

## **West Mereenie 28**

Well Completion Report (Basic) - Final

21 Jul 2021 - 05 Sep 2021

OL4

**Amadeus Basin** 

Northern Territory

Submission Date

20 March 2022

#### **Contents**

| LIS | T OF       | ABBREVIATIONS                                         | 4    |
|-----|------------|-------------------------------------------------------|------|
| 1   | INTF       | RODUCTION AND SUMMARY                                 | 5    |
| 2   | GEN        | IERAL DATA                                            | 9    |
| 3   | DRIL       | LING                                                  | 11   |
|     | 3.1        | DRILLING SUMMARY                                      | . 11 |
|     | 3.2        | WELLHEAD AND DOWNHOLE DIAGRAM                         | 13   |
|     | 3.3        | CASING DETAILS                                        | 13   |
|     | 3.4        | WEST MEREENIE 28 TIME DEPTH CURVE                     | 14   |
|     | 3.5        | DEVIATION SURVEYS                                     | .15  |
|     | 3.6        | CEMENTING OPERATIONS                                  | .16  |
|     | 3.7        | BIT RECORD AND BHA DETAILS                            | 18   |
|     | 3.8        | DRILLING FLUIDS                                       | .18  |
|     | 3.9        | DOWNHOLE FLUID LOSSES                                 | 18   |
|     | 3.10       | WELL COMPLETION                                       | 22   |
| 4   | FOR        | MATION EVALUATION                                     | 25   |
|     | 4.1        | WELL EVALUATION LOGS                                  | 25   |
|     | 4.2        | CORES AND SAMPLE DETAILS                              | 26   |
|     | 4.3        | PRODUCTION TEST DETAILS                               |      |
|     | 4.4        | HYDROCARBON INDICATORS                                | 28   |
| 5   | GEC        | DLOGY                                                 | 30   |
|     | 5.1        | ALONG HOLE AND TRUE VERTICAL DEPTH OF SEISMIC MARKERS | 30   |
|     | 5.2<br>HOR | PRELIMINARY ASSESSMENT OF RESERVOIR AND PROSPECTI     |      |

### **List of Appendicies**

Appendix A: West Mereenie 28 Well Completion Diagram

Appendix B: West Mereenie 28 Bit Record & BHA Details

Appendix C: West Mereenie 28 Wireline Logs & Survey Data

Appendix D: West Mereenie 28 Flow Test Data

Appendix E: West Mereenie 28 Gas Peak Table

Appendix F: West Mereenie 28 Index Sheet

Appendix G: West Mereenie 28 Daily Drilling Report

Appendix H: West Mereenie 28 Daily Geologic Report

Appendix I: West Mereenie 28 Formation Evaluation Log & Mudlogging Data

## **List of Figures**

| Figure 1 — Mereenie locality map                                           | 6              |
|----------------------------------------------------------------------------|----------------|
| Figure 2 — WM28 targets the Pacoota P3 gas cap along the anticlinal axis a | at the central |
| culmination of the Mereenie field                                          | 7              |
| Figure 3 — Cross Section of WM28 well trajectory and Horizons              | 8              |
| Figure 4 — West Mereenie 28 Time Depth curve                               | 14             |
| List of Tables                                                             |                |
| Table 1: West Mereenie 28 Well Index Sheet                                 | 9              |
| Table 2: WM28 casing details                                               | 13             |
| Table 3: West Mereenie 28 Deviation Surveys                                | 15             |
| Table 4: Cementing details                                                 | 17             |
| Table 5: Drilling fluids                                                   | 18             |
| Table 6: Fluid losses                                                      | 20             |
| Table 7: LCM Pills & Cement Plugs to Combat Losses                         | 21             |
| Table 8: Pacoota P1 Perforation intervals                                  | 25             |
| Table 9: Well evaluation logs                                              | 25             |
| Table 10: WM28 Flow Test Isotube Gas samples                               |                |
| Table 11: WM28 Hydrocarbon indicators                                      | 29             |
| Table 12: WM28 Formation Tops                                              | 30             |

## **LIST OF ABBREVIATIONS**

| Abbreviation | Full Text                           | Abbreviation | Full Text                       |
|--------------|-------------------------------------|--------------|---------------------------------|
| 0            | degrees                             | mRT          | metres Rotary Table             |
| AHD          | Australian Height Datum             | msl          | metres sea level                |
| Az           | Azimuth                             | MU           | Make Up                         |
| bbls         | Barrels                             | mV           | millivolts                      |
| bbls/hr      | barrels per hour                    | MWD          | Measurements While Drilling     |
| Bcf          | Billion cubic feet                  | N2           | Nitrogen                        |
| BPM          | barrels per minute                  | NA           | Not Applicable                  |
| BPV          | Back Pressure Valve                 | ND           | Nipple Down                     |
| BTC          | Buttress Connection                 | NGP          | Northern Gas Pipeline           |
| CBL          | Cement Bond Log                     | NU           | Nipple Up                       |
| CCL          | Casing Collar Locator               | OD           | Outer Diameter                  |
| CSG          | casing                              | ОН           | Open Hole                       |
| DHM          | Down Hole Motor                     | P/U          | Pick Up                         |
| DP           | Drill Pipe                          | PCE          | Pressure Control Equipment      |
| EMW          | Estimated Mud Weight                | PDC          | Polycrystaline Diamond Compact  |
| FIT          | Formation Integrity Test            | PEX          | platform express tool string    |
| Fm           | Formation                           | PJSM         | per job safety meeting          |
| FMI          | Formation Micro Imaging Log         | POOH         | Pull Out Of Hole                |
| ft³/sk       | Cubic feet per sack                 | ppg          | pounds per gallon               |
| GL           | Ground Level                        | psi          | pounds per square inch          |
| GOC          | Gas-Oil Contact                     | Q            | flow rate                       |
| GR           | Gamma Ray                           | QTY          | Quantity                        |
| HRLA         | High Resolution Laterolog<br>Array  | RIH          | Run In Hole                     |
| Hrs          | hours                               | ROP          | Rate Of Penetration             |
| HUD          | Hold Up Depth                       | RT           | Rotary Table                    |
| In           | inches                              | RT           | Rotary Table                    |
| Inc          | Inclination                         | SITHP        | Shut-in Tubing Head Pressure    |
| KCI          | Potassium Chloride                  | SP           | Spontaneous Potential           |
| kg           | kilogram                            | Sst          | Sandstone                       |
| km           | kilometres                          | TBG          | Tubing                          |
| L            | litres                              | TD           | Total Depth                     |
| lb/ft        | pounds per foot                     | TVD          | True Vertical Depth             |
| LCM          | Loss Control Materials              | TVD          | True Vertical Depth             |
| LIB          | Lead Impression Block               | TVT          | True Vertical Thickness         |
| m            | metres                              | USIT         | Ultrasonic Imaging Tool         |
| m/hr         | metres per hour                     | VDL          | Variable Density Log            |
| m/hr         | metres per hour                     | WBM          | Water Based Mud                 |
| M/U          | Make Up                             | WM27         | West Mereenie 27                |
| MD           | Measured Depth                      | WM28         | West Mereenie 28                |
| mGL          | metres Ground Level                 | XEM          | Extreme Engineering Survey Tool |
| mmscfd       | million standard cubit feet per day |              |                                 |

#### 1 INTRODUCTION AND SUMMARY

The Mereenie Oil and Gas Field is situated within the Amadeus Basin approximately 230 km west-southwest of Alice Springs (Figure 1). It is a doubly plunging anticline with surface expression and an anticlinal structural axis that can be traced for over 30 km. The discovery well, Mereenie 1, was drilled in 1965, and since then 70 additional wells have been drilled. The field has a gas cap and an oil rim, with a field wide gas-oil-contact (GOC) at -649.2 msl.

To date, production from the Pacoota P3 has primarily been focussed on the Pacoota P3 oil rim on the northern, southern and eastern nose of the central culmination with gas reinjected into the oil leg to maintain pressure and oil deliverability. The Pacoota P3 had an original OGIP volume of 259 BCF with a gas cap volume of 171 BCF. Gas production from the P3 to date has been 248 Bcf and with reinjection of 131 Bcf of gas there has been a net production of 117 Bcf leaving an estimated 142 Bcf remaining within the Pacoota P3.

Since construction of the Northern Gas Pipeline (NGP) was announced in 2015, focus at the Mereenie Oil and Gas Field has shifted towards gas production. Gas plant capacity at Mereenie was upgraded in 2018 to coincide with the NGP becoming operational in January 2019. Given the additional plant and pipeline capacity that is still available and a desire to counter the forecasted field-wide decline rates, West Mereenie 28 (WM28) targeted gas in the Pacoota P1 Sandstone and the Pacoota P3 Sandstone gas cap, from which there had been limited net production.

To accelerate gas production in the Pacoota P1, WM28 was programmed for completion in both the Pacoota P1 and Pacoota P3 sandstones. No cultural and environmental constraints exist within the vicinity of WM28 so that the well will be drilled as a vertical well from a surface location positioned directly above the crestal culmination at the Pacoota P3 level.

WM28 was spudded BY Easternwell Rig 27 at 03:30 hrs on July 21<sup>st</sup>, 2021 and reached a Total Depth of 1332 mMDRT on 21<sup>st</sup> of August 2021. The well terminated above the base of the Pacoota P3 to avoid flowing high nitrogen gas from the Pacoota P4. Prior to penetrating the Pacoota, P3 casing was set at 1240.7 mMDRT, near the base of the Pacoota P2, to case off the Pacoota P1 interval.

The P3 interval was completed in open hole and a production packer set inside 7" casing, below the P1 interval, before perforating the P1 for production (Table 8: Perforation Intervals). A dual-string completion was then run to produce the P1 and P3 independently. After running the completion and the Xmas tree, Easternwell Rig 27 was rigged down and released on 5<sup>rd</sup> September 2021 to conduct a workover on West Mereenie 19 and then to run completion on West Mereenie 27.

