UOEDA 004.040, 004.04. The complex street is produced by Operillary OO/EID and
	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and
			quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This
TRH Volatiles/BTEX	EP080	WATER	method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
	EPUOU	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by
			Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS
			analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013)
			Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel
			and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined,
			dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3) . ALS
			default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

QA/QC Compliance Assessment to assist with Quality Review

Work Order	ES1701848	Page	: 1 of 8
Client	: ECOZ ENVIRONMENTAL SERVICES	Laboratory	: Environmental Division Sydney
Contact	: MS EMMA SMITH	Telephone	: +61-2-8784 8555
Project	: EZ16121 Dhupuma Surface Water - Jan 2017	Date Samples Received	: 25-Jan-2017
Site	:	Issue Date	: 02-Feb-2017
Sampler	: HARRIET ALLEN, SIMON RUCKENSTUHL	No. of samples received	: 3
Order number	:	No. of samples analysed	: 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EK057G: Nitrite as N by Discrete Analyser	ES1701619021	Anonymous	Nitrite as N	14797-65-0	39.5 %	70-130%	Recovery less than lower data quality
							objective
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	ES1701629001	Anonymous	Total Kjeldahl Nitrogen		Not		MS recovery not determined,
			as N		Determined		background level greater than or
							equal to 4x spike level.

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	C	ount	Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
TRH - Semivolatile Fraction	0	20	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
TRH - Semivolatile Fraction	0	20	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time.
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P) DUP, DPSW5	DPSW1,	23-Jan-2017				25-Jan-2017	06-Feb-2017	~
ED041G: Sulfate (Turbidimetric) as SO4	4 2- by DA							
Clear Plastic Bottle - Natural (ED041G) DUP, DPSW5	DPSW1,	23-Jan-2017				25-Jan-2017	20-Feb-2017	~
ED045G: Chloride by Discrete Analyse	r							
Clear Plastic Bottle - Natural (ED045G) DUP, DPSW5	DPSW1,	23-Jan-2017				25-Jan-2017	20-Feb-2017	~

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED093F: Dissolved Major Cations								
Clear HDPE (U-T ORC) - Filtered; Lab-acidified (ED093F) DUP, DPSW5	DPSW1,	23-Jan-2017				27-Jan-2017	20-Feb-2017	~
EG020F: Dissolved Metals by ICP-MS								
Clear HDPE (U-T ORC) - Filtered; Lab-acidified (EG020A-F) DUP, DPSW5	DPSW1,	23-Jan-2017				27-Jan-2017	22-Jul-2017	~
EG035F: Dissolved Mercury by FIMS								
Clear HDPE (U-T ORC) - Filtered; Lab-acidified (EG035F) DUP, DPSW5	DPSW1,	23-Jan-2017				30-Jan-2017	20-Feb-2017	~
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G) DUP, DPSW5	DPSW1,	23-Jan-2017				27-Jan-2017	20-Feb-2017	~
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G) DUP, DPSW5	DPSW1,	23-Jan-2017				25-Jan-2017	25-Jan-2017	~
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analy	yser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) DUP, DPSW5	DPSW1,	23-Jan-2017				27-Jan-2017	20-Feb-2017	~
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK061G) DUP, DPSW5	DPSW1,	23-Jan-2017	27-Jan-2017	20-Feb-2017	~	27-Jan-2017	20-Feb-2017	~
EK067G: Total Phosphorus as P by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK067G) DUP, DPSW5	DPSW1,	23-Jan-2017	27-Jan-2017	20-Feb-2017	1	27-Jan-2017	20-Feb-2017	~
EK071G: Reactive Phosphorus as P by discrete analyser								
Clear Plastic Bottle - Natural (EK071G) DUP, DPSW5	DPSW1,	23-Jan-2017				25-Jan-2017	25-Jan-2017	~
		1	1	1				

