

# Fire Assay Procedure

# <u>Au-AA21 and Au-AA22</u> Solvent Extraction Trace Gold Analysis

Sample Decomposition:

Fire Assay Fusion (FA-FUS01 and FA-FUS02)

Analytical Method:

Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica, a 6 mg gold-free silver inquart and other reagents as required. The fused sample upon cooling yields a lead button containing the precious metals, which is subsequently cupelled to yield a silver bead containing gold.

The silver bead is digested in nitric acid followed by the addition of hydrochloric acid – The addition of hydrochloric acid forms Aqua-Regia, allowing for the dissolution of gold. The digested solution is cooled and diluted with 3 mL of water. The amount of gold in solution is then determined by Atomic Absorption Spectrometry, with background correction.

| Method<br>Code | Element | Symbol | Units | Sample<br>Weight<br>(g) | Lower<br>Limit | Upper<br>Limit | Default<br>Overlimi<br>t Method |
|----------------|---------|--------|-------|-------------------------|----------------|----------------|---------------------------------|
| Au-AA21        | Gold    | Au     | ppm   | 30                      | 0.002          | 1              | Au-AA25                         |
| Au-AA22        | Gold    | Au     | ppm   | 50                      | 0.002          | 1              | Au-AA26                         |



#### ME-MS41L, ME-MS42L & ME-MS41W – Lowest Detection Limit Super Trace Analysis for Soils and Sediments by Aqua Regia Digestion and ICP-MS/ICP-AES

#### Sample Decomposition:

Aqua Regia (GEO-AR01) or Weak Aqua Regia (GEO-AR01W)

#### **Analytical Method:**

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES)

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

These Super Trace methods combine an aqua regia digestion with ICP-MS instrumentation utilizing collision/reaction cell technologies to provide ultra-low detection limits. Instrumentation has been optimized for long-term ICP-MS signal stability, in particular for samples with high Ca content.

The extremely low detection limits are particularly useful for exploration in soils or sediments, and the methods can also be performed on the clay fraction of soils. (Clay size fraction separation is available using ALS method SCR-CLAY.) This method is not appropriate for mineralized samples.

<u>ME-MS41L</u>: For the ALS standard aqua regia digestion a prepared sample (nominal 0.5g) is digested with 75% aqua regia (3:1 ratio of HCI:HNO<sub>3</sub>) in a graphite heating block.

<u>ME-MS42L</u>: This method is an effective option when analytical results for one or only a few elements are required rather than the full suite of analytes available from the ME-MS41L package. With this method you can create your own package of elements specific to your exploration program. Pricing is by analyte.

Note: Analytes are reported via ICP-MS only therefore reporting ranges and analytes are not identical to those reported from the full package ME-MS41L.

**<u>ME-MS41W</u>**: A "weak" aqua regia option is also available whereby a prepared sample (nominal 0.5g) is digested with a modified aqua regia (1:1 ratio HCI:HNO<sub>3</sub>) in the graphite heating block.

The final solution is then analyzed by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry with results corrected for spectral interelement interferences.

NOTES: An aqua regia leach is an ideal medium for the dissolution of sulphide minerals and for the release of elements adsorbed on clay particles or trapped in manganese and iron oxides and oxyhydroxides. However, it represents only the leachable portion of the particular analyte and will not dissolve significant quantities of the silicate and alumino-silicate minerals. Major refractory minerals such as chromite, columbite – tantalite, cassiterite, rutile, scheelite, wolfram and zircon are only slightly soluble. The solubility of certain elements such as Ba and Sr will depend on the mineralisation in which they occur. The sulphates of these elements (barite and celestite) are basically insoluble, whereas the carbonates are readily soluble.

Coarse and malleable minerals such as native gold and silver, platinum and palladium are not representatively characterized by the small sample size.

Page 1 of 5



## Add On Packages Available for the Full Packages

See following pages for details.