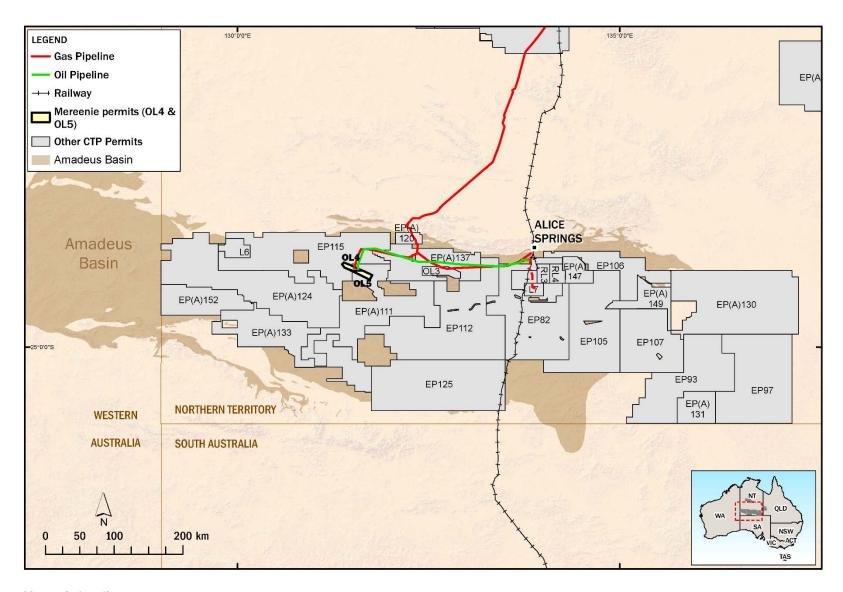



Figure 1 — Mereenie locality map

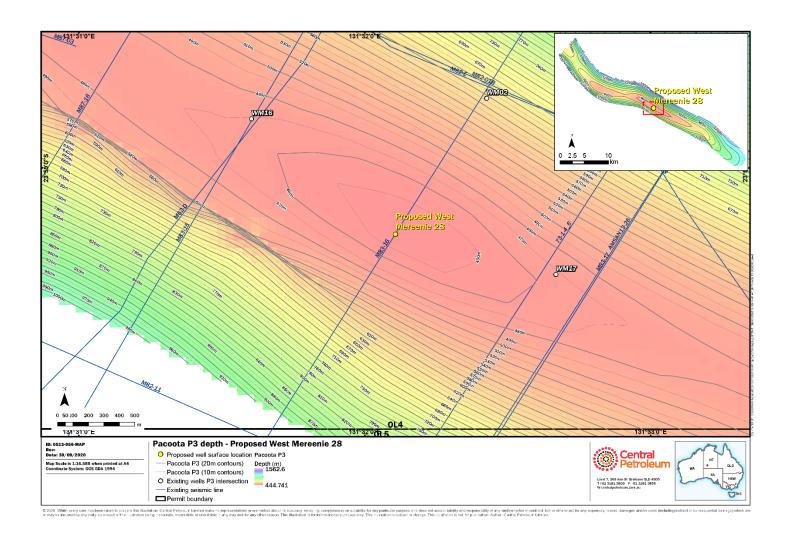



Figure 2 — WM28 targets the Pacoota P3 gas cap along the anticlinal axis at the central culmination of the Mereenie field.

•

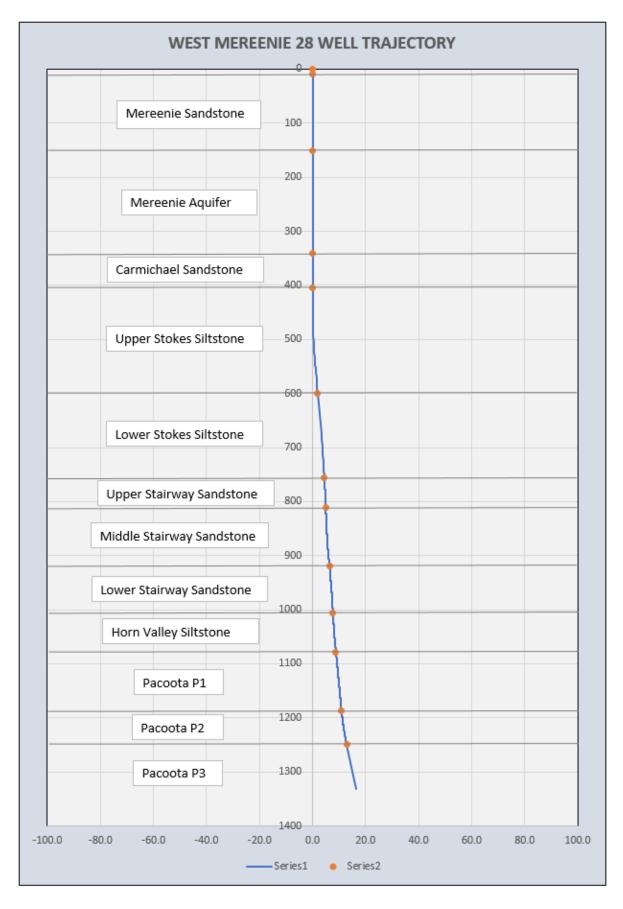



Figure 3 — Cross Section of WM28 well trajectory and Horizons

#### **2 GENERAL DATA**

Table 1: West Mereenie 28 Well Index Sheet

| Well Name              | WEST MEREENIE 28 Petro |             | Petroleum Title |             | OL 4        |                | Basin                       |               | AMADEUS              |         |     |  |
|------------------------|------------------------|-------------|-----------------|-------------|-------------|----------------|-----------------------------|---------------|----------------------|---------|-----|--|
| Well Purpose           | Purpose Development St |             | Status          |             |             |                | Parent well<br>Name, if any |               | N.A.                 |         |     |  |
| Spud Date 2            | ud Date 21/07/2021     |             | TD Date         |             | 21/08/2021  |                | Rig Relea                   | ase Date      | 5/09/2021            |         |     |  |
| Primary Objective      |                        |             | Pacoota P       | 3 Sandstone |             | Rig(s) Name    |                             | Eastern       |                      | vell 27 |     |  |
| Secondary Objective    |                        |             | Pacoota F       | 1 Sandstone |             | 100K Map Sheet |                             | ldirriki 5250 |                      |         |     |  |
|                        |                        |             |                 | mMD         |             | mTVD           | Side-Track Kick-            |               | ackKick-off          |         |     |  |
| Total Depth            |                        | Driller     |                 | 1332        | 1331.6      |                | Depth, if applicable        |               | ible                 | N.A.    |     |  |
|                        |                        | Logger      |                 | 1332        | 1331.6      |                | GL Elevation: 77            |               | Elevation Datum: AH  | AHD     |     |  |
| Location               |                        | Coordinates | Surface         |             | Bottom Hole |                |                             |               | GL Elevation: 772.5m |         |     |  |
| (GDA94 Datum with GR   |                        | Latitude    | 23° 59' 13      | .93" S      | 23° 5       | 59' 13.199" S  | ⊠ RT<br>□ KB                |               | RT Elevation: 777.0m |         |     |  |
| Ellipsoid using MGA940 | Gria)                  | Longitude   | 131° 32' 0      | 6.46"       | 131°        | 32' 6.952" E   | Seismic                     |               | Survey               | Line    | SP  |  |
| Zone                   |                        | Easting     | 757,932.9       | mE          | 757,9       | 947.11 mE      | Station                     | , if          | M83                  | 16      | 311 |  |
| 52                     |                        | Northing    | 7,344,869       | .4 mN       | 7,344       | ,344,891.73 mN |                             | ble           |                      |         |     |  |
|                        | Well Summary           |             |                 |             |             |                |                             |               |                      |         |     |  |

The West Mereenie 28 well was spudded on 21st July 2021, targeting gas in the Pacoota P3 Sand (primary target) and Pacoota P1 Sand (secondary target). The well was drilled with water-based mud from surface, through the Mereenie and Carmichael Formations into the Upper Stokes Siltstone. Significant fluid losses were experienced while drilling the Mereenie Aquifer and the Carmichael Formation, requiring LCM to be pumped and 4 cement plugs set over the Carmichael Formation. After setting the 9 5/8" casing the well was air drilled through to the base of the Pacoota P2 Unit and 7" casing set. Gas shows were observed in the Upper and Lower Stairway Sandstones and in the Pacoota P1 Unit while drilling the 8 ½" hole section. A flow test of 0.6 mmscfd was obtained over the full Stairway Formation and a maximum flow test of 2.9 mmscfd over the combined Stairway and Pacoota P1 sequences.

The P3 interval was completed in open hole and a production packer set inside 7" casing, below the P1 interval, before perforating the P1 for production. A dual-string completion was then run to produce the P1 and P3 independently. After running the completion and the Xmas tree, Easternwell Rig 27 was rigged down and released on 5th September 2021 to conduct a workover on West Mercenie 19 and then to run completion on West Mercenie 27.

| Hole and Casing Design        | (Drillers Dep                                                                                                                                                               | uis)      |               |         |                  |                     |                                        | Drilling Fl | iuia         |            |               |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|---------|------------------|---------------------|----------------------------------------|-------------|--------------|------------|---------------|--|
|                               |                                                                                                                                                                             | Hole      | Depth         | Casing  |                  |                     |                                        |             |              |            |               |  |
| Туре                          |                                                                                                                                                                             | Size      | (mMD)         | Size    | shoe mMD         |                     | D Shoe mTVD                            |             | Hole Size    |            | Туре          |  |
| onductor                      | 17 1/2                                                                                                                                                                      | "         | 26.0          | 13 3/8" | 26               | .0                  | 26.0                                   | 17 1/2"     |              | Gel Polyme | r             |  |
| ourface Casing                | urface Casing 12 1/4"                                                                                                                                                       |           | 463.5         | 9 5/8"  | 459.4            |                     | 459.4                                  | 12 1/4"     |              |            | Air/Foam      |  |
| ntermediate Casing            | nediate Casing 8 3/4"                                                                                                                                                       |           | 1243.0        | 7"      | 1240.2           |                     | 1240.2                                 |             | 8 3/4"       |            | Air/Foam      |  |
| arget Section                 | ection 6"                                                                                                                                                                   |           | 1332.0        | NA      | N/               | A                   | NA                                     |             | 6"           | N2/ Foam   |               |  |
| tratigraphy – Formatio        | on Tops (Logg                                                                                                                                                               | ers       |               |         |                  |                     |                                        | Formatio    | n Evaluation |            |               |  |
| Depth                         |                                                                                                                                                                             |           |               |         |                  |                     | Depth Interv                           | al          |              |            |               |  |
| Formation                     | 1                                                                                                                                                                           | mMD       | mTVD          | mTVDGL  | Run              | Run Measurement     |                                        |             | From (mMD)   |            | To (mMD)      |  |
| Mereenie Sandstone            |                                                                                                                                                                             | 9.5       | 9.5           | 5.0     |                  |                     | Wireline                               |             |              |            |               |  |
| Mereenie Aquifer              |                                                                                                                                                                             | 150.0     | 150.0         | 145.5   | S1R1             | FMI-DSI-HRLA-PEX-GR |                                        | 124         | 1244.5       |            |               |  |
| Carmichael Sandstone          |                                                                                                                                                                             | 340.0     | 340.0         | 335.5   |                  | GR                  |                                        | 1244.5      |              | GL         |               |  |
| Upper Stokes Siltstone        |                                                                                                                                                                             | 404.0     | 404.0         | 399.5   |                  |                     | FMI                                    |             | 12           | 44.5       | 750.0         |  |
| ower Stokes Siltstone         |                                                                                                                                                                             | 646.0     | 645.9         | 641.4   | S1R2             | CBL-VDL             | CBL-VDL-GR-CCL                         |             | 45           | 9.7        | GL            |  |
| Jpper Stairway Sandst         | one                                                                                                                                                                         | 756.0     | 755.9         | 751.4   |                  |                     |                                        |             |              |            |               |  |
| Middle Stairway Sandst        | one                                                                                                                                                                         | 811.0     | 810.8         | 806.3   | S2R1             | CBL-VDL-GR-CCL      |                                        | 120         | 09.0         | GL         |               |  |
| ower Stairway Sandsto         | one                                                                                                                                                                         | 920.0     | 919.8         | 915.3   | S2R2             | USIT-CCL-GR         |                                        |             | 120          | 09.0       | GL            |  |
| Horn Valley Siltstone         |                                                                                                                                                                             | 1007.0    | 1006.8        | 1002.3  |                  |                     |                                        |             |              |            |               |  |
| Pacoota P1                    |                                                                                                                                                                             | 1079.0    | 1078.8        | 1074.3  |                  |                     |                                        |             |              |            |               |  |
| Pacoota P2                    |                                                                                                                                                                             | 1187.0    | 1186.7        | 1182.2  |                  |                     |                                        |             |              |            |               |  |
| Pacoota P3                    |                                                                                                                                                                             | 1250.0    | 1249.6        | 1245.1  |                  |                     |                                        |             |              |            |               |  |
| Total Depth                   |                                                                                                                                                                             | 1332.0    | 1331,5        | 1327.0  |                  |                     |                                        |             |              |            |               |  |
| Mud Logging                   |                                                                                                                                                                             |           |               | Forr    | mation Testing ( | DST)                |                                        |             |              | DFIT       | □ Yes<br>⊠ No |  |
| Fotal Gas and C1-C5 ch<br>TD) | romatograph                                                                                                                                                                 | from 0m N | 1D to 1332 ml |         |                  |                     | 7, 7 flow tests we<br>1 and P3 formati |             | ed over      | HF         | □Yes<br>⊠ No  |  |
| Coring                        |                                                                                                                                                                             |           |               |         | Н                | ydrocarb            | on Shows                               |             |              |            |               |  |
| IVA                           | No hydrocarbon fluorescence was noted while drilling West Mereenie 28. However, numerous hydrocarbon gas peaks were recorded throughout the Stairway and Pacoota formations |           |               |         |                  |                     |                                        |             |              |            |               |  |

