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Introduction

Antimony is a chalcophile element that often occurs 
as stibnite (Sb2S3), sulphosalts (eg tetrahedrite – 
Cu6[Cu4(Fe,Zn)2]Sb4S13) and oxides (eg valentinite – 
Sb2O3); it is commonly associated with gold mineralisation 
and polymetallic silver–lead–zinc deposits (Filella et  al 
2002, Schwarz‐Schampera 2014, Britt and Senior 2021, 
Radková et al 2023). Antimony has multiple applications 
across various industries due to its unique properties; 
its main uses are in fire retardants, lead-acid batteries, 
lead alloys, semiconductors, plastic catalysts, ceramics, 
and glass manufacturing (Schwarz‐Schampera 2014, 
Radková et  al 2023). Importantly, antimony features 
on the critical minerals list of multiple countries, such 
as Australia (Geoscience Australia 2024), Canada 
(Geological Survey of Canada 2023) and United States 
(U.S. Geological Survey 2024). By definition, critical 
minerals refer to metallic or non-metallic elements that 
are deemed essential for the economic and industrial well-
being of a country, and the supply of which may be at risk 
due to potential geopolitical, economic, or supply chain 
disruptions (Geoscience Australia 2024). Geochemical and 
mineral characterisation research programs are therefore 
fundamental to determine critical metal tenor and mode 
of occurrence, as well as their potential for extraction (van 
der Ent et al 2021).

In addition to primary mineral deposits, antimony and 
other critical metals may be found in ore grade concentrations 
in mine wastes, such as tailings, waste rocks, and slags  
(Zhou et al 2017, Radková et al 2023). Increasing demand 
for critical metals therefore makes mine waste a potential 
target for mineral exploration (Dold 2020, van der Ent et al 
2021). Moreover, the reuse and recycling of mine wastes 
constitute vital components within a comprehensive set of 
strategies to improve resource efficiency and mitigate the 
environmental impact of mining activities (van der Ent et al 
2021). Examples of successful cases of effective mine waste 
recycling include the polymetallic Olympic Dam mine in 
South Australia, where copper and uranium are recovered 
from flotation tailings (Lèbre et al 2017); and Peko tailings 
dump in the Northern Territory, where cobalt is recovered 
from pyrite (McEwan and Ralph 2002). 

Bulk-rock geochemistry analysis conducted during 
earlier phases of this research revealed that Mount Bonnie 
and Iron Blow mine wastes (Figure  1) are well-endowed 
with antimony, having concentrations up to 5110  ppm Sb 
in Mount Bonnie waste rocks and up to 4930  ppm Sb in 
Iron Blow waste rocks (Figure 2; Bhowany et  al 2023, 
Gomes et al 2023). In this study, we provide further details 
on antimony deportment in Mount Bonnie and Iron Blow 
mine wastes. 

Northern
Territory

Figure 1. Location of Mount Bonnie and Iron Blow mining sites 
in the Northern Territory.

Background

The Pine Creek Orogen comprises a Palaeoproterozoic 
succession of metasedimentary (eg sandstones, shales, cherts, 
and carbonates) and volcaniclastic rocks intruded by syn- to 
post-tectonic granitoids and mafic bodies (Stuart-Smith 
et al 1993, Worden et al 2008, Raymond et al 2012, Ahmad 
and Hollis 2013). Importantly, the Pine Creek Orogen hosts 
multiple mineral commodities, such as gold, uranium and 
polymetallic nickel–cobalt–lead–copper deposits (Worden 
et al 2008, Ahmad and Hollis 2013). At Mount Bonnie and 
Iron Blow, gold deposits occur as lenses within interbedded 
pyritic shale, dolomitic siltstone and tuff within the Mount 
Bonnie Formation of the South Alligator Group (Ahmad and 
Hollis 2013).