- Rare Earths by ICP-MS (MS41L-REE, MS41W-REE)
- Lead Isotopes by ICP-MS (MS41L-PbIS, MS41W-PbIS)
- Si, Zr and Ti by pXRF (pXRF-34)

List of Reportable Analytes for both the ME-MS41L and ME-MS41W Packages:

| Analyte    | Symbol | Units | Lower Limit | Upper Limit |
|------------|--------|-------|-------------|-------------|
| Gold       | Au     | ppm   | 0.0002      | 25          |
| Silver     | Ag     | ppm   | 0.001       | 100         |
| Aluminum   | AI     | %     | 0.01        | 25          |
| Arsenic    | As     | ppm   | 0.01        | 10000       |
| Boron      | В      | ppm   | 10          | 10000       |
| Barium     | Ba     | ppm   | 0.5         | 10000       |
| Beryllium  | Be     | ppm   | 0.01        | 1000        |
| Bismuth    | Bi     | ppm   | 0.001       | 10000       |
| Calcium    | Ca     | %     | 0.01        | 25          |
| Cadmium    | Cd     | ppm   | 0.001       | 1000        |
| Cerium     | Ce     | ppm   | 0.003       | 500         |
| Cobalt     | Со     | ppm   | 0.001       | 10000       |
| Chromium   | Cr     | ppm   | 0.01        | 10000       |
| Cesium     | Cs     | ppm   | 0.005       | 500         |
| Copper     | Cu     | ppm   | 0.01        | 10000       |
| Iron       | Fe     | %     | 0.001       | 50          |
| Gallium    | Ga     | ppm   | 0.004       | 10000       |
| Germanium  | Ge     | ppm   | 0.005       | 500         |
| Hafnium    | Hf     | ppm   | 0.002       | 500         |
| Mercury    | Hg     | ppm   | 0.004       | 10000       |
| Indium     | In     | ppm   | 0.005       | 500         |
| Potassium  | K      | %     | 0.01        | 10          |
| Lanthanum  | La     | ppm   | 0.002       | 10000       |
| Lithium    | Li     | ppm   | 0.1         | 10000       |
| Magnesium  | Mg     | %     | 0.01        | 25          |
| Manganese  | Mn     | ppm   | 0.1         | 50000       |
| Molybdenum | Мо     | ppm   | 0.01        | 10000       |
| Sodium     | Na     | %     | 0.001       | 10          |
| Niobium    | Nb     | ppm   | 0.002       | 500         |
| Nickel     | Ni     | ppm   | 0.04        | 10000       |
| Phosphorus | Р      | %     | 0.001       | 1           |
| Lead       | Pb     | ppm   | 0.005       | 10000       |
| Palladium  | Pd     | ppm   | 0.001       | 25          |
| Platinum   | Pt     | ppm   | 0.002       | 25          |
| Rubidium   | Rb     | ppm   | 0.005       | 10000       |
| Rhenium    | Re     | ppm   | 0.001       | 50          |
| Sulphur    | S      | %     | 0.01        | 10          |
| Antimony   | Sb     | ppm   | 0.005       | 10000       |
| Scandium   | Sc     | ppm   | 0.005       | 10000       |
| Selenium   | Se     | ppm   | 0.1         | 1000        |
| Tin        | Sn     | ppm   | 0.01        | 500         |

Page 2 of 5



| Analyte   | Symbol | Units | Lower Limit | Upper Limit |
|-----------|--------|-------|-------------|-------------|
| Strontium | Sr     | ppm   | 0.01        | 10000       |
| Tantalum  | Ta     | ppm   | 0.005       | 500         |
| Tellurium | Te     | ppm   | 0.01        | 500         |
| Thorium   | Th     | ppm   | 0.002       | 10000       |
| Titanium  | Ti     | %     | 0.001       | 10          |
| Thallium  | TI     | ppm   | 0.002       | 10000       |
| Uranium   | U      | ppm   | 0.005       | 10000       |
| Vanadium  | V      | ppm   | 0.1         | 10000       |
| Tungsten  | W      | ppm   | 0.001       | 10000       |
| Yttrium   | Y      | ppm   | 0.003       | 500         |
| Zinc      | Zn     | ppm   | 0.1         | 10000       |
| Zirconium | Zr     | ppm   | 0.01        | 500         |