The well was completed as a Pacoota P1 and P3 producer with a dual string completion. The P1 intervals were perforated through 7" casing and the P3 sequence was completed in 6" open hole

### 3 Drilling

#### 3.1 DRILLING SUMMARY

(All depths Driller's MDRT unless otherwise stated)

#### Well spudded with 17-1/2" hole and 13-3/8" Conductor

West Mereenie 28 was spudded at 03:30 hours on the 21<sup>st</sup> of July 2021 with the Easternwell 27 drilling rig. The 17-1/2" conductor hole was drilled to 26.0 m with Gel spud mud and the 13-3/8" conductor casing run and cemented with the shoe at 26.0 m. The riser and flowline were then installed while preparing 12-1/4" BHA.

#### 12-1/4 Surface hole and 9-5/8" casing

The 12-1/4" bit and BHA were RIH and top of cement was tagged at 9.5 m. The cement was drilled out to 26 mMDRT and new hole to 29 mMDRT. The BHA was pulled back and a circulating sub installed. The 12-1/4" hole was then drilled ahead, intersecting the Mereenie Aquifer at 140.0 mMDRT. Drilling continued to 201.0 mMDRT where a bit trip was made due to poor ROP. Drilling continued to 334.0 mMDRT where total downhole losses were observed in the basal Mereenie Aquifer section. An LCM pill was mixed and pumped and allowed to permeate the loss zone. The 12-1/4" hole then drilled ahead with an LCM pill being pumped to cure losses at 338.5 mMDRT in the basal Mereenie Aquifer.

The top of the Carmichael Sandstone was intersected at 340 mMDRT and further LCM pills were pumped to combat fluid losses down to 353.5 mMDRT with further lost circulation and a total of 6 LCM pills being pumped (Section 3.9 Downhole Fluid Losses). At 356m circulation was again lost and additional LCM was mixed and pumped and the down-hole motor plugged. The BHA was tripped out and a new Motor and BHA RIH.

After drilling only 2m circulation was lost, LCM pills pumped and the circulation-sub blocked. Drilling BHA#4 was made up, RIH and drilled ahead blind to 413.16m, at which depth the decision was taken to spot a cement plug. POOH, made up cement stinger and RIH with same. Rigged up cementers and pumped 48 bbl cement plug#1. Well bore fluid losses were observed while waiting on cement and a further cement plug was spotted. Upon drilling ahead from 413m to 426m, total losses were experienced again, necessitating a third 48 bbl cement plug to be pumped. Top of cement was tagged at 257 mMDRT and drilled out to 426m. Drilling continued to 462m with total losses from 431m and a further cement plug was pumped. After drilling the cement plug the well was depend to section TD 463.5 mMDRT. Having determined that losses had been cured, the well was circulated and a wiper trip conducted prior to pulling out of hole to run casing.

Rigged up and ran 9 5/8" casing, as per programme. Circulated and cemented casing, including a 15bbl top-up Job (Section 3.6). Nippled up, function tested and pressure tested BOP's and well head,

#### 8-1/2" Air-Foam drilled hole section and 7" Casing

Made up drill-out BHA and RIH. Drilled cement, shoe track and new formation to 467 mMDRT, Conducted LOT with Halliburton to 12.8ppg EMW. POOH with clean out assembly. Made up Air hammer BHA, RIH and unloaded fluid from the well. Drilled ahead with Air/mist system from 467 mMDRT to 684 mMDRT with average ROP 10.2m/hr. Drilled ahead with Polymer/Foam-Air to 818 mMDRT with average ROP 6.23m/hr. Gas to surface and a flare were observed from 800 mMDRT. Continued to drill ahead with Polymer/Foam-Air to 876 mMDRT, Flow tested Middle Stairway, drilled to 1021 mMDRT and flow tested the Upper and Lower Stairway Q=0.6 mmscfd (see Appendix D: Flow Test Data).

Drilling continued with Foam-Air from 1021 mMDRT to 1169 mMDRT, with flow tests of the Upper Pacoota P1 at 1117 mMDRT (1.2 mmscfd) and Lower Pacoota P1 at 1167.5 mMDRT (2.9 mmscfd). Continued drilling to 1182 mMDRT, where a bit change was required. Killed well with 10.1 ppg Kill mud, pulled out of hole and changed the bit. RIH with New 8-1/2" PDC Bit and downhole motor and unloaded wellbore fluids. Drilled ahead with Polymer/Foam-N2 from 1182 mMDRT to casing point at 1243 mMDRT, just above the P3 Sandstone. Performed Flow Test#3 over the Pacoota P1 and P2 at that depth and recorded 2.7 mmscfd. Conducted a 100 m wiper trip.

Attempts were made to kill the well but the well continued to flow Gas. Decided to unload well and POOH under-balanced to retrieve XEM tool and downhole motor (DHM) to allow higher weight LCM pill to be run without tool plugging. POOH and retrieved XEM tool and DHM. Made up new BHA and ran in hole. Mixed 420 bbl of 12.0 ppg kill mud. Ran in hole to TD (1243 mMDRT) Mixed and spotted LCM pill. Proceeded to kill well with 12.2 ppg mud weight. Pulled out of hole for Wireline Logging.

Rigged up Schlumberger and ran Run #1: FMI-DSI-HRLA-PEX-SP-GR over open hole section and Run #2: CBL-VDL-GR-CCL over 9 %" casing. Schlumberger was then rigged down with no hole or equipment issues being encountered.

The wellhead was flushed and the rig was rigged to run 7" casing. The 7" casing was run and cemented as per programme. The casing spool was jetted and the packing assembly was installed and energised. The BOP was nippled down and the tubing head installed and tested. The BOP was nippled up and pressure tested.

#### 6" Nitrogen-Foam drilled hole section

A 6" PDC bit and drilling BHA #7 was made up and run in hole to 1214.0 mMDRT. The shoe track and 3.0 m of new formation were drilled to 1246.0 mMDRT and an FIT to 21.6 ppg EMD was carried out.

The wellbore fluids were unloaded and the 6" hole was drilled to 1332.0 mMDRT using nitrogen and foam. A wiper trip to the shoe was run and the drill string pulled out of hole to the BHA. The BHA was hung off and a BPV installed. The snubbing unit was installed and the BHA was then snubbed out of the hole. A 6-1/8" bit and casing scraper assembly was made

up and run in the hole to scrape production packer depths of 1073 mMDRT and 1210 mMDRT. The scraper assembly was then tripped out of hole and the Snubbing Unit was rigged down.

EXPRO then rigged up with a lubricator to convey and set the production packer in hole at a depth of 1209 m. The hole was then filled with 2% brine and Schlumberger wireline were rigged up to conduct Suite#2, Run #1: CBL-VDL-CCL-GR inside the 7" casing.

The perforation and completion programmes were then performed as detailed in Section 3.10.

#### 3.2 WELLHEAD AND DOWNHOLE DIAGRAM

For the well schematic and wellhead equipment, see Appendix A.

#### 3.3 CASING DETAILS

Table 2: WM28 casing details

| FINAL WELL CONSTRUCTION |                                                             |                 |         |        |         |       |              |            |            |  |
|-------------------------|-------------------------------------------------------------|-----------------|---------|--------|---------|-------|--------------|------------|------------|--|
|                         |                                                             | Hole Specificat | tions   |        |         | Cas   | ing Specific | cations    |            |  |
| Interval                | Hole<br>Size                                                | From            | То      | OD     | Weight  | Grade | Thread       | Casing Top | Shoe Depth |  |
|                         | [in]                                                        | [mMDRT]         | [mMDRT] | [in]   | [lb/ft] |       |              | [mMDRT]    | [mMDRT]    |  |
| Conductor               | 17-1/2                                                      | 4.5             | 26.0    | 13-3/8 | 54.5    | K-55  | BTC          | 4.5        | 26.0       |  |
| Surface                 | 12-1/4                                                      | 26.0            | 463.5   | 9-5/8  | 36.0    | K-55  | BTC          | 4.5        | 459.4      |  |
| Intermediate            | 8-1/2                                                       | 463.5           | 1243.0  | 7      | 29.0    | P-110 | BTC          | 4.5        | 1240.17    |  |
| Production              | Production 6 1243.0 1332.0 Open Hole: 1243.0 – 1332.0 mMDRT |                 |         |        |         |       |              |            |            |  |