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbo	ons							
Amber Glass Bottle - Unpreserved (EP07 DUP, DPSW5	1) DPSW1,	23-Jan-2017	30-Jan-2017	30-Jan-2017	1	31-Jan-2017	11-Mar-2017	~
Amber VOC Vial - Sulfuric Acid (EP080) DUP, DPSW5	DPSW1,	23-Jan-2017	27-Jan-2017	06-Feb-2017	~	27-Jan-2017	06-Feb-2017	~
EP080/071: Total Recoverable Hydrocar	bons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP07 DUP, DPSW5	1) DPSW1,	23-Jan-2017	30-Jan-2017	30-Jan-2017	~	31-Jan-2017	11-Mar-2017	~
Amber VOC Vial - Sulfuric Acid (EP080) DUP, DPSW5	DPSW1,	23-Jan-2017	27-Jan-2017	06-Feb-2017	~	27-Jan-2017	06-Feb-2017	~
EP080: BTEXN								
Amber VOC Vial - Sulfuric Acid (EP080) DUP, DPSW5	DPSW1,	23-Jan-2017	27-Jan-2017	06-Feb-2017	1	27-Jan-2017	06-Feb-2017	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
_aboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS QC Standard
mmonia as N by Discrete analyser	EK055G	2	13	15.38	10.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	7	14.29	10.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	10	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
lajor Cations - Dissolved	ED093F	1	9	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
itrite as N by Discrete Analyser	EK057G	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
eactive Phosphorus as P-By Discrete Analyser	EK071G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	0	20	0.00	10.00	*	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)						-	
Ikalinity by PC Titrator	ED037-P	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
mmonia as N by Discrete analyser	EK055G	1	13	7.69	5.00		NEPM 2013 B3 & ALS QC Standard
hloride by Discrete Analyser	ED045G	2	20	10.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
issolved Mercury by FIMS	EG035F	1	7	14.29	5.00		NEPM 2013 B3 & ALS QC Standard
issolved Metals by ICP-MS - Suite A	EG020A-F	1	10	10.00	5.00		NEPM 2013 B3 & ALS QC Standard
lajor Cations - Dissolved	ED093F	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	20	15.00	15.00		NEPM 2013 B3 & ALS QC Standard
otal Phosphorus as P By Discrete Analyser	EK067G	3	20	15.00	15.00	×	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
lethod Blanks (MB)						-	
mmonia as N by Discrete analyser	EK055G	1	13	7.69	5.00	1	NEPM 2013 B3 & ALS QC Standard
hloride by Discrete Analyser	ED045G	1	20	5.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	7	14.29	5.00		NEPM 2013 B3 & ALS QC Standard
issolved Metals by ICP-MS - Suite A	EG020A-F	1	10	10.00	5.00		NEPM 2013 B3 & ALS QC Standard
lajor Cations - Dissolved	ED093F	1	9	11.11	5.00		NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specificatio	
Quality Control Sample Type			Count		Rate (%)		Quality Control Specification	
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation		
Method Blanks (MB) - Continued								
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Ammonia as N by Discrete analyser	EK055G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	0	20	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	Schedule B(3) In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)

Analytical Methods	Method	Matrix	Method Descriptions
Nitrite and Nitrate as N (NOx) by Discrete	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by
Analyser			Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high
Analyser			temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves
Analyser			sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate
			reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and
			its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Reactive Phosphorus as P-By Discrete	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid
Analyser			medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely
			coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and
			quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by
	2.000		Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve.
			Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS
			analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013)
			Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel
			and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined,
			dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS
			default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

Ecoz P/L Level 3 , Winlow House, 75 Woods St Darwin NT 0800

Emma Smith

Report	
Project name	
Project ID	
Received Date	

496356-W DHUPUMA EZ16005 Apr 12, 2016

Client Sample ID			DPSW1	DPSW2	DPS1	GARMA BORE
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M16-Ap09880	M16-Ap09881	M16-Ap09882	M16-Ap09883
Date Sampled			Apr 07, 2016	Apr 07, 2016	Apr 08, 2016	Apr 07, 2016
Test/Reference	LOR	Unit			•	
Total Recoverable Hydrocarbons - 1999 NEPM Frac		Onit				
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
	·					
Ammonia (as N)	0.01	mg/L	0.02	< 0.01	0.02	0.12
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Phosphate total (as P)	0.01	mg/L	< 0.01	< 0.01	0.02	< 0.01
Phosphorus reactive (as P)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Total Kjeldahl Nitrogen (as N)	0.1	mg/L	0.14	0.13	< 0.1	< 0.1
Total Nitrogen (as N)	0.1	mg/L	0.14	0.13	< 0.1	< 0.1
Alkalinity (speciated)						
Hydroxide Alkalinity (as CaCO3)	10	mg/L	< 10	< 10	< 10	< 10
Total Alkalinity (as CaCO3)	20	mg/L	< 20	< 20	23	< 20
Major Anions						
Bicarbonate Alkalinity (as CaCO3)	20	mg/L	< 20	< 20	23	< 20
Carbonate Alkalinity (as CaCO3)	10	mg/L	< 10	< 10	< 10	< 10
Chloride	1	mg/L	24	14	130	13
Nitrate (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
Sulphate (as S)	1	mg/L	< 1	< 1	< 1	< 1
Heavy Metals						
Aluminium	0.05	mg/L	< 0.05	0.15	0.05	< 0.05
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Arsenic	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Barium	0.02	mg/L	< 0.02	< 0.02	0.12	< 0.02
Barium (filtered)	0.02	mg/L	< 0.02	< 0.02	0.12	< 0.02
Beryllium	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Boron	0.05	mg/L	0.09	< 0.05	0.16	< 0.05