List of Analytes Available via ME-MS42L: Analytes reported are selected by the client.

| Analyte    | Symbol | Units | Lower Limit | Upper Limit |
|------------|--------|-------|-------------|-------------|
| Silver     | Ag     | ppm   | 0.001       | 100         |
| Arsenic    | As     | ppm   | 0.01        | 250         |
| Gold       | Au     | ppm   | 0.0002      | 100         |
| Barium     | Ba     | ppm   | 0.5         | 250         |
| Beryllium  | Ве     | ppm   | 0.01        | 100         |
| Bismuth    | Bi     | ppm   | 0.001       | 250         |
| Calcium    | Ca     | %     | 0.01        | 0.025       |
| Cadmium    | Cd     | ppm   | 0.001       | 250         |
| Cerium     | Ce     | ppm   | 0.003       | 500         |
| Cobalt     | Со     | ppm   | 0.001       | 250         |
| Chromium   | Cr     | ppm   | 0.01        | 250         |
| Cesium     | Cs     | ppm   | 0.005       | 500         |
| Copper     | Cu     | ppm   | 0.01        | 250         |
| Iron       | Fe     | %     | 0.001       | 0.025       |
| Gallium    | Ga     | ppm   | 0.004       | 250         |
| Germanium  | Ge     | ppm   | 0.005       | 500         |
| Hafnium    | Hf     | ppm   | 0.002       | 500         |
| Mercury    | Hg     | ppm   | 0.004       | 250         |
| Indium     | In     | ppm   | 0.005       | 500         |
| Lanthanum  | La     | ppm   | 0.002       | 250         |
| Lithium    | Li     | ppm   | 0.1         | 500         |
| Manganese  | Mn     | ppm   | 0.1         | 250         |
| Molybdenum | Мо     | ppm   | 0.01        | 250         |
| Niobium    | Nb     | ppm   | 0.002       | 500         |
| Nickel     | Ni     | ppm   | 0.04        | 250         |
| Lead       | Pb     | ppm   | 0.005       | 250         |
| Palladium  | Pd     | ppm   | 0.001       | 100         |
| Platinum   | Pt     | ppm   | 0.002       | 100         |
| Rubidium   | Rb     | ppm   | 0.005       | 500         |
| Rhenium    | Re     | ppm   | 0.001       | 50          |
| Antimony   | Sb     | ppm   | 0.005       | 250         |
| Scandium   | Sc     | ppm   | 0.005       | 250         |
| Selenium   | Se     | ppm   | 0.1         | 250         |

Page 3 of 5



| Analyte   | Symbol | Units | Lower Limit | Upper Limit |
|-----------|--------|-------|-------------|-------------|
| Tin       | Sn     | ppm   | 0.01        | 500         |
| Strontium | Sr     | ppm   | 0.01        | 250         |
| Tantalum  | Ta     | ppm   | 0.005       | 500         |
| Tellurium | Те     | ppm   | 0.01        | 500         |
| Thorium   | Th     | ppm   | 0.002       | 500         |
| Titanium  | Ti     | %     | 0.001       | 0.025       |
| Thallium  | TI     | ppm   | 0.002       | 250         |
| Uranium   | U      | ppm   | 0.005       | 10000       |
| Vanadium  | V      | ppm   | 0.1         | 250         |
| Tungsten  | W      | ppm   | 0.001       | 250         |
| Yttrium   | Y      | ppm   | 0.003       | 500         |
| Zinc      | Zn     | ppm   | 0.1         | 250         |
| Zirconium | Zr     | ppm   | 0.01        | 500         |

# Add-on packages available with ME-MS41L or ME-MS41W

#### Rare Earth Element Add-On: MS41L-REE/MS41W-REE

The full suite of rare earth elements may be added to the method on request. Ce and La are reported in the standard package.