#### 3.4 WEST MEREENIE 28 TIME DEPTH CURVE

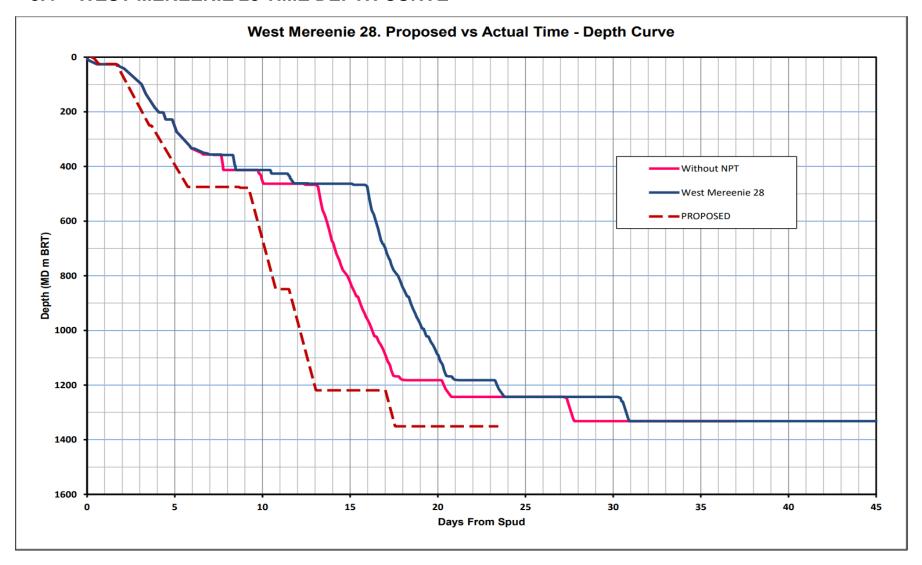



Figure 4 — West Mereenie 28 Time Depth curve

#### 3.5 DEVIATION SURVEYS

Table 3: West Mereenie 28 Deviation Surveys

| Di     | Directional Survey |       |        |  |  |  |  |  |  |  |
|--------|--------------------|-------|--------|--|--|--|--|--|--|--|
| MD     | INC.               | AZ.   | TVD    |  |  |  |  |  |  |  |
| 0.00   | 0.00               | 0.00  | 0.00   |  |  |  |  |  |  |  |
| 0.00   | 0.00               | 0.00  | 0.00   |  |  |  |  |  |  |  |
| 456.00 | 0.50               | 0.00  | 455.99 |  |  |  |  |  |  |  |
| 465.00 | 0.67               | 30.03 | 464.99 |  |  |  |  |  |  |  |
| 485.00 | 1.00               | 35.20 | 484.99 |  |  |  |  |  |  |  |
| 494.00 | 1.28               | 28.75 | 493.99 |  |  |  |  |  |  |  |
| 504.00 | 1.44               | 32.79 | 503.99 |  |  |  |  |  |  |  |
| 514.00 | 1.53               | 33.52 | 513.98 |  |  |  |  |  |  |  |
| 523.00 | 1.63               | 30.80 | 522.98 |  |  |  |  |  |  |  |
| 533.00 | 1.83               | 27.77 | 532.98 |  |  |  |  |  |  |  |
| 542.00 | 1.92               | 32.75 | 541.97 |  |  |  |  |  |  |  |
| 552.00 | 2.21               | 28.02 | 551.96 |  |  |  |  |  |  |  |
| 562.00 | 1.98               | 28.61 | 561.96 |  |  |  |  |  |  |  |
| 571.00 | 2.12               | 27.81 | 570.95 |  |  |  |  |  |  |  |
| 580.00 | 2.19               | 29.69 | 579.95 |  |  |  |  |  |  |  |
| 590.00 | 1.77               | 32.14 | 589.94 |  |  |  |  |  |  |  |
| 600.00 | 1.95               | 30.10 | 599.93 |  |  |  |  |  |  |  |
| 610.00 | 1.81               | 32.37 | 609.93 |  |  |  |  |  |  |  |
| 619.00 | 1.80               | 26.95 | 618.92 |  |  |  |  |  |  |  |
| 628.00 | 2.09               | 25.53 | 627.92 |  |  |  |  |  |  |  |
| 648.00 | 2.22               | 28.55 | 647.91 |  |  |  |  |  |  |  |
| 658.00 | 1.97               | 29.33 | 657.90 |  |  |  |  |  |  |  |
| 667.00 | 1.92               | 29.05 | 666.89 |  |  |  |  |  |  |  |
| 676.00 | 2.29               | 27.46 | 675.89 |  |  |  |  |  |  |  |
| 686.00 | 2.19               | 25.59 | 685.88 |  |  |  |  |  |  |  |
| 696.00 | 1.79               | 27.45 | 695.87 |  |  |  |  |  |  |  |
| 706.00 | 1.82               | 28.80 | 705.87 |  |  |  |  |  |  |  |
| 715.00 | 1.60               | 33.33 | 714.86 |  |  |  |  |  |  |  |
| 725.00 | 1.59               | 28.72 | 724.86 |  |  |  |  |  |  |  |
| 734.00 | 1.28               | 29.17 | 733.86 |  |  |  |  |  |  |  |
| 744.00 | 1.40               | 28.59 | 743.86 |  |  |  |  |  |  |  |
| 754.00 | 1.19               | 36.30 | 753.85 |  |  |  |  |  |  |  |
| 763.00 | 0.97               | 24.26 | 762.85 |  |  |  |  |  |  |  |
| 773.00 | 1.00               | 30.56 | 772.85 |  |  |  |  |  |  |  |
| 782.00 | 0.66               | 21.78 | 781.85 |  |  |  |  |  |  |  |
| 792.00 | 0.54               | 23.77 | 791.85 |  |  |  |  |  |  |  |

| Directional Survey |      |       |         |  |  |  |  |  |  |  |
|--------------------|------|-------|---------|--|--|--|--|--|--|--|
| MD                 | INC. | AZ.   | TVD     |  |  |  |  |  |  |  |
| 802.00             | 0.58 | 20.47 | 801.85  |  |  |  |  |  |  |  |
| 811.00             | 0.86 | 36.62 | 810.85  |  |  |  |  |  |  |  |
| 821.00             | 0.69 | 37.73 | 820.85  |  |  |  |  |  |  |  |
| 830.00             | 1.14 | 35.76 | 829.84  |  |  |  |  |  |  |  |
| 840.00             | 1.24 | 26.06 | 839.84  |  |  |  |  |  |  |  |
| 850.00             | 1.08 | 41.11 | 849.84  |  |  |  |  |  |  |  |
| 860.00             | 1.22 | 25.13 | 859.84  |  |  |  |  |  |  |  |
| 869.00             | 1.38 | 38.91 | 868.84  |  |  |  |  |  |  |  |
| 879.00             | 1.43 | 29.19 | 878.83  |  |  |  |  |  |  |  |
| 888.00             | 1.42 | 39.56 | 887.83  |  |  |  |  |  |  |  |
| 898.00             | 1.91 | 36.45 | 897.83  |  |  |  |  |  |  |  |
| 907.00             | 1.62 | 41.69 | 906.82  |  |  |  |  |  |  |  |
| 1014.00            | 0.91 | 44.88 | 1013.80 |  |  |  |  |  |  |  |
| 1024.00            | 1.32 | 35.10 | 1023.79 |  |  |  |  |  |  |  |
| 1034.00            | 1.27 | 27.30 | 1033.79 |  |  |  |  |  |  |  |
| 1043.00            | 1.73 | 39.72 | 1042.79 |  |  |  |  |  |  |  |
| 1053.00            | 1.53 | 29.31 | 1052.78 |  |  |  |  |  |  |  |
| 1063.00            | 1.64 | 35.10 | 1062.78 |  |  |  |  |  |  |  |
| 1072.00            | 2.07 | 38.90 | 1071.78 |  |  |  |  |  |  |  |
| 1081.00            | 1.66 | 39.41 | 1080.77 |  |  |  |  |  |  |  |
| 1091.00            | 1.54 | 33.91 | 1090.77 |  |  |  |  |  |  |  |
| 1101.00            | 1.73 | 40.07 | 1100.76 |  |  |  |  |  |  |  |
| 1110.00            | 1.91 | 33.92 | 1109.76 |  |  |  |  |  |  |  |
| 1120.00            | 2.02 | 30.99 | 1119.75 |  |  |  |  |  |  |  |
| 1129.00            | 1.98 | 38.57 | 1128.75 |  |  |  |  |  |  |  |
| 1139.00            | 1.49 | 27.72 | 1138.74 |  |  |  |  |  |  |  |
| 1149.00            | 1.61 | 37.82 | 1148.74 |  |  |  |  |  |  |  |
| 1156.00            | 1.69 | 38.21 | 1155.74 |  |  |  |  |  |  |  |
| 1165.00            | 1.43 | 37.68 | 1164.73 |  |  |  |  |  |  |  |
| 1184.00            | 1.68 | 37.56 | 1183.72 |  |  |  |  |  |  |  |
| 1203.00            | 2.23 | 37.56 | 1202.71 |  |  |  |  |  |  |  |
| 1204.00            | 2.39 | 31.51 | 1203.71 |  |  |  |  |  |  |  |
| 1205.00            | 2.52 | 37.73 | 1204.71 |  |  |  |  |  |  |  |
| 1206.00            | 2.34 | 41.20 | 1205.71 |  |  |  |  |  |  |  |
| 1240.17            | 2.34 | 41.20 | 1239.85 |  |  |  |  |  |  |  |
| 1332.00            | 2.34 | 41.20 | 1331.61 |  |  |  |  |  |  |  |

#### 3.6 CEMENTING OPERATIONS

#### 13 3/8" Conductor

Nippled down Sub Base and walked out. Ran 21.3m of flared 13 3/8" Conductor with 1" cement stinger attached to outside.

Rigged up for cementing operations. Held PJSM, pressure tested surface lines and cemented 13 3/8" conductor as per programme. Pumped 19.6bbls of 15.8ppg cement slurry with cement to surface after 19.1bbls. Flushed surface lines, completed cementing operations and rigged down Halliburton. Halliburton conducted post cement job cleaned-up operations. Rig crew placed/levelled cement on the cellar floor.

Walked Sub-Base back in, prepared 12 1/4" BHA, cut conductor, installed riser and flow line while waiting on cement to cure

#### 9 5/8" Surface Casing

Nippled down and laid out riser, cut conductor at cellar floor and rigged up to run 9 5/8" casing (CSG). Ran 39 joints of 9 5/8" CSG, CSG taking weight at 411m and washed down to bottom. Casing seat at 459.4 mMDRT.

Loaded plugs in cement head and nippled up cement head and surface lines. Held PJSM with Halliburton to cover: High pressure, Mixing chemicals for cementing operations, Chemical burns and PPE. Cemented 9 5/8" CSG. Pumped 5bbls and pressure tested surface lines: low 790psi for 5min and high 3000psi for 5min. Pumped 20bbls of Econolite spacer and 30bbl Hi-Vis gelled spacer. Dropped bottom plug.

Mixed and pumped 112bbls of 12.5ppg lead slurry at 4BPM and 160psi; with lost circulation from 93bbls. Mixed and pumped 54.3bbls of 15.8ppg tail slurry at 4BPM, with returns back at 116bbls total pumped. Dropped top plug and displaced at 4BPM with 8.4ppg mud. Pumped 25bbls and encountered lost circulation. Regained Circ at 87bbls into displacement, experienced lost circulation again at 93bbls, with circulation regained at 96bbls; with 3bbls cement to surface before finally losing circulation. Reduced pump rate to 2BPM and bumped plug with 350psi at 113.2bbls.

Pressured up CSG to 2046psi and tested for 10min, ok. Bleed off 1.5bbls returned, floats holding. Lost a total of 102bbls during cement job. Mixed 20bbls of 15ppg cement slurry for top-up job and pumped into cellar, top filled annulus through circ ports with 15bbls, estimated cement had dropped 82m, Annulus static, discard 5bbls of excess cement. Rigged down cement head and surface lines and cementing equipment from rig floor. Backed out running tool and landing joint and laid out.