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			DPSW1	DPSW2	DPS1	GARMA BORE
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M16-Ap09880	M16-Ap09881	M16-Ap09882	M16-Ap09883
Date Sampled			Apr 07, 2016	Apr 07, 2016	Apr 08, 2016	Apr 07, 2016
Test/Reference	LOR	Unit				
Heavy Metals						
Boron (filtered)	0.05	mg/L	< 0.05	< 0.05	0.08	< 0.05
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium	0.001	mg/L	< 0.001	< 0.001	0.001	< 0.001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.006
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.006
Iron	0.05	mg/L	0.46	4.2	1.1	1.9
Iron (filtered)	0.05	mg/L	0.16	0.38	0.64	0.31
Lead	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.006
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.002
Manganese	0.005	mg/L	< 0.005	< 0.005	0.036	0.011
Manganese (filtered)	0.005	mg/L	< 0.005	< 0.005	0.036	0.011
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Selenium	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Selenium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Uranium	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Uranium (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vanadium	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vanadium (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc	0.001	mg/L	< 0.001	< 0.001	0.002	0.006
Zinc (filtered)	0.001	mg/L	< 0.001	< 0.001	0.002	0.005
Alkali Metals	•					
Calcium	0.5	mg/L	1.0	< 0.5	5.7	1.6
Magnesium	0.5	mg/L	1.4	0.9	6.3	0.7
Potassium	0.5	mg/L	< 0.5	< 0.5	2.8	< 0.5
Sodium	0.5	mg/L	13	8.5	61	7.0

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Melbourne	Extracted Apr 15, 2016	Holding Time 7 Day
- Method: TRH C6-C36 - LTM-ORG-2010	Melbourne	Apr 15, 0010	7 Dov
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: TRH C6-C40 - LTM-ORG-2010	Melbourne	Apr 15, 2016	7 Day
Major Cations			
Ammonia (as N)	Melbourne	Apr 12, 2016	28 Day
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA	Webbourne	Apr 12, 2010	20 Day
Alkali Metals	Melbourne	Apr 12, 2016	180 Day
- Method: USEPA 6010 Alkali Metals	Melbourne	7,0112,2010	100 Duy
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Apr 12, 2016	28 Day
- Method: APHA 4500-NO3/NO2 Nitrate-Nitrite Nitrogen by FIA	molocumo	, pr 12, 2010	20 Duy
Total Kjeldahl Nitrogen (as N)	Melbourne	Apr 12, 2016	7 Day
- Method: APHA 4500 TKN	monoodunio	, p, _0.0	. 200
Nitrite (as N)	Melbourne	Apr 12, 2016	2 Day
- Method: APHA 4500-NO2 Nitrite Nitrogen by FIA			
Phosphate total (as P)	Melbourne	Apr 12, 2016	28 Day
- Method: APHA 4500-P E. Phosphorous		r ,	
Phosphorus reactive (as P)	Melbourne	Apr 13, 2016	2 Day
- Method: APHA4500-PO4		r -,	
Alkalinity (speciated)	Melbourne	Apr 13, 2016	14 Day
- Method: APHA 2320 Alkalinity by Titration			,
Major Anions			
Bicarbonate Alkalinity (as CaCO3)	Melbourne	Apr 13, 2016	14 Day
- Method: APHA 2320 Alkalinity by Titration			-
Carbonate Alkalinity (as CaCO3)	Melbourne	Apr 13, 2016	14 Day
- Method: APHA 2320 Alkalinity by Titration			
Chloride	Melbourne	Apr 13, 2016	28 Day
- Method: MGT 1100A			
Nitrate (as N)	Melbourne	Apr 13, 2016	7 Day
- Method: APHA 4500-NO3 Nitrate Nitrogen by FIA			
Sulphate (as S)	Melbourne	Apr 13, 2016	28 Day
- Method: In house MGT1110A (SO4 by Discrete Analyser)			
Heavy Metals	Melbourne	Apr 15, 2016	180 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			
Heavy Metals (filtered)	Melbourne	Apr 15, 2016	180 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			
Mobil Metals : Metals M15	Melbourne	Apr 15, 2016	28 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Nar Address: Project Name Project ID:	Level 3 , Darwin NT 0800	Winlow House, [•] MA	75 Woods St				Rep	er N oort a one: :				356 898	; 1 11(00								Rec Due Pric Cor	e: ority ntact	: t Na			A 5 E	pr 1 Day	9, 20 / a Sr	nith			n Gil	Iber	ť	
		Sample Detail			Aluminium	Arsenic Aluminium (filtorod)	Arsenic (filtered)	Barium (filtered) Barium	Beryllium	Boron Bervllium (filtered)	Boron (filtered)	Cadmium (filtered)	Chromium	Cobalt Chromium (filtered)	Cobalt (filtered)	Copper (filtered)	Hydroxide Alkalinity (as CaCO3)	Iron		Lead (filtered)	Manganese (filtered) Manganese	Mercury	Nickel Mercury (filtered)	Nickel (filtered)	Nitrite (as N)	Phosphorus reactive (as P) Phosphate total (as P)	elenium	Selenium (filtered)	Uranium Total Alkalinity (no Cocco)	Vanauuri Uranium (filtered)	Vanadium (filtered)	Zinc	Total Nitrogen Set (as N) Zinc (filtered)	Major Anions	Major Cations	Tatal Danavarahla Hudronarhone
Laboratory whe	ere analysis is c	onducted																															\perp	\square	\square	
Melbourne Labo			271		X	x x	X [x x	X	хx		x x	X	<u>x x</u>	X	<u>x x</u>	X	X)	< X	X	<u>x x</u>	(X	<u>x </u>	(X	X	x x	(X	X)	<u>x x</u>	X	x x	X	<u>x x</u>	X	<u>x</u>]	X
Sydney Laborat						_					+					_	+					+					_		_		_		+	$\downarrow \downarrow$	\downarrow	
Brisbane Labor		te # 20794			+	_		_	+	_	++	_	+	+	+	+	+		_	$\left \right $	+	+		_	$\left \right $		_	\vdash	_	$\left \cdot \right $	+	$\left \cdot \right $	+	++	+	-
External Labora		Compline	Motrix		+	_	$\left \right $	+	+	-	++		+	+	+	+	+			+	+	+		-	$\left \right $	+		\vdash	+	++	+	$\left \cdot \right $	+	++	+	-
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																																
DPSW1	Apr 07, 2016		Water	M16-Ap09880	X	хx	X	x x	X	хx	X	x x	X	хx	Х	x x	X	x	< X	X	хx	x	x	(X	X	хx	< X	X)	x x	X X	x x	X	хх	X	X	Х
DPSW2	Apr 07, 2016		Water	M16-Ap09881	X X	хx	X	хx	X	хх		x x	X	хх	X	x x	Х	X)	κх	X	хх	(X	хX	(X	X	хх	< X	X)	x x	X	x x	X	хх	X	X	Х
DPS1	Apr 08, 2016		Water	M16-Ap09882	X X	хX	X	хx	X	ΧХ				хx	+ +	_	+ +		_	+ +				_	+ +		_		_		_	+ +	хx			Х
GARMA BORE	Apr 07, 2016		Water	M16-Ap09883	$ \mathbf{x} $	x x	X	x x	X	хx		x x	X	хx	X	<u>x x</u>	X	X	κX	X	x x	X	x >	(X	X	хх	< X	X	x x	\mathbf{x}	x x	X	хx	X	X	X