Mine wastes from seven sites across the Northern 
Territory – mostly historical gold mines – were sampled 
between 2022 and 2023 as part of collaborative projects 
with the Northern Territory Geological Survey (NTGS) 
through the Secondary Prospectivity of Mine Waste Project, 
and with Geoscience Australia (GA) through the Exploring 
for the Future program (Bhowany et al 2023). Whole-rock 
geochemistry has indicated that Mount Bonnie and Iron 
Blow mine wastes are particularly endowed with critical 
metals such as arsenic, bismuth, molybdenum, antimony, 
selenium, and tellurium; precious and base metals such as 
silver, gold, cadmium, copper, lead, and zinc are also present 
in significant concentrations (Bhowany et al 2023, Gomes 
et  al 2023). Mineralogical investigations through X-ray 
diffraction, mineral liberation analysis (MLA) and laser 
ablation inductively coupled plasma mass spectrometry 
(LA–ICP–MS) revealed iron oxide (goethite and hematite) 
as a potential host for antimony and other critical metals 
(Figure 3; Gomes et al 2023). Sample time (s) vs intensity 
(cps) plots also show that iron oxide has elevated antimony 
throughout the mineral matrix and is not associated with 
inclusions (Figure 4; Gomes et al 2023).
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Figure 2. Spatial distribution of antimony (ppm) across Mount Bonnie (left) and Iron Blow (right).
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Figure 3. Antimony concentrations in Mount Bonnie and Iron Blow samples as determined by LA–ICP–MS.
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Methods

Waste rock samples endowed with antimony (IB30: Iron 
Blow waste rock, 4930 ppm Sb; MB11: Mount Bonnie run of 
mine, 3790 ppm Sb) were investigated in detail with a Hitachi 
TM3030 scanning electron microscope (SEM) coupled with 
a Bruker Quantax 70 energy dispersive x-ray spectrometer 
(EDS) at the Centre for Microscopy and Microanalysis 
of The University of Queensland (CMM/UQ). Prior to 
analysis, each mount was carbon-coated using a Quorum 
Q150T carbon coater. The SEM was operated using a 25 kV 
accelerating voltage, a 10 mm working distance and a 70 μm 
spot size. Whenever possible, EDS analysis was conducted 
alongside LA–ICP–MS spots for result comparison.

Preliminary results

Iron oxide occurs as goethite and hematite in the samples 
analysed and is found along with quartz and lead sulfates. 
Goethite and hematite were tentatively distinguished based 
on their different shades of grey on backscattered electron 
(BSE) images. They may be present as: 1) goethite/hematite 
aggregates, 2) radial-fibrous goethite crystals, 3) botryoidal 
goethite/hematite crystals, 4) fine-grained fibrous goethite/
hematite aggregates, 5) ‘vuggy’ iron oxide crystals, and 
6) antimony-rich iron oxide ‘veins’ (Figure 5).

Preliminary EDS results indicate that there are 
significant compositional differences between iron oxide 
forms (Table 1). Goethite/hematite aggregates, which 
appear to have been the first generation of iron oxides 
formed in sample IB-30 (Figure 5A), show the highest 
antimony concentrations (up to 16.6 wt% Sb) and therefore 
are the main targets for antimony investigation in that 
sample (Figure 6). Importantly, antimony seems to have 

been incorporated throughout the iron oxide matrix and 
is not associated with inclusions, which is consistent with 
LA– ICP–MS observations (Figure 4). All other forms 
of iron oxide in sample IB-30 (eg radial-fibrous goethite, 
botryoidal goethite/hematite, fine-grained goethite), which 
seem to have been formed following the first generation 
of iron oxides, are relatively poor in antimony (up to 
1.2 wt% Sb) but often have higher lead, arsenic and zinc 
content.

Preliminary EDS results for sample MB-11 slightly 
differ from those of sample IB-30. The earliest goethite/
hematite phases mostly have low antimony concentrations 
(Figure 6; Table 2), and antimony enrichment seems 
random. Late-stage radial-fibrous goethite is characterised 
by lower antimony and higher zinc (Table 2). However, 
other seemingly late-stage iron oxide phases (ie the ‘vuggy’ 
hematite and the antimony-rich iron oxide ‘veins’) yield the 
highest antimony concentrations in sample MB-11 (up to 
24.9 wt% Sb in the antimony-rich iron oxide ‘veins’). This 
indicates that antimony-bearing fluids were still actively 
percolating during different stages of iron oxide growth. 

Next steps

Additional mineralogical investigations will be conducted 
through LA–ICP–MS mapping and electron microprobe to 
obtain refined compositional maps and more accurate and 
precise analytical results. This will help in characterising 
the mode of occurrence of antimony in Mount Bonnie and 
Iron Blow waste rocks.