NOTE: Many REE-bearing minerals are not fully dissolved in an aqua regia digestion.

List of 12 Reportable Rare Earth Elements and Concentrations:

| Analyte      | Symbol | Units | Lower Limit | Upper Limit |
|--------------|--------|-------|-------------|-------------|
| Dysprosium   | Dy     | ppm   | 0.002       | 1000        |
| Erbium       | Er     | ppm   | 0.002       | 1000        |
| Europium     | Eu     | ppm   | 0.002       | 1000        |
| Gadolinium   | Gd     | ppm   | 0.002       | 1000        |
| Holmium      | Но     | ppm   | 0.001       | 1000        |
| Lutetium     | Lu     | ppm   | 0.001       | 1000        |
| Praseodymium | Pr     | ppm   | 0.002       | 1000        |
| Neodymium    | Nd     | ppm   | 0.002       | 1000        |
| Samarium     | Sm     | ppm   | 0.002       | 1000        |
| Terbium      | Tb     | ppm   | 0.001       | 1000        |
| Thulium      | Tm     | ppm   | 0.001       | 1000        |
| Ytterbium    | Yb     | ppm   | 0.002       | 1000        |



## Pb Isotope Add-On: MS41L-PbIS/MS41W-PbIS

Pb isotope concentrations may also be added on request. Pb isotopes are mass bias corrected; no correction for <sup>204</sup>Hg interference on <sup>204</sup>Pb is performed.

List of 4 Reportable Lead Isotope Concentrations:

| Analyte  | Symbol            | Units | Lower Limit | Upper Limit |
|----------|-------------------|-------|-------------|-------------|
| Lead 204 | <sup>204</sup> Pb | ppm   | 0.005       | 10000       |
| Lead 206 | <sup>206</sup> Pb | ppm   | 0.005       | 10000       |
| Lead 207 | <sup>207</sup> Pb | ppm   | 0.005       | 10000       |
| Lead 208 | <sup>208</sup> Pb | ppm   | 0.005       | 10000       |

#### Si and Zr Add-On: pXRF-34

For lithogeochemical applications, Silicon and Zirconium may be obtained as a cost-effective addon package using portable XRF analysis on sample pulps.

List of Elements & Concentrations:

| Analyte   | Symbol | Units | Lower Limit | Upper Limit |
|-----------|--------|-------|-------------|-------------|
| Silicon   | Si     | %     | 0.05        | 47          |
| Zirconium | Zr     | ppm   | 1           | 10000       |
| Titanium  | Ti     | %     | 0.1         | 60          |



# <u>ME-MS61r</u> (<u>REE Add-on package to ME-MS61)\*</u> <u>Ultra-Trace Level Method Using ICP-MS and ICP-AES</u>

#### Sample Decomposition:

HF-HNO<sub>3</sub>-HClO<sub>4</sub> acid digestion, HCl leach (GEO-4A01)

#### Analytical Method:

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES) Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

A prepared sample (0.25 g) is digested with perchloric, nitric, hydrofluoric and hydrochloric acids. The residue is topped up with dilute hydrochloric acid and analyzed by inductively coupled plasmaatomic emission spectrometry. Following this analysis, the results are reviewed for high concentrations of bismuth, mercury, molybdenum, silver and tungsten and diluted accordingly. Samples meeting this criterion are then analyzed by inductively coupled plasmamass spectrometry. Results are corrected for spectral interelement interferences.


**NOTE**: Four acid digestions are able to dissolve most minerals; however, although the term "*near-total*" is used, depending on the sample matrix, not all elements are quantitatively extracted.