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery
Certified Reference Material - reported as percent recovery
In the case of solid samples these are performed on laboratory certified clean sands.
In the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
United States Environmental Protection Agency
American Public Health Association
Australian Standard Leaching Procedure (Eurofins mgt uses NATA accredited in-house method LTM-GEN-7010)
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	4	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions					
TRH C10-C14	mg/L	< 0.05		0.05	Pass	
TRH C15-C28	mg/L	< 0.1		0.1	Pass	
TRH C29-C36	mg/L	< 0.1		0.1	Pass	
Method Blank			· · ·			
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
TRH >C10-C16	mg/L	< 0.05		0.05	Pass	
TRH >C16-C34	mg/L	< 0.1		0.1	Pass	
TRH >C34-C40	mg/L	< 0.1		0.1	Pass	
Method Blank						
Ammonia (as N)	mg/L	< 0.01		0.01	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05		0.05	Pass	
Nitrite (as N)	mg/L	< 0.02		0.02	Pass	
Phosphate total (as P)	mg/L	< 0.01		0.01	Pass	
Phosphorus reactive (as P)	mg/L	< 0.05		0.05	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.1		0.1	Pass	
Method Blank	ing/L	<u> </u>		0.1	1 400	
Alkalinity (speciated)						
Hydroxide Alkalinity (as CaCO3)	mg/L	< 10		10	Pass	
Total Alkalinity (as CaCO3)	mg/L	< 20		20	Pass	
Method Blank	IIIg/L	< 20		20	F d 55	
Major Anions		. 00		00	Dees	
Bicarbonate Alkalinity (as CaCO3)	mg/L	< 20		20	Pass	
Carbonate Alkalinity (as CaCO3)	mg/L	< 10		10	Pass	
Chloride	mg/L	< 1		1	Pass	
Nitrate (as N)	mg/L	< 0.02		0.02	Pass	
Sulphate (as S)	mg/L	< 1		1	Pass	
Method Blank						
Heavy Metals					_	
Aluminium	mg/L	< 0.05		0.05	Pass	
Aluminium (filtered)	mg/L	< 0.05		0.05	Pass	
Arsenic	mg/L	< 0.001		0.001	Pass	
Arsenic (filtered)	mg/L	< 0.001		0.001	Pass	
Barium	mg/L	< 0.02		0.02	Pass	
Barium (filtered)	mg/L	< 0.02		0.02	Pass	
Beryllium	mg/L	< 0.001		0.001	Pass	
Beryllium (filtered)	mg/L	< 0.001		0.001	Pass	
Boron	mg/L	< 0.05		0.05	Pass	
Boron (filtered)	mg/L	< 0.05		0.05	Pass	
Cadmium	mg/L	< 0.0002		0.0002	Pass	
Cadmium (filtered)	mg/L	< 0.0002		0.0002	Pass	
Chromium	mg/L	< 0.001		0.001	Pass	
Chromium (filtered)	mg/L	< 0.001		0.001	Pass	
Cobalt	mg/L	< 0.001		0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001		0.001	Pass	
Copper	mg/L	< 0.001		0.001	Pass	
Copper (filtered)	mg/L	< 0.001		0.001	Pass	
Iron	mg/L	< 0.05		0.05	Pass	
Iron (filtered)	mg/L	< 0.05		0.05	Pass	
Lead	mg/L	< 0.001		0.001	Pass	
Lead (filtered)	mg/L	< 0.001		0.001	Pass	