#### 7" Intermediate Casing

Rigged up jetting tool and flushed wellhead internal components. Held PJSM. Rigged up to run casing, installing casing running equipment. Made up shoe track. Tested floats. Ran in hole with 7" CSG and circulated bottoms up at 600m. Continued running in hole with 7" CSG to 1184m, working tight spots from 1163m to 1170m and continued RIH to 1232 mMDRT

Table 4: Cementing details

| CEMENTING DETAILS    |                    |                                          |                                          |  |  |  |  |  |  |
|----------------------|--------------------|------------------------------------------|------------------------------------------|--|--|--|--|--|--|
|                      | Conductor          | Surface                                  | Intermediate                             |  |  |  |  |  |  |
| Hole Size            | 17-1/2"            | 12-1/4"                                  | 8-1/2"                                   |  |  |  |  |  |  |
| Casing Size          | 13-3/8"            | 9-5/8"                                   | 7"                                       |  |  |  |  |  |  |
| Setting Depth        | 26.0 mMDRT         | 459.4 mMDRT                              | 1240.17 mMDRT                            |  |  |  |  |  |  |
| Cement Type          | Class G            | Class G                                  | Class G                                  |  |  |  |  |  |  |
| Cement Top           | Lead - Surface     | Lead - Surface<br>Tail – 323.0mRT        | Lead - Surface<br>Tail – 720.0mRT        |  |  |  |  |  |  |
| Yield                | Lead – 1.17 ft3/sk | Lead - 2.15 ft3/sk<br>Tail – 1.16 ft3/sk | Lead – 2.19 ft3/sk<br>Tail – 1.16 ft3/sk |  |  |  |  |  |  |
| Volume               | Lead – 19.6bbls    | Lead – 114.4bbls<br>Tail – 58.0bbls      | Lead – 74.0bbls<br>Tail – 82.4bbls       |  |  |  |  |  |  |
| Slurry Density       | Lead – 15.8 ppg    | Lead - 12.5 ppg<br>Tail – 15.8 ppg       | Lead - 12.5 ppg<br>Tail – 15.8 ppg       |  |  |  |  |  |  |
| Bump Plug            | -                  | 350psi                                   | 2,304psi                                 |  |  |  |  |  |  |
| Casing Pressure Test | -                  | 2,044psi                                 | 2,003psi                                 |  |  |  |  |  |  |
|                      |                    | D-Air 3000L                              | D-Air 3000L                              |  |  |  |  |  |  |
|                      | D-Air 3000L        | Versaset                                 | Versaset                                 |  |  |  |  |  |  |
| Additives            | 11.1.1.044         |                                          | Halad-344                                |  |  |  |  |  |  |
|                      |                    | Econolite Liquid                         | Halad-567                                |  |  |  |  |  |  |
|                      |                    | WellLife 734                             | CFR-3                                    |  |  |  |  |  |  |

#### 3.7 BIT RECORD AND BHA DETAILS

For the bit record and BHA Details, see Appendix B.

#### 3.8 DRILLING FLUIDS

Table 5: Drilling fluids

| DRILLING FLUIDS |           |         |         |                   |  |  |  |  |  |
|-----------------|-----------|---------|---------|-------------------|--|--|--|--|--|
| Interval        | Hole Size | From    | То      | Fluid System      |  |  |  |  |  |
|                 | [in]      | [mMDRT] | [mMDRT] | ,                 |  |  |  |  |  |
| Conductor       | 17-1/2    | 4.5     | 26.0    | WBM – Gel Polymer |  |  |  |  |  |
| Surface         | 12-1/4    | 26.0    | 463.5   | WBM – Gel Polymer |  |  |  |  |  |
| Intermediate    | 8-1/2     | 463.5   | 1243.0  | AIR/N2/Foam       |  |  |  |  |  |
| Production      | 6         | 1243.0  | 1332.0  | AIR/N2/Foam       |  |  |  |  |  |

#### 3.9 DOWNHOLE FLUID LOSSES

Total lost circulation was first encountered at 334 mMDRT in the 12-1/4" hole section in the basal Mereenie Aquifer, with extensive fluid losses continuing throughout the underlying Carmichael Sandstone and finally being cured by pumping 20+ LCM pills and running 4 cement plugs over the entire depth interval from 252 mMDRT (top of solid cement) to 462.0 mMDRT; covering the lower half of the Mereenie Aquifer and the full Carmichael Sandstone to section TD within the Upper Stokes Siltstone.

Upon encountering total lost circulation at 334 mMDRT, LCM pill #1 was mixed and pumped and allowed to permeate the loss zone. Circulation was restored, additional mud volume was built and the 12-1/4" hole was then drilled to 338.5 mMDRT where circulation was again lost. LCM pill #2 was pumped and allowed to soak.

This pattern of drilling ahead and combatting partial to full losses by pumping LCM pills continued from 338.5 mMDRT to 413.16 mMDRT with LCM pills being pumped at numerous depths, as detailed in Table 7. At that depth the losses could no longer be controlled by LCM pills and the decision was taken to pump cement plugs.

At 413.16 mMDRT the drillstring was tripped out to pick up a cement stinger; which was then run in hole and 48 bbl cement plug #1 pumped. Well bore fluid losses were recorded while waiting for the cement to cure and a second 48 bbl cement plug was pumped.

Subsequently, the hole was drilled ahead from 413m to 426m, where total lost circulation was again experienced and 48bbls LCM cement plug #3 pumped. Upon running back in hole with the drilling BHA, the top of solid cement was encountered at 257 mMDRT and drilled to 426 mMDRT. The well drilled ahead from 426m to 462m with total lost circulation from 431m.

At 462 mMDRT two further LCM pills were pumped prior to POOH with BHA to pick up and RIH with cement stinger. Cement plug #4 (48 bbl) was pumped to finally cure losses prior to section TD. The drill bit was picked up, RIH and tagged cement at 293 mMDRT. Cement was drilled to 462m and the hole deepened to 463.5m to ensure that losses had been cured prior to calling section TD.

Total Fluid losses are detailed in Table 6.

Table 6: Fluid losses

Fluid Losses in Mud-Drilled Hole: 12-1/4" to 463.5 mMDRT (Section TD)

| i iuiu Los | Tidia Losses III Midd-Diffiled Hole. 12-1/4 to 403.5 IIIMDKT (Section 1D) |                  |                |               |             |            |                          |                   |  |  |  |  |
|------------|---------------------------------------------------------------------------|------------------|----------------|---------------|-------------|------------|--------------------------|-------------------|--|--|--|--|
|            |                                                                           |                  | I              | Losses (bbl)  |             |            | Daily Drilling Progress: |                   |  |  |  |  |
| Date       | DMR#                                                                      | Previous         | Daily Downhole | Daily Surface | Daily Total | Accum Int: | 00:00hr<br>Depth:        | 24:00hr<br>Depth: |  |  |  |  |
|            | Losses Associated with Mereenie Aquifer                                   |                  |                |               |             |            |                          |                   |  |  |  |  |
| 27-Jul     | 7                                                                         | 532.5            | 250.0          | 25.0          | 275.0       | 807.5      | 325.0                    | 353.0             |  |  |  |  |
| L          | osses to M                                                                | ereenie Aquifer: | 250.0          | bbl           |             |            |                          |                   |  |  |  |  |
|            | Losses Associated with Carmichael Sandstone                               |                  |                |               |             |            |                          |                   |  |  |  |  |
| 28-Jul     | 8                                                                         | 807.5            | 49.4           | 25.4          | 74.8        | 882.3      | 353.0                    | 358.0             |  |  |  |  |

|        | Losses Associated with Carmichael Sandstone |          |         |      |         |          |       |       |  |  |  |  |  |
|--------|---------------------------------------------|----------|---------|------|---------|----------|-------|-------|--|--|--|--|--|
| 28-Jul | 8                                           | 807.5    | 49.4    | 25.4 | 74.8    | 882.3    | 353.0 | 358.0 |  |  |  |  |  |
| 29-Jul | 9                                           | 882.3    | 5,417.5 | 0.0  | 5,417.5 | 6,299.8  | 358.0 | 413.0 |  |  |  |  |  |
| 30-Jul | 10                                          | 6,299.8  | 120.0   | 0.0  | 120.0   | 6,419.8  | 413.0 | 413.0 |  |  |  |  |  |
| 31-Jul | 11                                          | 6,419.8  | 1,720.0 | 13.7 | 1,733.7 | 8,153.5  | 413.0 | 426.0 |  |  |  |  |  |
| 1-Aug  | 12                                          | 8,153.5  | 2,200.0 | 87.5 | 2,287.5 | 10,441.0 | 426.0 | 462.0 |  |  |  |  |  |
| 2-Aug  | 13                                          | 10,441.0 | 850.0   | 34.3 | 884.3   | 11,325.3 | 462.0 | 463.5 |  |  |  |  |  |
| 3-Aug  | 14                                          | 11,325.3 | 630.0   | 26.7 | 656.7   | 11,982.0 | 463.5 | 463.5 |  |  |  |  |  |
| 4-Aug  | 15                                          | 11,982.0 | 280.0   | 21.7 | 301.7   | 12,283.7 | 463.5 | 463.5 |  |  |  |  |  |

Losses to Carmichael Sst: 11,266.9 bbl

Table 7: LCM Pills & Cement Plugs to Combat Losses

#### Mereenie Aquifer & Carmichael Formation: LCM Pills & Cement Plugs to Combat Losses

|            |                                                                                                           |               | L      | CM      | CEN  | ∕IENT |
|------------|-----------------------------------------------------------------------------------------------------------|---------------|--------|---------|------|-------|
| DATE       | DESCRIPTION                                                                                               | Depth         | Mix    | Pump    | Mix  | Pump  |
| 27/07/2021 | Lost circulation at 319.16m. Mixed & Pumped 40 bbl LCM pill #1.                                           | 334           | 40     | 40      |      |       |
|            | Drill ahead to 351m. Lost circulation at 338.42m & 342.84m. Pumped LCM pills as required.                 | 338.5         | Pil    | l #2    |      |       |
|            |                                                                                                           | 343           | Pil    | l #3    |      |       |
|            |                                                                                                           | 348           | Pil    | l #4    |      |       |
|            |                                                                                                           | 349.7         | Pil    | l #5    |      |       |
| 28/07/2021 | Lost circulation. Mixed 40 bbl LCM pill.                                                                  | 353           | 40     |         |      |       |
|            | Pumped 20 bbl LCM pill #6. Allowed LCM Pill to soak into loss zones.                                      | 353           |        | 20      |      |       |
|            | Drill ahead to 356.22m. Lost circulation. Pumped LCM pill as required.                                    | 356           | (as re | quired) |      |       |
|            | Prepared additional 40 bbl LCM pill. Pumped 10 bbls LCM pill. Allowed to soak.                            | 356           | 40     | 10      |      |       |
|            | Drill ahead to 358.24m. Lost circulation. Pumped 3 x LCM pills (totalling 34bbl of LCM).                  | 358           |        | 34      |      |       |
|            | Mixed and Pumped 3 x 40 Lb concentration LCM Pills . Failed to achieve circulation.                       | 3 x 40lb conc |        |         |      |       |
|            | Pumped 1 x 50 lb concentration LCM pill.                                                                  |               | 1 x 50 | lb conc |      |       |
|            | Pumped 01 x 60 lb concentration LCM pill. Received returns on the 60 lb concentration pill.               |               | 1 x 60 | lb conc |      |       |
| 29/07/2021 | Pumped LCM pill, RIH and wash down to 397.41m                                                             | 413           | 1      | pill    |      |       |
|            | Pumped LCM pill, POOH with 12.25" Bit and BHA#4.                                                          | 413           | 1      | pill    |      |       |
| 30/07/2021 | pumped LC Cement plug #1. 47.8 bbls of 15.8 ppg cement for 100m plug.                                     | 413           |        |         | 47.8 | 47.8  |
|            | pumped LC Cement plug #2. 47.8 bbls of 15.8 ppg cement for 100m plug.                                     | 413           |        |         | 47.8 | 47.8  |
| 31/07/2021 | Drilled ahead 12 1/4" hole from 413m to 426m (TLC), Transfer 20bbls of 40ppb LCM pill into active system. | 426           | 20     | 20      |      |       |
|            | Transfer 40bbls of 60ppb LCM pill into active system.                                                     |               | 40     | 40      |      |       |
|            | Pumped 48bbls of 15.8ppg cement slurry. Plug #3                                                           | 426           |        |         | 48   | 48    |
| 1/08/2021  | Work pipe partial returns, added 20bbl of 40ppb LCM into active.                                          | 462           | 20     | 20      |      |       |
|            | Drill ahead from 454m to 462.5m, (TLC), Add 30bbls 40ppb LCM pill to suction system, (no surface volume)  | 462           | 30     | 30      |      |       |
|            | Pumped 30bbl of 40ppb LCM pill and spotted 390m to 328m                                                   | 462           |        |         |      |       |
| 2/08/2021  | Pumped 48bbls of 15.8ppg cement slurry. Plug #4                                                           | 462           |        |         | 48   | 48    |
|            |                                                                                                           |               |        |         |      |       |