Results for the additional rare earth elements will represent the acid leachable portion of the rare earth elements and as such, cannot be used, for instance to do a chondrite plot.

| Element   | Symbol | Units | Lower Limit | Upper Limit |
|-----------|--------|-------|-------------|-------------|
| Silver    | Ag     | ppm   | 0.01        | 100         |
| Aluminum  | Al     | %     | 0.01        | 50          |
| Arsenic   | As     | ppm   | 0.2         | 10 000      |
| Barium    | Ba     | ppm   | 10          | 10 000      |
| Beryllium | Ве     | ppm   | 0.05        | 1 000       |
| Bismuth   | Bi     | ppm   | 0.01        | 10 000      |
| Calcium   | Ca     | %     | 0.01        | 50          |

Revision 01.00 Sep 27, 2006






| Element     | Symbol | Units | Lower Limit | Upper Limit |
|-------------|--------|-------|-------------|-------------|
| Cadmium     | Cd     | ppm   | 0.02        | 1 000       |
| Cerium      | Ce     | ppm   | 0.01        | 500         |
| Cobalt      | Со     | ppm   | 0.1         | 10 000      |
| Chromium    | Cr     | ppm   | 1           | 10 000      |
| Cesium      | Cs     | ppm   | 0.05        | 500         |
| Copper      | Cu     | ppm   | 0.2         | 10 000      |
| Iron        | Fe     | %     | 0.01        | 50          |
| Gallium     | Ga     | ppm   | 0.05        | 10 000      |
| Germanium   | Ge     | ppm   | 0.05        | 500         |
| Hafnium     | Hf     | ppm   | 0.1         | 500         |
| Indium      | In     | ppm   | 0.005       | 500         |
| Potassium   | К      | %     | 0.01        | 10          |
| Lanthanum   | La     | ppm   | 0.5         | 10 000      |
| Lithium     | Li     | ppm   | 0.2         | 10 000      |
| Magnesium   | Mg     | %     | 0.01        | 50          |
| Manganese   | Mn     | ppm   | 5           | 100 000     |
| Molybdenum  | Мо     | ppm   | 0.05        | 10 000      |
| Sodium      | Na     | %     | 0.01        | 10          |
| Niobium     | Nb     | ppm   | 0.1         | 500         |
| Nickel      | Ni     | ppm   | 0.2         | 10 000      |
| Phosphorous | Р      | ppm   | 10          | 10 000      |
| Lead        | Pb     | ppm   | 0.5         | 10 000      |
| Rubidium    | Rb     | ppm   | 0.1         | 10 000      |
| Rhenium     | Re     | ppm   | 0.002       | 50          |
| Sulphur     | S      | %     | 0.01        | 10          |
| Antimony    | Sb     | ppm   | 0.05        | 10 000      |
| Scandium    | Sc     | ppm   | 0.1         | 10 000      |

Revision 01.00 Sep 27, 2006





| Element      | Symbol | Units | Lower Limit | Upper Limit |
|--------------|--------|-------|-------------|-------------|
| Selenium     | Se     | ppm   | 1           | 1 000       |
| Tin          | Sn     | ppm   | 0.2         | 500         |
| Strontium    | Sr     | ppm   | 0.2         | 10 000      |
| Tantalum     | Ta     | ppm   | 0.05        | 100         |
| Tellurium    | Te     | ppm   | 0.05        | 500         |
| Thorium      | Th     | ppm   | 0.2         | 10 000      |
| Titanium     | Ti     | %     | 0.005       | 10          |
| Thallium     | TI     | ppm   | 0.02        | 10 000      |
| Uranium      | U      | ppm   | 0.1         | 10 000      |
| Vanadium     | V      | ppm   | 1           | 10 000      |
| Tungsten     | W      | ppm   | 0.1         | 10 000      |
| Yttrium      | Y      | ppm   | 0.1         | 500         |
| Zinc         | Zn     | ppm   | 2           | 10 000      |
| Zirconium    | Zr     | ppm   | 0.5         | 500         |
| Dysprosium   | Dy     | ppm   | 0.05        | 1 000       |
| Erbium       | Er     | ppm   | 0.03        | 1 000       |
| Europium     | Eu     | ppm   | 0.03        | 1 000       |
| Gadolinium   | Gd     | ppm   | 0.05        | 1 000       |
| Holmium      | Но     | ppm   | 0.01        | 1 000       |
| Lutetium     | Lu     | ppm   | 0.01        | 1 000       |
| Neodymium    | Nd     | ppm   | 0.1         | 1 000       |
| Praseodymium | Pr     | ppm   | 0.03        | 1 000       |
| Samarium     | Sm     | ppm   | 0.03        | 1 000       |
| Terbium      | Tb     | ppm   | 0.01        | 1 000       |
| Thulium      | Tm     | ppm   | 0.01        | 1 000       |
| Ytterbium    | Yb     | ppm   | 0.03        | 1 000       |

