Base metal mineralisation of the Rover field
Northern territory

Pablo Farias
Northern Territory Geological Survey
Department of INDUSTRY, TOURISM AND TRADE

Base metal mineralisation of the Rover field
Northern Territory

Pablo Farias
Project Geologist
Northern Territory Geological Survey

Farias P1, Whelan JA1, Reno BL1, Cross A2, Huston D2, Maas R3, Mernagh T4, Danyushevsky L5

1- Northern Territory Geological Survey
2- Geoscience Australia
3- The University of Melbourne
4- The Australian National University
5- University of Tasmania
Project was supported by the Northern Territory government *Resourcing the Territory* initiative.

Objective:
Understand the *framework geology* and *mineral systems* of the entirely covered Rover field.
Location and geological background

Modified after Fraser et al. 2008
Rover field geological framework

Northern zone
- Positive Bouguer anomaly associated with mafic rocks, andesites and dacites

Central zone
- Stippled magnetic anomalies associated with magnetite-rich horizons
- Intermediate to felsic coherent volcanic rocks with minor siliciclastic facies
- E-W trending foliation

Western zone
- Negative Bouguer anomaly
- Dominated by fractionated felsic volcaniclastic and siliciclastic rocks
- N-S trending shear zones overprinting E-W foliation

Mineral deposits
Rover field geological framework

Central zone

Western zone

Northern zone

TDD01

Western zone

Central zone

Gravity BA
Value μm/s²
1099.68
1593.07

fault
dextral
Mag_trends_lines
sinistral
dykes

GDA2020 MGA Zone 53

A21-241.ai

NORTHERN TERRITORY GOVERNMENT
Lithology and petrology of drillhole TDD001, Bluebush area, Warramunga Province. NTGS Record 2021-006

Photomicrograph of mineralisation from TDD01

1.76 Ga mineralised Bluebush basalt

Apatite associated with mineralisation has a different REE pattern than apatite in non-mineralised basalt
Mineral systems

Magmatic Ni–Cr–Cu at Bluebush (northern zone)
Mineral systems

Base metal mineralisation in Explorer 108 and Curiosity

- Zn-Pb-Ag ± Cu-Au mineralisation with large alteration footprints

- Hosted in ca 1840 Ma fractionated volcanoclastic rocks (Yungkulungu Fm | Ooradidgee Gr)

- Fe-poor sphalerite and galena associated with hematite suggests oxidising conditions (at or above MH buffer zone)

- Low to moderate salinity

- Homogenisation temperatures of ~210°C

- Sulfide $\delta^{34}S \pm 10\%_o$ >> Magmatic-sourced sulfides (leached from host volcanic rocks)
Mineral systems

- **Base metal mineralisation in Explorer 108 and Curiosity (western zone)**

![Diagram of mineral systems and base metal mineralisation in Explorer 108 and Curiosity](image)

Similarities with VHMS systems:

- Mineralisation concentrated in the contact between two volcaniclastic packages
- Exhalites (?) in the contact between the two packages
- Cu-Au stringers below Pb-Zn-Ag semi-massive sulfide mineralisation
- Large alteration footprint (including phengite in hangingwall)
- Evidence of zone refinement (chalcopyrite replacing sphalerite)
- Sub-seafloor sulfide replacement (Cu-sulfides precipitating on detrital pyrite)

- Bornite and chalcocite rims on pyrite grains in host rock
- Cu-sulfide stringer veins below main Pb-Zn zone.
Geochronology

Explorer 108

In-situ Rb-Sr (hydrothermal biotite) 1.78 Ga

VHMS syngenetic phase?

Curiosity

In-situ hydrothermal apatite U-Pb 1.73 - 1.74 Ga

Zircon SHRIMP U-Pb ca 1730 Ma

Epigenetic mineralisation?
Modified after Fraser et al. 2008

1.78 Ga

- VHMS mineralisation (syngenetic phase ?)

1.76 Ga

- MORB basalt + Ni-Cu mineralisation

1.73 Ga

- Rover field base metals remobilisation (epigenetic phase)
Summary

- Deposition of 1.85–1.84 Ga Yungkulungu Fm (Ooradidgee Gr).
- ca 1.78–1.73 Ga Base metal mineralisation in the western zone
- ca 1.76 Ga juvenile magmatism in the northern zone (crustal-scale discontinuity)

Continuation of extensional Murchison Event?
Thank you

Questions?