#### 3.10 WELL COMPLETION

Rigged up Expro & PCE. Identified running tool adaptor component was missing. Expro crew explored alternate methods to run packer and received confirmation to proceed with running the Packer and correlating to the CCL. MU Lower production Packer on E-line tunning tools. RIH with Permanent Packer - 7" x 2-3/8" (NS-CT) lower completion assembly. Correlated packer setting depth to the CCL and placed Top of Packer at 1210.90m POOH with running tool. Rigged aside lubricator and laid down running tools.

Picked up slick-line running tools. Conducted an inflow test. Well bore pressures remained stable, indicating 7" packer was set. Filled 7" casing annulus with 2% KCL brine. Pressure tested 7" casing against the 7" lower production packer 250psi low 5min and 2000psi high 10min ok.

Held PJSM with SLB logging crew, Rigged up for Run#1 CBL-VDL-GR-CCL. Ran and analysed CBL log. Decision made to run a USIT log. Schlumberger Run #2 USIT log. Completed logging operations. RD Schlumberger logging unit.

RU Expro Slick-line unit. RIH with Junk catcher and placed in the top of the 7" lower production packer at 1210.90m. RD Expro Slick-line and RU Expro E-line unit. Prepare E-line equipment for Corelating and Perforating Gun runs. Trouble-shoot difficulties with logging tools.

- RIH with Perforation gun run #1 3.5m, correlate to OH logs GR, Fired guns and perforated 1183.70m to 1187.20m.
- RIH 2nd gun run. 4.9m of Perforation guns, correlate to OH logs GR, Detonated guns and perforated the Lower section of the P1-310 formation at 1176.10m to 1181.00m.
- RIH 3rd gun run. 4.9m of Perforation guns, correlate to OH logs GR, attempted to detonated guns, detonation failed.

POOH with 3rd gun run to recover the non-detonated guns. Found fault with the shock absorber component of the running tool. Repaired and re-assembled running tools. RIH 3rd gun run. 4.9m of Perforation guns, correlate to OH logs GR, multiple attempts to detonate guns, Detonation failed. Followed Expro miss-fire protocols. POOH with 3rd gun run (2nd misfire run) to recover the non-detonated guns. Found fault with the GR shock absorber. Expro organized replacement tools and 2 x additional Expro operators.

RIH to recover junk sub from the P3 Isolation packer at 1210.90m. Emptied junk sub, ran back in hole and re-installed the Junk basket. POOH and recovered running tools. RD Slick-line unit and RU E-line equipment for Corelating and Perforating Gun runs.

- MU and RIH 3rd gun run. 4.9m of Perforation guns, correlate to OH logs GR, Detonated guns and perforated the Lower section of the P1-310 formation at 1172.2m to 1176.10m.
- MU and RIH 4th gun run. 5.1m of Perforation guns, correlate to OH logs GR, Detonated guns and perforated the P1-280 formation at 1162.90m to 1168.00m.
- MU and RIH 5th gun run. 2.7m of Perforation guns, correlate to OH logs GR, Detonated guns and perforated the P1-240 formation at 1155.50m to 1158.20m.

• MU and RIH 6th gun run. 3.2m of Perforation guns, correlate to OH logs GR, Detonated guns and perforated the P1-240 Upper formation at 1150.40m to 1153.60m.

RIH slick line retrieve junk catcher, cleaned out sludge and metal debris from perforating, Run and set Junk catcher.

- RIH guns for run #7. 4.3m RIH correlate to OH logs GR, Detonated guns and perforated the P1-210 Pacoota formation at 1141.30m to 1145.60m.
- RIH guns for run #8. 3.2m RIH correlate to OH logs GR, Guns didn't fire, POOH to inspect tools, GR tool failed. Decision to correlate to CCL, Detonated guns and perforated the P1-200 Pacoota formation at 1136.50m to 1139.70m.
- RIH guns for run #9. 5.1m RIH correlate to CCL, Detonated guns and perforated the P1-120/130 Pacoota formation at 1118.40m to 1123.50m.
- RIH guns for run #10. 3.1m RIH correlate to CCL, Detonated guns and perforated the P1-110 Pacoota formation at 1112.0m to 1115.10m.

RIH slick line retrieve junk catcher, cleaned out sludge and metal debris from perforating, Cleaned junk catcher. Ran and re-set junk catcher.

Expro have damaged E-line due to line coming off spool sheeve. Cut and re-splice E-line cable. While connecting lubricator to connection at rig floor, Expro safety connector on E-line cable parted & dropped 6m gun (Run #11) into BOPs; landing on blind rams. Guns not rerunnable. Re-string E-line through lubricator and re-splice cable head, P/U Lubricator.

RIH guns for run #12 4.6m RIH correlate to CCL. Attempted to detonated guns, Failed to detonate. Miss-fire. Suspected issue with computer panel inside logging truck. POOH and laid down guns. Expro crew repaired the computer firing panel inside logging truck. RIH guns for run #12 4.6m RIH correlate to CCL. Attempted to detonated guns. Failed to detonate. POOH and laid down guns. Suspected detonator sub component malfunctioning.

- RIH guns for run #12. 4.6m RIH correlate to CCL, Detonated guns and perforated the P1-60 Pacoota formation at 1096.4m to 1101.0m.
- RIH guns for run #11. 5.3m RIH correlate to CCL, Detonated guns and perforated the P1-80 Pacoota formation at 1102.70m to 1108mm.
- RIH guns for run #13. 5.6m RIH correlate to CCL, Detonated guns and perforated the P1-40 Pacoota formation at 1087.50m to 1093.10mm.

Change over to Slick Line, R/U Lubricator RIH retrieve Junk Catcher. Rigged down Expro PCE from BOPs.

M/U 7 1/16" Hanger, land out. Rigged up to run 2 3/8" TBG long string. Made up completion BHA and RIH from surface to~1210m. (Tagged lower packer on joint # 114 of the 2-3/8" NS-CT tubing, above the production BHA). Located long string lower packer seal assembly into the Permanent packer at 1210.90m. Spaced-out Long string and landed the tubing hanger with Long string. Pressured up to 500psi and confirmed Seal assembly had located into the permanent packer.

RIH with plug and prong to Long String upper X-Nipple at ~1087.82m and set in 'X" nipple. Pressure tested 2-3/8" NS-CT tubing string and BHA to 1000 psi. Set the D&L Hydroset 11-

A Dual Packer. Conducted Annulus pressure test to confirm the Dual production had set. Retrieve the plug and prong from X-nipple at 1087.82m.

MU Short String BHA and short string Dual string tubing hanger. Landed tubing hanger onto the landed seal assembly. Confirmed Short string tubing hanger had landed in tubing spool. Pressure tested the Short string tubing. RIH to open Short String SSD at 1054.95m. Pressure test landed tubing hanger to 250 psi and 3000 psi. 5x5 minutes.

Nipple down and removed BOPs. N/U and Pressure tested Dual Well-head assembly. Pressure tested surface lines to 2000 psi. Off-load brine from tubing string with Nitrogen to trip tank, Shut annulus in. Bleed down surface lines from the Nitrogen tanks and Lubricator. RIH retrieved junk catcher from on top of Prong and Plug at 1070.86m.

RIH to retrieve prong. Pull prong. Pressure slowly building up while POOH with slick line, Lost weight on way out, slick line parted. M/U LIB (Lead Impression Block) tools, R/U Lubricator. RIH with LIB. RIH with overshot. Latched Over-shot and worked jars, failed to release Prong and SL fish. POOH with slick-line fishing tool string. Found shear pin had not sheared. Numerous subsequent runs with the LIB, Blind Box Slick-line tool, Wire-grabber fishing tool and Over-shot failed to recover the fish. RIH and attempt to pull junk catcher. Noted overpull as the Junk catcher past through the Upper X-Nipple and SSD's. Running tools arrived at surface, found NO Junk catcher on running tools.

RIH and located Junk Catcher at ~1210m. Engaged GS pulling tool and worked span jars to free the Junk Catcher. Pulled junk catcher running tools and found the running tools to be full of well bore debris. Decision made to RIH with Slick-line bailer. Conducted 3x slickline bailer runs. Silt and debris recovered from each run.

As there was no progress in recovering the fish, it was decided to cut WL down hole at top of rope socket at 1202m.POOH with wire line. Cut 20m of line off, re-tie rope socket, Pin tools for retrieving SL cutter. RIH with overshot to retrieve SL cutting tool. Conduct LIB run - no indication of wire in hole. RIH and tagged TOF at ~1203m, engaged latching tool and worked hydraulic jars. Fish became free. POOH and recovered running tools and Fish.

Short String opened up to flare at 17:00 hours on 3<sup>rd</sup> August. Initial pressure 1230 psi. Flowing pressure bled down quickly and stabilised at 20 psi on a 12/64in Choke. RIH with 1.75in Bailer assembly. Tagged HUD at 1208m Bailed down to 1211m. POOH and recovered bailer. Found Bailer was full of debris. Re-ran bailer a further 2 times.

MU and RIH with 1.86in Gauge Cutter. Located an obstruction at 1204m, reciprocated Gauge cutter and continued to RIH to ~1211m. POOH and recovered the Gauge cutter.

RIH with 1.75in Bailer assembly. Tagged HUD at 1211m Bailed down to 1211.75m. POOH and recovered bailer with small amount of debris. Re-ran bailer and recovered debris. Dropped soap sticks down short string side, shut well and let sit for 2 hrs then opened quickly to try & unload fluid. M/U sucker rod spear to RIH and attempt to free up packed debris in junk catcher at 1211.7m. Conducted 3 Bailer runs, finding small amounts of fill on each run.