Revision 01.00 Sep 27, 2006





# Whole Rock Geochemistry

# ME-ICP06 and OA-GRA05 Analysis of major oxides by ICP-AES

# ME-ICP06

#### Sample Decomposition:

Lithium Metaborate/Lithium Tetraborate (LiBO<sub>2</sub>/Li<sub>2</sub>B<sub>4</sub>O<sub>2</sub>) Fusion\* (FUS-LI01)

#### Analytical Method:

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES)

A prepared sample (0.100 g) is added to lithium metaborate/lithium tetraborate flux, mixed well and fused in a furnace at 1000°C. The resulting melt is then cooled and dissolved in 100 mL of 4% nitric acid/2% hydrochloric acid. This solution is then analyzed by ICP-AES and the results are corrected for spectral inter-element interferences. Oxide concentration is calculated from the determined elemental concentration and the result is reported in that format.

| Element    | Symbol                         | Units | Lower<br>Limit | Upper<br>Limit |
|------------|--------------------------------|-------|----------------|----------------|
| Aluminum   | Al <sub>2</sub> O <sub>3</sub> | %     | 0.01           | 100            |
| Barium     | BaO                            | %     | 0.01           | 100            |
| Calcium    | CaO                            | %     | 0.01           | 100            |
| Chromium   | Cr <sub>2</sub> O <sub>3</sub> | %     | 0.01           | 100            |
| Iron       | Fe <sub>2</sub> O <sub>3</sub> | %     | 0.01           | 100            |
| Magnesium  | MgO                            | %     | 0.01           | 100            |
| Manganese  | MnO                            | %     | 0.01           | 100            |
| Phosphorus | $P_2O_5$                       | %     | 0.01           | 100            |
| Potassium  | K <sub>2</sub> O               | %     | 0.01           | 100            |
| Silicon    | SiO <sub>2</sub>               | %     | 0.01           | 100            |
| Sodium     | Na <sub>2</sub> O              | %     | 0.01           | 100            |





# Whole Rock Geochemistry

| Element   | Symbol           | Units | Lower<br>Limit | Upper<br>Limit |
|-----------|------------------|-------|----------------|----------------|
| Strontium | SrO              | %     | 0.01           | 100            |
| Titanium  | TiO <sub>2</sub> | %     | 0.01           | 100            |

\*Note: For samples that are high in sulphides, we may substitute a peroxide fusion in order to obtain better results.

# OA-GRA05, ME-GRA05

#### Sample Decomposition: Analytical Method:

Thermal decomposition Furnace or TGA (OA-GRA05 or ME-GRA05) Gravimetric

If required, the total oxide content is determined from the ICP analyte concentrations and loss on Ignition (L.O.I.) values. A prepared sample (1.0 g) is placed in an oven at 1000°C for one hour, cooled and then weighed. The percent loss on ignition is calculated from the difference in weight.

| Method<br>Code | Parameter                     | Symbol   | Units | Lower<br>Limit | Upper<br>Limit |
|----------------|-------------------------------|----------|-------|----------------|----------------|
| OA-GRA05       | Loss on Ignition<br>(Furnace) | LOI      | %     | 0.01           | 100            |
| ME-GRA05       | Loss on Ignition              | Moisture | %     | 0.01           | 100            |
| ME-ORAUS       | (TGA)                         | LOI      | %     | 0.01           | 100            |