Test	Units	Result 1	ļ	Acceptance Limits	Pass Limits	Qualifying Code
Manganese	mg/L	< 0.005		0.005	Pass	
Manganese (filtered)	mg/L	< 0.005		0.005	Pass	
Mercury	mg/L	< 0.0001		0.0001	Pass	
Mercury (filtered)	mg/L	< 0.0001		0.0001	Pass	
Nickel	mg/L	< 0.001		0.001	Pass	
Nickel (filtered)	mg/L	< 0.001		0.001	Pass	
Selenium	mg/L	< 0.001		0.001	Pass	
Selenium (filtered)	mg/L	< 0.001		0.001	Pass	
Uranium	mg/L	< 0.005		0.005	Pass	
Uranium (filtered)	mg/L	< 0.005		0.005	Pass	
Vanadium	mg/L	< 0.005		0.005	Pass	
Vanadium (filtered)	mg/L	< 0.005		0.005	Pass	
Zinc		< 0.003		0.003	Pass	
	mg/L					
Zinc (filtered)	mg/L	< 0.001		0.001	Pass	
Method Blank						
Alkali Metals						
Calcium	mg/L	< 0.5		0.5	Pass	
Magnesium	mg/L	< 0.5		0.5	Pass	
Potassium	mg/L	< 0.5		0.5	Pass	
Sodium	mg/L	< 0.5		0.5	Pass	
LCS - % Recovery		1				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C10-C14	%	119		70-130	Pass	
LCS - % Recovery		I	r			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
TRH >C10-C16	%	119		70-130	Pass	
LCS - % Recovery		-				
Ammonia (as N)	%	94		70-130	Pass	
Nitrate & Nitrite (as N)	%	93		70-130	Pass	
Nitrite (as N)	%	100		70-130	Pass	
Phosphate total (as P)	%	88		70-130	Pass	
LCS - % Recovery						
Alkalinity (speciated)						
Total Alkalinity (as CaCO3)	%	115		70-130	Pass	
LCS - % Recovery						
Major Anions						
Chloride	%	101		70-130	Pass	
Nitrate (as N)	%	93		70-130	Pass	
Sulphate (as S)	%	109		70-130	Pass	
LCS - % Recovery						
Heavy Metals						
Aluminium	%	84		80-120	Pass	
Aluminium (filtered)	%	84		80-120	Pass	
Arsenic	%	93		80-120	Pass	
Arsenic (filtered)	%	93		80-120	Pass	
	%	93		80-120		
Barium Beryllium	%	96		80-120	Pass	
*					Pass	
Boron	%	89		80-120	Pass	
Boron (filtered)	%	89		80-120	Pass	
Cadmium	%	96		80-120	Pass	
Cadmium (filtered)	%	96		80-120	Pass	
Chromium	%	100		80-120	Pass	
Chromium (filtered)	%	100		80-120	Pass	
Cobalt	%	89		80-120	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Cobalt (filtered)			%	89		80-120	Pass	
Copper			%	93		80-120	Pass	
Copper (filtered)			%	93		80-120	Pass	
Iron			%	96		80-120	Pass	
Iron (filtered)			%	96		80-120	Pass	
Lead			%	99		80-120	Pass	
Lead (filtered)			%	99		80-120	Pass	
Manganese			%	99		80-120	Pass	
Manganese (filtered)			%	99		80-120	Pass	
Mercury			%	81		75-125	Pass	
Mercury (filtered)			%	81		70-130	Pass	
Nickel			%	90		80-120	Pass	
Nickel (filtered)			%	90		80-120	Pass	
Selenium			%	97		80-120	Pass	
Selenium (filtered)			%	97		80-120	Pass	
Uranium			%	89		80-120	Pass	
Uranium (filtered)			%	89		70-130	Pass	
Vanadium			%	98		80-120	Pass	
Zinc			%	91		80-120	Pass	
Zinc (filtered)			%	91		80-120	Pass	
LCS - % Recovery			/0			00 120	1 455	
Alkali Metals								
Calcium			%	118		70-130	Pass	
Magnesium			%	115		70-130	Pass	
Potassium			%	105		70-130	Pass	
Sodium			%	103		70-130	Pass	
Sodidin		QA				Acceptance	Pass	Qualifying
Test Spike - % Recovery	Lab Sample ID	Source	Units	Result 1		Limits	Limits	Code
Total Recoverable Hydrocarbons -	1000 NEPM Eract	ione		Result 1				
TRH C10-C14	M16-Ap09789	NCP	%	103		70-130	Pass	
Spike - % Recovery	MT0-Ap09769	NCF	-70	103		70-130	F 455	
	2012 NEDM Freet	lana		Deput 1		1		
Total Recoverable Hydrocarbons - TRH >C10-C16			0/	Result 1		70.400	Dees	
	M16-Ap09789	NCP	%	103		70-130	Pass	
Spike - % Recovery				1	I I	r		
				Description				
Ammonia (as N)	140 4 00000	0.5	<u> </u>	Result 1		70.400	_	
Ammonia (as N)	M16-Ap09880	CP	%	97		70-130	Pass	