RIH with GS running tool, Located HUD at ~1210.75m. Jarred down 50 times. POOH and recovered the GS pulling tool. Found the GS tool had indents on the shear pin but had not

sheared. Decision made to Suspend Slick-line operations. Planned to order in additional Slick-line tools. Rigged down work floor, cleaned Wellhead and prepared for Rig move. Released Rig at 06:00 hrs on 5<sup>th</sup> August.

Table 8: Pacoota P1 Perforation intervals

#### **West Mereenie 28 Pacoota P1 Perforation Intervals**

| Reservoir  | Gun-Run #           | Top Shot | <b>Bottom Shot</b> | Interval |  |  |  |  |
|------------|---------------------|----------|--------------------|----------|--|--|--|--|
|            |                     | mMDRT    | mMDRT              | m        |  |  |  |  |
| P1-40      | Gun Run #13         | 1087.5   | 1093.1             | 5.6      |  |  |  |  |
| P1-60      | Gun Run #12         | 1096.4   | 1101.0             | 4.6      |  |  |  |  |
| P1-80      | Gun Run #11         | 1102.7   | 1108.0             | 5.3      |  |  |  |  |
| P1-110     | Gun Run #10         | 1112.1   | 1115.1             | 3.0      |  |  |  |  |
| P1-120/130 | Gun Run #9          | 1118.4   | 1123.5             | 5.1      |  |  |  |  |
| P1-200     | Gun Run #8          | 1136.6   | 1139.6             | 3.0      |  |  |  |  |
| P1-210     | Gun Run #7          | 1141.3   | 1145.6             | 4.3      |  |  |  |  |
| P1-240     | Gun Run #6          | 1150.5   | 1153.5             | 3.0      |  |  |  |  |
| P1-240     | Gun Run #5          | 1155.5   | 1158.2             | 2.7      |  |  |  |  |
| P1-280     | Gun Run #4          | 1162.9   | 1168.0             | 5.1      |  |  |  |  |
| P1-310     | Gun Run #3          | 1171.2   | 1176.1             | 4.9      |  |  |  |  |
|            | Gun-Run #2          | 1176.1   | 1181.0             | 4.9      |  |  |  |  |
| P1-350     | Gun-Run #1          | 1183.7   | 1187.2             | 3.5      |  |  |  |  |
|            | Total Perforations: |          |                    |          |  |  |  |  |

#### **4 FORMATION EVALUATION**

#### 4.1 WELL EVALUATION LOGS

For wireline logging data, see appendix C

Table 9: WM28 Well evaluation logs

| MUDLOGGING    | Geoservices                  |                    |                     |  |  |  |  |  |
|---------------|------------------------------|--------------------|---------------------|--|--|--|--|--|
| Log           | Hole Size                    | Top Depth<br>(m)   | Bottom Depth<br>(m) |  |  |  |  |  |
| Drill Log     |                              | 6                  | 1332                |  |  |  |  |  |
| Gas Ratio Log |                              | 6                  | 1332                |  |  |  |  |  |
| Mudlog        | 17 1/2", 12 1/4", 8 1/2", 6" | 6                  | 1332                |  |  |  |  |  |
| Time Log      |                              | Date<br>22/07/2021 | Date 22/08/2021     |  |  |  |  |  |

| WIRELINE LOGGING | Schlumberger |
|------------------|--------------|
|------------------|--------------|

| Log                         | Suite/<br>Run | Hole/Casing<br>Size | Top Depth<br>(m) | Bottom Depth<br>(m) |
|-----------------------------|---------------|---------------------|------------------|---------------------|
| GR (Gamma Ray)              | S1/R1         | 8 1/2" OH           | 5                | 1244                |
| SP (Spontaneous Potential)  | S1/R1         | 8 1/2" OH           | 5                | 1244                |
| PEX (NPHI Neutron)          | S1/R1         | 8 1/2" OH           | 5                | 1244                |
| PEX (RHOB Density)          | S1/R1         | 8 1/2" OH           | 430              | 1244                |
| HRLA (Resistivity)          | S1/R1         | 8 1/2" OH           | 430              | 1244                |
| BHC (Sonic)                 | S1/R1         | 8 1/2" OH           | 430              | 1244                |
| FMI (Formation Imager)      | S1/R1         | 8 1/2" OH           | 750              | 1244                |
| CBL (Cement Bond Log)       | S1/R2         | 9 5/8" CH           | 5                | 455                 |
| VDL (Variable Density Log)  | S1/R2         | 9 5/8" CH           | 5                | 455                 |
| GR (Gamma Ray)              | S1/R2         | 9 5/8" CH           | 5                | 455                 |
| CCL (Casing Collar Locator) | S1/R2         | 9 5/8" CH           | 5                | 455                 |
| CBL (Cement Bond Log)       | S2/R1         | 7" CH               | 5                | 1209                |
| VDL (Variable Density Log)  | S2/R1         | 7" CH               | 5                | 1209                |
| CCL (Casing Collar Locator) | S2/R1         | 7" CH               | 5                | 1209                |
| USIT                        | S2/R2         | 7" CH               | 5                | 1209                |
| GR (Gamma Ray)              | S2/R2         | 7" CH               | 5                | 1209                |
| CCL (Casing Collar Locator) | S2/R2         | 7" CH               | 5                | 1209                |

#### 4.2 CORES AND SAMPLE DETAILS

No cores were cut in WM28.

Cuttings samples were collected as follows:

Surface to 650 mMDRT: 10m interval

• 650 mMDRT to 1322 mMDRT: 5m interval

11 gas samples were retrieved in Isotubes from the Blooie line while Flow Testing and an additional 2 Isotube gas samples collected upon circulation after killing the well at 1182.5 mMDRT.

The isotube samples were analysed by ALS Laboratories and the Air & Helium corrected results are presented in Table 10.

#### 4.3 PRODUCTION TEST DETAILS

The well programme called for clean-up flow and production test after running the dual completion. However, due to the problems associated with clearing out the production string and recovering the junk catcher, the decision was made to Suspend operations and return with additional Slick-line tools. Consequently, the rig was released at 06:00 hrs on 5<sup>th</sup> August without conducting production testing.

Table 10: WM28 Flow Test Isotube Gas Samples

|           |         |       |     |            |          |            |         | AIR & HELIUM CORRECTED |          |          |          |           |           |          |          |          |           |          |          |          |          |
|-----------|---------|-------|-----|------------|----------|------------|---------|------------------------|----------|----------|----------|-----------|-----------|----------|----------|----------|-----------|----------|----------|----------|----------|
| Sample ID |         |       |     | Depth From | Nitrogen | C02        | Methane | Ethane                 | Propane  | i-Butane | n-Butane | i-Pentane | n-Pentane | Hexane   | Hydrogen | n-Octane | n-Heptane | Total    |          |          |          |
|           |         |       |     |            |          |            | (m)     | mol<br>%               | mol<br>% | mol<br>% | mol<br>% | mol<br>%  | mol<br>%  | mol<br>% | mol<br>% | mol<br>% | mol<br>%  | mol<br>% | mol<br>% | mol<br>% | mol<br>% |
| 1         | Flow    | Test  | #1a | @          | 875m     | 8/08/2021  | 875     | 3.73                   | 0.05     | 76.70    | 12.70    | 4.31      | 0.49      | 1.15     | 0.27     | 0.32     | 0.25      | ND       | ND       | 0.07     | 100      |
| 2         | Flow    | Test  | #1b | @          | 875m     | 8/08/2021  | 875     | 3.56                   | 0.05     | 76.50    | 12.80    | 4.38      | 0.50      | 1.19     | 0.30     | 0.32     | 0.27      | ND       | ND       | 0.07     | 100      |
| 3         | Flow    | Test  | #2  | @          | 1019m    | 9/08/2021  | 1019    | 0.00                   | 0.13     | 82.70    | 12.60    | 3.25      | 0.39      | 0.78     | ND       | 0.26     | 0.26      | ND       | ND       | ND       | 100      |
| 4         | Flow    | Test  | #3  | @          | 1109m    | 10/08/2021 | 1109    | 0.42                   | 0.09     | 79.10    | 13.90    | 4.33      | 0.42      | 1.12     | 0.23     | 0.33     | 0.23      | ND       | ND       | ND       | 100      |
| 5         | Flow    | Test  | #3  | @          | 1112m    | 10/08/2021 | 1112    | 1.22                   | 0.09     | 78.40    | 13.70    | 4.32      | 0.41      | 1.17     | 0.23     | 0.32     | 0.23      | ND       | ND       | 0.05     | 100      |
| 6         | Flow    | Test  | #4a | @          | 1167m    | 10/08/2021 | 1167    | 6.59                   | 0.06     | 73.10    | 13.10    | 4.43      | 0.46      | 1.21     | 0.28     | 0.34     | 0.28      | ND       | ND       | 0.09     | 100      |
| 7         | Flow    | Test  | #4b | @          | 1167m    | 10/08/2021 | 1167    | 5.74                   | 0.06     | 73.70    | 13.30    | 4.51      | 0.47      | 1.22     | 0.28     | 0.38     | 0.28      | ND       | ND       | 0.09     | 100      |
| 8         | Circula | ating |     | @          | 1182m    | 13/08/2021 | 1182    | 0.00                   | ND       | 81.00    | 13.50    | 3.10      | 0.30      | 0.89     | 0.30     | 0.30     | 0.42      | ND       | ND       | 0.18     | 100      |
| 9         | Circula | ating |     | @          | 1182m    | 13/08/2021 | 1182    | 0.79                   | ND       | 78.00    | 13.20    | 3.83      | 0.48      | 1.50     | 0.57     | 0.70     | 0.84      | ND       | ND       | 0.26     | 100      |
| 10        | Flow    | Test  | #5a | @          | 1243m    | 13/08/2021 | 1243    | 23.90                  | 0.05     | 59.40    | 10.70    | 3.63      | 0.38      | 0.99     | 0.20     | 0.30     | 0.23      | ND       | 0.03     | 0.08     | 100      |
| 11        | Flow    | Test  | #5b | @          | 1243m    | 13/08/2021 | 1243    | 23.90                  | 0.05     | 59.50    | 10.70    | 3.63      | 0.39      | 0.98     | 0.21     | 0.28     | 0.23      | ND       | ND       | 0.08     | 100      |
| 12        | Flow    | Test  | #7  | @          | 1330m    | 21/08/2021 | 1330    | 23.20                  | ND       | 60.90    | 9.83     | 3.55      | 0.42      | 1.08     | 0.27     | 0.32     | 0.27      | ND       | 0.02     | 0.07     | 100      |
| 13        | Flow    | Test  | #7  | @          | 1332m    | 21/08/2021 | 1332    | 19.60                  | ND       | 64.40    | 9.81     | 3.59      | 0.46      | 1.11     | 0.31     | 0.34     | 0.22      | ND       | ND       | 0.06     | 100      |

#### 4.4 HYDROCARBON INDICATORS

The following table (Table 11) details the cuttings gas peaks analysed during air/mist drilling of the sequence from top Upper Stairway Sandstone to base Pacoota P2 in 8  $\frac{1}{2}$ " hole, along with the gas peaks encountered while Air/N<sub>2</sub>/mist drilling Pacoota P1 sequence in 6" hole.