Revision 07.00 January 10<sup>th</sup>, 2014

RIGHT SOLUTIONS RIGHT PARTNER

www.alsglobal.com





Environmental Tribology Pharmaceutical Industrial

Food &



# **Geochemical Procedure**

# **ME-MS81** Lithogeochemistry

Coal

#### **Sample Decomposition:**

Lithium Borate (LiBO, /Li, B, O, ) Fusion (FUS-LI01)\*

**Analytical Method:** 

Inductively Coupled Plasma - Mass Spectroscopy (ICP - MS)

A prepared sample (0.100 g) is added to lithium metaborate/lithium tetraborate flux, mixed well and fused in a furnace at 1025°C. The resulting melt is then cooled and dissolved in an acid mixture containing nitric, hydrochloric and hydrofluoric acids. This solution is then analyzed by inductively coupled plasma - mass spectrometry.

| Element    | Symbol | Unit | Lower Limit | Upper Limit |
|------------|--------|------|-------------|-------------|
| Barium     | Ba     | ppm  | 0.5         | 10000       |
| Cerium     | Ce     | ppm  | 0.1         | 10000       |
| Chromium   | Cr     | ppm  | 10          | 10000       |
| Cesium     | Cs     | ppm  | 0.01        | 10000       |
| Dysprosium | Dy     | ppm  | 0.05        | 1000        |
| Erbium     | Er     | ppm  | 0.03        | 1000        |
| Europium   | Eu     | ppm  | 0.03        | 1000        |
| Gallium    | Ga     | ppm  | 0.1         | 1000        |
| Gadolinium | Gd     | ppm  | 0.05        | 1000        |
| Hafnium    | Hf     | ppm  | 0.2         | 10000       |
| Holmium    | Но     | ppm  | 0.01        | 1000        |
| Lanthanum  | La     | ppm  | 0.1         | 10000       |
| Lutetium   | Lu     | ppm  | 0.01        | 1000        |
| Niobium    | Nb     | ppm  | 0.2         | 2500        |



#### Food & Environmental Tribology Pharmaceutical Industrial



# **Geochemical Procedure**

| Element      | Symbol | Unit | Lower Limit | Upper Limit |
|--------------|--------|------|-------------|-------------|
| Neodymium    | Nd     | ppm  | 0.1         | 10000       |
| Praseodymium | Pr     | ppm  | 0.03        | 1000        |
| Rubidium     | Rb     | ppm  | 0.2         | 10000       |
| Samarium     | Sm     | ppm  | 0.03        | 1000        |
| Tin          | Sn     | ppm  | 1           | 10000       |
| Strontium    | Sr     | ppm  | 0.1         | 10000       |
| Tantalum     | Та     | ppm  | 0.1         | 2500        |
| Terbium      | Tb     | ppm  | 0.01        | 1000        |
| Thorium      | Th     | ppm  | 0.05        | 1000        |
| Thullium     | Tm     | ppm  | 0.01        | 1000        |
| Uranium      | U      | ppm  | 0.05        | 1000        |
| Vanadium     | V      | ppm  | 5           | 10000       |
| Tungsten     | W      | ppm  | 1           | 10000       |
| Yttrium      | Y      | ppm  | 0.1         | 10000       |
| Ytterbium    | Yb     | ppm  | 0.03        | 1000        |
| Zirconium    | Zr     | ppm  | 2           | 10000       |

Coal

Minerals

\*Note: Minerals that may not recover fully using the lithium borate fusion include zircon, some metal oxides, some rare-earth phosphates and some sulphides. Basemetals also do not fully recover using this method.

Basemetals determined by either aqua regia or 4-acid digestion and ICP-AES may be added to the ME-MS81 package. See following page.