Nitrate & Nitrite (as N)	M16-Ap09880	СР	%	97 93		70-130	Pass	
Nitrate & Nitrite (as N) Nitrite (as N)	M16-Ap09880 M16-Ap09880	CP CP	% %	97 93 100		70-130 70-130	Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P)	M16-Ap09880 M16-Ap09880 M16-Ap09800	CP CP NCP	% % %	97 93 100 90		70-130 70-130 70-130	Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P)	M16-Ap09880 M16-Ap09880 M16-Ap09800 B16-Ap09652	CP CP NCP NCP	% % %	97 93 100 90 107		70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P) Total Kjeldahl Nitrogen (as N)	M16-Ap09880 M16-Ap09880 M16-Ap09800	CP CP NCP	% % %	97 93 100 90		70-130 70-130 70-130	Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery	M16-Ap09880 M16-Ap09880 M16-Ap09800 B16-Ap09652	CP CP NCP NCP	% % %	97 93 100 90 107 99		70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Alkalinity (speciated)	M16-Ap09880 M16-Ap09880 M16-Ap09800 B16-Ap09652 S16-Ap10336	CP CP NCP NCP NCP	% % % %	97 93 100 90 107 99 Result 1		70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Alkalinity (speciated) Total Alkalinity (as CaCO3)	M16-Ap09880 M16-Ap09880 M16-Ap09800 B16-Ap09652	CP CP NCP NCP	% % %	97 93 100 90 107 99		70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Alkalinity (speciated) Total Alkalinity (as CaCO3) Spike - % Recovery	M16-Ap09880 M16-Ap09880 M16-Ap09800 B16-Ap09652 S16-Ap10336	CP CP NCP NCP NCP	% % % %	97 93 100 90 107 99 Result 1 124		70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Alkalinity (speciated) Total Alkalinity (as CaCO3) Spike - % Recovery Major Anions	M16-Ap09880 M16-Ap09880 M16-Ap09800 B16-Ap09652 S16-Ap10336 M16-Ap09805	CP CP NCP NCP NCP	% % % %	97 93 100 90 107 99 Result 1 124 Result 1		70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Alkalinity (speciated) Total Alkalinity (as CaCO3) Spike - % Recovery Major Anions Bicarbonate Alkalinity (as CaCO3)	M16-Ap09880 M16-Ap09880 M16-Ap09800 B16-Ap09652 S16-Ap10336 M16-Ap09805 M16-Ap10859	CP CP NCP NCP NCP	% % % % %	97 93 100 90 107 99 Result 1 124 Result 1 111		70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Alkalinity (speciated) Total Alkalinity (as CaCO3) Spike - % Recovery Major Anions Bicarbonate Alkalinity (as CaCO3) Chloride	M16-Ap09880 M16-Ap09880 M16-Ap09800 B16-Ap09652 S16-Ap10336 M16-Ap09805 M16-Ap10859 M16-Ap14838	CP CP NCP NCP NCP NCP	% % % % %	97 93 100 90 107 99 Result 1 124 Result 1 111 85		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Alkalinity (speciated) Total Alkalinity (as CaCO3) Spike - % Recovery Major Anions Bicarbonate Alkalinity (as CaCO3)	M16-Ap09880 M16-Ap09880 M16-Ap09800 B16-Ap09652 S16-Ap10336 M16-Ap09805 M16-Ap10859	CP CP NCP NCP NCP NCP NCP NCP NCP CP	% % % % %	97 93 100 90 107 99 Result 1 124 Result 1 111		70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Alkalinity (speciated) Total Alkalinity (as CaCO3) Spike - % Recovery Major Anions Bicarbonate Alkalinity (as CaCO3) Chloride	M16-Ap09880 M16-Ap09880 M16-Ap09800 B16-Ap09652 S16-Ap10336 M16-Ap09805 M16-Ap10859 M16-Ap14838	CP CP NCP NCP NCP NCP	% % % % %	97 93 100 90 107 99 Result 1 124 Result 1 111 85		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Alkalinity (speciated) Total Alkalinity (as CaCO3) Spike - % Recovery Major Anions Bicarbonate Alkalinity (as CaCO3) Chloride Nitrate (as N)	M16-Ap09880 M16-Ap09880 B16-Ap09800 B16-Ap09652 S16-Ap10336 M16-Ap09805 M16-Ap10859 M16-Ap14838 M16-Ap09880	CP CP NCP NCP NCP NCP NCP