Considering the economic and environmental 
benefits of recovering critical metals from mine waste, 
it is recommended to explore innovative extraction 
and separation techniques that can effectively recover 
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Figure 4. LA–ICP–MS pattern for Mount Bonnie ROM sample MB07_ironox-21 (58 740 ppm Sb) and Iron Blow waste rock sample 
IB30_ironox-19 (37 033 ppm Sb).
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Figure 5. BSE images showing 
the different iron oxide modes of 
occurrence in samples IB-30 (A–D) 
and MB-11 (E–F).

Table 1. Summary statistics of 
EDS results for iron oxide from 
sample  IB‑30.

Phase Fe (wt%) Sb (wt%) Pb (wt%) As (wt%) Zn (wt%)
Fe oxide (goethite) (n = 28)
min 76.4 0.6 0.5 0.4 0.2
max 95.4 16.6 4.3 1.3 3.4
average 89.6 5.1 1.5 0.9 0.7
median 91.2 3.8 1.4 0.9 0.4
Fe oxide (hematite) (n = 9)
min 89.1 0.4 1.2 0.6 0.2
max 94.2 6.0 3.0 1.0 0.4
average 91.1 4.1 1.9 0.8 0.3
median 90.0 4.9 1.7 0.8 0.3
Fe oxide (radial-fibrous goethite) (n = 7)
min 83.8 1.1 1.3 0.6 3.0
max 92.0 1.2 1.8 0.8 3.4
average 89.4 1.1 1.6 0.7 3.2
median 91.0 1.1 1.6 0.7 3.3
Fe oxide (fine-grained goethite) (n = 2)
min 89.3 0.8 1.9 0.7 3.3
max 91.5 0.8 2.3 1.9 4.8
average 90.4 0.8 2.1 1.3 4.1
median 90.4 0.8 2.1 1.3 4.1
Fe oxide (botryoidal goethite) (n = 10)
min 87.5 0.0 0.8 1.7 0.0
max 90.1 0.7 2.8 4.1 4.8
average 88.6 0.4 2.0 2.6 3.3
median 88.5 0.4 2.1 2.6 3.4
Fe oxide (botryoidal hematite) (n = 6)
min 84.4 0.4 1.5 0.4 0.4
max 95.6 0.8 6.6 1.0 0.5
average 92.7 0.6 2.9 0.8 0.4
median 94.5 0.7 2.1 0.9 0.4
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Figure 6. Fe (wt%) vs Sb (wt%) plot for 
EDS results obtained for samples IB-30 
and MB-11.

Table 2. Summary statistics of EDS results for iron oxide from sample MB‑11.
Phase Fe (wt%) Sb (wt%) Pb (wt%) As (wt%) Zn (wt%)
Fe oxide (goethite) (n = 18)
min 71.0 0.5 1.5 0.0 0.0
max 94.6 14.3 9.8 2.3 0.7
average 87.2 4.0 3.0 0.8 0.4
median 88.7 1.8 2.6 0.7 0.3
Fe oxide (hematite) (n = 20)
min 76.5 0.6 3.0 0.3 0.0
max 94.0 9.0 5.7 1.1 0.5
average 90.8 1.5 4.2 0.9 0.1
median 92.2 0.9 4.2 0.9 0.0
Fe oxide (radial-fibrous goethite) (n = 5)
min 79.1 1.0 1.6 0.6 0.2
max 93.0 1.9 2.4 1.0 0.3
average 87.6 1.4 1.9 0.8 0.3
median 91.9 1.5 1.9 0.8 0.3
Fe oxide (‘vuggy’ hematite) (n = 5)
min 81.9 2.7 2.8 0.9 0.4
max 90.1 10.3 3.4 1.3 0.9
average 86.9 5.8 3.0 1.1 0.6
median 86.7 6.2 2.9 1.0 0.6
Sb-rich Fe oxide (n = 4)
min 66.2 9.5 3.5 0.7 0.6
max 82.9 24.9 4.0 1.3 1.3
average 75.2 16.5 3.8 1.0 0.9
median 75.8 15.9 3.8 1.1 0.9
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antimony and other abundant critical (eg arsenic, bismuth, 
selenium, and tellurium) and precious metals (eg silver 
and gold) from their respective host minerals through a 
mineral processing characterisation program (termed a 
‘Stream 3’ investigation). These techniques may include 
hydrometallurgical processes, such as leaching and solvent 
extraction; or pyrometallurgical methods, depending on 
the mineralogical composition and the specific extraction 
requirements.
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