No visual hydrocarbon stain or fluorescence were observed in cuttings from this well.

#### **Stairway Sandstone**

Above the Top Upper Stairway Formation (756 mMDRT) the total gas values are below the detectable limit but increase dramatically to 17% below 785 mMDRT, with the onset of significant porosity. While drilling the Stairway Formation the total gas (TG) values are relatively constant (~11 to 24%) and remained consistently at this level while drilling the Horn Valley Siltstone.

#### Pacoota P1

Upon drilling into the Pacoota P1 (1079 mMDRT) total gas gradually and consistently increased from 29% at 1079 mMDRT to 72% at the base of the unit. While drilling the Pacoota P2, total gas levels continued to increase steadily to 88% at TD of the 8 ½" hole section (1243 mMDRT) as gas from the combined Stairway and Pacoota P1 formations continued to flow into the wellbore.

#### Pacoota P3

Upon drilling ahead in 6" hole, after setting 7" casing, the total gas level dropped dramatically to 16% while drilling the base of the Pacoota P2. Once the Pacoota P3 was encountered total gas climbed quickly to 63% by 1260 mMDRT and remained at this elevated level (54 – 73%) throughout the drilling of the Pacoota P3. This is slightly lower than the total gas recorded towards the base of the 8  $\frac{1}{2}$ " hole, due to the smaller borehole size and the fact that all gas in the 6" hole is solely produced by the P3 unit. In the 8  $\frac{1}{2}$ " hole the Upper Stairway, Lower Stairway and Paacoota P1 units were all contributing to the total gas percentage.

Table 11: WM28 Hydrocarbon indicators

| Depth       | Hole<br>Size | TG<br>(C1 - C5) | BG   | C1     | C2     | СЗ    | IC4  | NC4   | iC5  | nC5  |
|-------------|--------------|-----------------|------|--------|--------|-------|------|-------|------|------|
| (m)         | (inch)       | %               | %    | ррт    | ррт    | ppm   | ррт  | ppm   | ppm  | ppm  |
| 756-785     | 8.5          | 0.2             | 12.0 | 1145   | 216    | 68    | 32   | 16    | 14   | 14   |
| 785-815     | 8.5          | 17.2            | 13.7 | 137716 | 22244  | 7837  | 763  | 2173  | 524  | 625  |
| 815-825     | 8.5          | 17.6            | 14.1 | 141303 | 22847  | 7904  | 812  | 2193  | 548  | 644  |
| 825-845     | 8.5          | 15.6            | 12.5 | 124759 | 20488  | 7083  | 745  | 2002  | 488  | 586  |
| 845-876     | 8.5          | 15.6            | 19.6 | 124759 | 20488  | 7083  | 745  | 2002  | 488  | 586  |
| 876-925     | 8.5          | 13.4            | 18.0 | 107507 | 17359  | 5960  | 610  | 1685  | 410  | 490  |
| 925-965     | 8.5          | 11.6            | 15.5 | 93189  | 14764  | 5101  | 518  | 1425  | 336  | 485  |
| 965- 985    | 8.5          | 13.6            | 16.5 | 111187 | 17652  | 4677  | 432  | 1189  | 280  | 302  |
| 985- 995    | 8.5          | 13.6            | 16.5 | 111187 | 17652  | 4677  | 432  | 1189  | 280  | 302  |
| 995-1021    | 8.5          | 24.0            | 26.0 | 26000  | 176984 | 26716 | 7296 | 681   | 1864 | 430  |
| 1021-1085   | 8.5          | 25.1            | 25.0 | 25000  | 186400 | 28315 | 7808 | 723   | 1996 | 466  |
| 1085-1095   | 8.5          | 29.6            | 31.0 | 31000  | 219316 | 32763 | 9250 | 853   | 2370 | 542  |
| 1095-1117   | 8.5          | 42.9            | 48.3 | 340164 | 59913  | 19035 | 1713 | 5416  | 1143 | 1541 |
| 1117-1163   | 8.5          | 42.0            | 52.2 | 335373 | 57201  | 18167 | 1649 | 5072  | 1151 | 1566 |
| 1163-1175   | 8.5          | 68.2            | 80.0 | 530911 | 98911  | 34081 | 3311 | 9720  | 2103 | 2727 |
| 1175-1182   | 8.5          | 63.9            | 41.5 | 497711 | 92713  | 31448 | 3039 | 9065  | 1991 | 2588 |
| 1182.5-1190 | 8.5          | 72.3            | 88.0 | 557258 | 109538 | 36719 | 3566 | 10402 | 2242 | 2905 |
| 1190-1195   | 8.5          | 86.9            | 90.0 | 672522 | 129523 | 44121 | 4324 | 12238 | 2634 | 3416 |
| 1195-1230   | 8.5          | 87.6            | 89.9 | 679978 | 129170 | 43807 | 4288 | 12191 | 2717 | 3538 |
| 1230-1243   | 8.5          | 88.3            | 90.0 | 680400 | 134595 | 44869 | 4398 | 12545 | 2697 | 3543 |
| 1243-1250   | 6            | 16.0            | 4.7  | 125724 | 22367  | 8036  | 736  | 2228  | 497  | 672  |
| 1250-1260   | 6            | 63.5            | 50.5 | 494707 | 91071  | 31883 | 3129 | 9461  | 2159 | 2814 |
| 1260-1295   | 6            | 54.3            | 73.4 | 420322 | 79221  | 28556 | 2942 | 8636  | 1581 | 2065 |
| 1295-1332   | 6            | 73.8            | 92.0 | 586151 | 94933  | 35660 | 4091 | 11258 | 2712 | 3442 |

#### 5 GEOLOGY

# 5.1 ALONG HOLE AND TRUE VERTICAL DEPTH OF SEISMIC MARKERS

Table 12: WM28 Formation Tops

|                            | PROGN            | IOSED                 | ACTUAL - Post Petrophysics |                       |              |                        |  |  |  |
|----------------------------|------------------|-----------------------|----------------------------|-----------------------|--------------|------------------------|--|--|--|
| Prognosed Formation        | Depth<br>(mMDRT) | Depth<br>(mSS<br>TVD) | Depth<br>(mMDRT)           | Depth<br>(mSS<br>TVD) | Thick<br>(m) | Diff to<br>Prog<br>(m) |  |  |  |
| Mereenie Sandstone         | 9.53             | -767.5                | 9.5                        | 767.5                 | 140.5        | 0.0                    |  |  |  |
| Mereenie Aquifer           | 144.83           | -632.2                | 150.0                      | 627.0                 | 190.0        | 5.1                    |  |  |  |
| Carmichael Sandstone       | 351.23           | -425.8                | 340.0                      | 437.0                 | 64.0         | -11.2                  |  |  |  |
| Upper Stokes Siltstone     | 406.23           | -370.8                | 404.0                      | 373.0                 | 242.0        | -2.2                   |  |  |  |
| Lower Stokes Siltstone     | 650.93           | -126.1                | 646.0                      | 131.0                 | 110.0        | -5.0                   |  |  |  |
| Upper Stairway Sandstone   | 721.83           | -55.2                 | 756.0                      | 21.0                  | 55.0         | 34.2                   |  |  |  |
| Middle Stairway Sandstone  | 787.83           | 10.8                  | 811.0                      | -34.0                 | 109.0        | 23.2                   |  |  |  |
| Lower Stairway Sandstone 2 | 885.33           | 108.3                 | 920.0                      | -143.0                | 56.0         | 34.6                   |  |  |  |
| Lower Stairway Sandstone 1 |                  |                       | 976.0                      | -199.0                | 31.0         | NP                     |  |  |  |
| Horn Valley Siltstone      | 976.73           | 199.7                 | 1,007.0                    | -230.0                | 72.0         | 30.3                   |  |  |  |
| Pacoota P1                 | 1048.63          | 271.6                 | 1,079.0                    | -302.0                | 108.0        | 30.4                   |  |  |  |
| Pacoota P2                 | 1166.73          | 389.7                 | 1,187.0                    | -410.0                | 63.0         | 20.3                   |  |  |  |
| Pacoota P3                 | 1223.73          | 446.7                 | 1,250.0                    | -473.0                | 82.0         | 26.2                   |  |  |  |
| Total Depth                | 1305.73          | 528.7                 | 1,332.0                    | -555.0                |              |                        |  |  |  |

# 5.2 PRELIMINARY ASSESSMENT OF RESERVOIR AND PROSPECTIVE HORIZONS

The net sand was interpreted to be intervals where the volume of wet clay is less than 40% and the permeability is greater than 0.2 mD.

Net pay was interpreted to be in intervals of net sand where the water saturation is less than 60%.

#### 5.2.1 Upper Stairway Sandstone

The Upper Stairway Sandstone (756 - 811 mMDRT) was tested whilst drilling with air and failed to flow gas to surface and so is not an attractive production target. The interpretation does calculate 7.9 metres of net pay, but with an average permeability of only 0.297 mD, the flow potential is limited.

#### 5.2.2 Lower Stairway Sandstone

The Lower Stairway Sandstone in WM28 is divided into the

- Lower 2 (920 976 mMDRT)
- Lower 1 (976 1007 mMDRT)

tested 0.6 mmscf/d from a test in the uppermost Horn Valley. 3.6 metres of net sand is interpreted to be present in the shallower interval, but with only 0.253 mD permeability. The caliper and FMI show fractures at 943.0 mMDRT and 950.4mRT which probably contributed to the test rate. The Stairway is interpreted to have 20.4 metres of net sand with an average prosity of 6.8% and a permeability of 0.27 mD. 12.1 metres of this is interpreted to be net pay with an average porosity of 7.0%, permeability of 0.28 mD and water saturation of 43%.

#### 5.2.3 Pacoota 1

The Pacoota P1 was encountered between 1079 – 1187 mMDRT and is divided into 11 sandstone sequences based on correlation to the rest of the field wells. The Pacoota P1 flowed at 1.2 mmscf/d at 1117 mMDRT (encompassing the intervals down to and including the P1-110), 2.9 mmscf/d at 1167.5 mMDRT where the P1-120/180 to P1-280 sections had also been penetrated and 2.7 mmscf/d and 2.5 mmscf/d at section TD with the entire P1 and most of the P2 open. The P1 is interpreted to have 60.1 metres of net sand with an average1 porosity of 3.8% and a permeability of 1.377 mD. 29.4 metres of this is interpreted to be net pay with an average porosity of 3.9%, permeability of 1.383 mD and water saturation of 35%. 1 Averages were calculated without the P1-120/180 and P1-280 due to poor log quality in these intervals

#### 5.2.4 Pacoota P2

The Pacoota P2 was penetrated between 1187-1243 mMDRT, with the current section TD being approximately 10 metres above base P2. The interval is characterised by a higher gamma ray profile. Borehole quality is good with no significant washout observed. The full log suite extends only to 1210 mMDRT and so conclusions can only be drawn on this upper interval. No net pay was calculated to be present in this interval.

#### Please see the following Geological Appendices:

- Appendix C for the Wireline Logs & Survey Data
- Appendix E for the Flow Test Data
- Appendix F for the WM28 Index Sheet
- Appendix H for the WM28 Daily Geological Reports
- Appendix I for the WM28 Formation Evaluation Log