NCP NCP CP	% % % % %	97 93 100 90 107 99 Result 1 124 Result 1 111 85 93		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Alkalinity (speciated) Total Alkalinity (as CaCO3) Spike - % Recovery Major Anions Bicarbonate Alkalinity (as CaCO3) Chloride Nitrate (as N) Sulphate (as S)	M16-Ap09880 M16-Ap09880 B16-Ap09800 B16-Ap09652 S16-Ap10336 M16-Ap09805 M16-Ap10859 M16-Ap14838 M16-Ap09880	CP CP NCP NCP NCP NCP NCP NCP NCP CP	% % % % %	97 93 100 90 107 99 Result 1 124 Result 1 111 85 93		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Nitrate & Nitrite (as N) Nitrite (as N) Phosphate total (as P) Phosphorus reactive (as P) Total Kjeldahl Nitrogen (as N) Spike - % Recovery Alkalinity (speciated) Total Alkalinity (as CaCO3) Spike - % Recovery Major Anions Bicarbonate Alkalinity (as CaCO3) Chloride Nitrate (as N) Sulphate (as S) Spike - % Recovery	M16-Ap09880 M16-Ap09880 B16-Ap09800 B16-Ap09652 S16-Ap10336 M16-Ap09805 M16-Ap10859 M16-Ap14838 M16-Ap09880	CP CP NCP NCP NCP NCP NCP NCP NCP CP	% % % % %	97 93 100 90 107 99 Result 1 124 Result 1 111 85 93 103	Image: Constraint of the sector of	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Barium	M16-Ap09880	CP	%	83			75-125	Pass	
Barium (filtered)	M16-Ap12006	NCP	%	86			75-125	Pass	
Beryllium	M16-Ap09880	CP	%	89			75-125	Pass	
Beryllium (filtered)	M16-Ap12006	NCP	%	90			75-125	Pass	
Boron	M16-Ap11098	NCP	%	79			75-125	Pass	
Cadmium	M16-Ap09880	CP	%	94			75-125	Pass	
Cadmium (filtered)	M16-Ap12006	NCP	%	92			70-130	Pass	
Chromium	M16-Ap09880	CP	%	91			75-125	Pass	
Chromium (filtered)	M16-Ap12006	NCP	%	90			70-130	Pass	
Cobalt	M16-Ap09880	CP	%	90			75-125	Pass	
Cobalt (filtered)	M16-Ap12006	NCP	%	89			75-125	Pass	
Copper	M16-Ap09880	CP	%	92			75-125	Pass	
Copper (filtered)	M16-Ap12006	NCP	%	89			70-130	Pass	
Iron	M16-Ap10099	NCP	%	95			75-125	Pass	
Iron (filtered)	M16-Ap12006	NCP	%	164			70-130	Fail	Q08
Lead	M16-Ap09880	CP	%	93			75-125	Pass	
Lead (filtered)	M16-Ap12006	NCP	%	90			70-130	Pass	
Manganese	M16-Ap09880	CP	%	88			75-125	Pass	
Manganese (filtered)	M16-Ap12006	NCP	%	89			70-130	Pass	
Mercury	M16-Ap09880	CP	%	184			70-130	Fail	Q08
Mercury (filtered)	M16-Ap12006	NCP	%	102			70-130	Pass	
Nickel	M16-Ap09880	СР	%	90			75-125	Pass	
Nickel (filtered)	M16-Ap12006	NCP	%	87			70-130	Pass	
Selenium	M16-Ap09880	CP	%	88			75-125	Pass	
Selenium (filtered)	M16-Ap12006	NCP	%	93			70-130	Pass	
Uranium	M16-Ap09880	CP	%	95			75-125	Pass	
Uranium (filtered)	M16-Ap12006	NCP	%	93			70-130	Pass	
Vanadium	M16-Ap09880	CP	%	91			75-125	Pass	
Vanadium (filtered)	M16-Ap12006	NCP	%	93			75-125	Pass	
Zinc	M16-Ap10099	NCP	%	97			75-125	Pass	
Zinc (filtered)	M16-Ap12006	NCP	%	181			70-130	Fail	Q08
Spike - % Recovery									
Alkali Metals				Result 1					
Potassium	M16-Ap10130	NCP	%	92			70-130	Pass	
Spike - % Recovery									
Alkali Metals				Result 1					
Calcium	M16-Ap09882	CP	%	99			70-130	Pass	
Magnesium	M16-Ap09882	CP	%	97			70-130	Pass	
Sodium	M16-Ap09882	CP	%	100			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	M16-Ap09788	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M16-Ap09788	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M16-Ap09788	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M16-Ap09788	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	M16-Ap09788	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M16-Ap09788	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	

Duplicate									
				Result 1	Result 2	RPD			
Ammonia (as N)	M16-Ap09880	СР	mg/L	0.02	0.02	11	30%	Pass	
Nitrate & Nitrite (as N)	M16-Ap09880	СР	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Nitrite (as N)	M16-Ap09880	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Phosphate total (as P)	M16-Ap09800	NCP	mg/L	0.06	0.08	22	30%	Pass	
Phosphorus reactive (as P)	B16-Ap09652	NCP	mg/L	< 0.05	0.06	24	30%	Pass	
Duplicate	210700002			10100	0.00		0070	1 400	
Alkalinity (speciated)				Result 1	Result 2	RPD			
Hydroxide Alkalinity (as CaCO3)	M16-Ap10858	NCP	mg/L	< 10	< 10	<1	30%	Pass	
Total Alkalinity (as CaCO3)	M16-Ap10858	NCP	mg/L	160	160	<1	30%	Pass	
Duplicate						••	0070	1 400	
Major Anions				Result 1	Result 2	RPD			
Bicarbonate Alkalinity (as CaCO3)	M16-Ap10858	NCP	mg/L	160	160	<1	30%	Pass	
Carbonate Alkalinity (as CaCO3)	M16-Ap10858	NCP	mg/L	< 10	< 10	<1	30%	Pass	
Chloride	M16-Ap14838	NCP	mg/L	190	190	<1	30%	Pass	
Nitrate (as N)	M16-Ap09880	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Sulphate (as S)	M16-Ap14838	NCP	mg/L	< 0.02	< 5	<1	30%	Pass	
Duplicate	1 W10-Ap14030		_ mg/∟				50 /0	1 035	
Heavy Metals				Result 1	Result 2	RPD			
Aluminium	M16-Ap09880	СР	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic	M16-Ap09880	CP	mg/L	< 0.005	< 0.05	<1	30%	Pass	
Barium	· · · ·	CP				<1	30%		
	M16-Ap09880	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Beryllium	M16-Ap09880	CP	mg/L	< 0.001	< 0.001	9.0	30%	Pass	
Boron	M16-Ap09880		mg/L	0.09	0.08			Pass	
Cadmium	M16-Ap09880	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M16-Ap09880	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt	M16-Ap09880	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	M16-Ap09880	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron	M16-Ap09880	CP	mg/L	0.46	0.49	6.0	30%	Pass	
Lead	M16-Ap09880	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese	M16-Ap09880	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury	M16-Ap09880	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M16-Ap09880	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Selenium	M16-Ap09880	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Uranium	M16-Ap09880	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Vanadium	M16-Ap09880	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc	M16-Ap09880	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate				-	1		_	_	
Heavy Metals	1			Result 1	Result 2	RPD			
Aluminium (filtered)	M16-Ap09881	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic (filtered)	M16-Ap09881	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Barium (filtered)	M16-Ap09881	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Beryllium (filtered)	M16-Ap09881	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron (filtered)	M16-Ap09881	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Cadmium (filtered)	M16-Ap09881	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	M16-Ap09881	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt (filtered)	M16-Ap09881	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	M16-Ap09881	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron (filtered)	M16-Ap09881	CP	mg/L	0.38	0.38	1.0	30%	Pass	
Lead (filtered)	M16-Ap09881	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	M16-Ap09881	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury (filtered)	M16-Ap09881	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	M16-Ap09881	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Selenium (filtered)	M16-Ap09881	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Uranium (filtered)	M16-Ap09881	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Vanadium (filtered)	M16-Ap09881	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc (filtered)	M16-Ap09881	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Alkali Metals				Result 1	Result 2	RPD			
Calcium	M16-Ap09882	CP	mg/L	5.7	5.7	<1	30%	Pass	
Magnesium	M16-Ap09882	CP	mg/L	6.3	6.4	1.0	30%	Pass	
Potassium	M16-Ap09882	CP	mg/L	2.8	2.8	1.0	30%	Pass	
Sodium	M16-Ap09882	CP	mg/L	61	61	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Total Kjeldahl Nitrogen (as N)	M16-Ap09883	CP	mg/L	< 0.1	< 0.1	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Description

Code

The mitrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference

Authorised By

Ryan Gilbert Emily Rosenberg Harry Bacalis Huong Le Mele Singh Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Volatile (VIC) Senior Analyst-Inorganic (VIC) Senior Analyst-Organic (VIC)

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

EcOz Pty Ltd. ABN 81 143 989 039

Winlow House, 3rd Floor 75 Woods Street Darwin NT 0800

GPO Box 381, Darwin NT 0800

T: +61 8 8981 1100 F: +61 8 8981 1102 E: ecoz@ecoz.com.au

www.ecoz.com.au