# **Addition of Basemetals**

Sample Decomposition:Aqua Regia (GEO-AR01) or 4-Acid (GEO-4ACID)Analytical Method:Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES)

The lithium borate fusion is not the preferred method for the determination of base metals. Many sulfides and some metal oxides are only partially decomposed by the borate fusion and some elements such as cadmium and zinc can be volatilized.

Base metal and additional elements more appropriately analysed by acid digestion can be reported with ME-MS81 by either an aqua regia (ME-AQ81) or four acid digestion (ME-4ACD81). The four acid digestion is preferred when the targets include more resistive mineralization such as that associated with nickel and cobalt. Mercury is only offered with the aqua regia digestion.

#### ME-4ACD81

| Element    | Symbol | Units | Lower Limit | Upper Limit |
|------------|--------|-------|-------------|-------------|
| Silver     | Ag     | ppm   | 0.5         | 100         |
| Arsenic    | As     | ppm   | 5           | 10000       |
| Cadmium    | Cd     | ppm   | 0.5         | 1000        |
| Cobalt     | Со     | ppm   | 1           | 10000       |
| Copper     | Cu     | ppm   | 1           | 10000       |
| Lithium    | Li     | ppm   | 10          | 10000       |
| Molybdenum | Мо     | ppm   | 1           | 10000       |
| Nickel     | Ni     | ppm   | 1           | 10000       |
| Lead       | Pb     | ppm   | 2           | 10000       |
| Scandium   | Sc     | ppm   | 1           | 10000       |
| Thallium   | ΤI     | ppm   | 10          | 10000       |
| Zinc       | Zn     | ppm   | 2           | 10000       |

Revision 10.00 August 2017



## ME-AQ81

Note: Mercury is only available via the aqua regia digestion

| Element    | Symbol | Units | Lower Limit | Upper Limit |
|------------|--------|-------|-------------|-------------|
| Silver     | Ag     | ppm   | 0.5         | 100         |
| Arsenic    | As     | ppm   | 5           | 10000       |
| Cadmium    | Cd     | ppm   | 0.5         | 1000        |
| Cobalt     | Со     | ppm   | 1           | 10000       |
| Copper     | Cu     | ppm   | 1           | 10000       |
| Mercury    | Hg     | ppm   | 1           | 10000       |
| Molybdenum | Мо     | ppm   | 1           | 10000       |
| Nickel     | Ni     | ppm   | 1           | 10000       |
| Lead       | Pb     | ppm   | 2           | 10000       |
| Zinc       | Zn     | ppm   | 2           | 10000       |

Revision 10.00 August 2017

**RIGHT SOLUTIONS** RIGHT PARTNER

www.alsglobal.com



# **C-IR07 & S-IR08 – Evaluation of Ores and High Grade Materials**

#### **Sample Decomposition:**

Leco Furnace

#### **Analytical Method:**

Infrared Spectroscopy

The sample is analyzed for total Sulphur and/or carbon using a Leco analyzer. While a stream of oxygen passes through a prepared sample (0.05 to 0.6g), it is heated in a furnace to approximately 1350°C. Sulphur dioxide and carbon dioxide released from the sample are measured by an infrared detection system and the total Sulphur and/or carbon result is provided.

| Method Code | Element | Symbol | Units | Lower Limit | Upper Limit |
|-------------|---------|--------|-------|-------------|-------------|
| C-IR07      | Carbon  | С      | %     | 0.01        | 50          |
| S-IR08      | Sulphur | S      | %     | 0.01        | 50          |
| S-IR08t     | Sulphur | S      | %     | 0.01        | 100         |



# ME-OG46- Ore Grade Elements by Aqua Regia Digestion Using Conventional ICP-AES Analysis

#### **Sample Decomposition:**

HNO<sub>3</sub> - HCl Digestion (ASY-AR01)

#### **Analytical Method:**

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES)

Assays for the evaluation of ores and high-grade materials are optimized for accuracy and precision at high concentrations. Ultra-high concentration samples (> 15 -20%) may require the use of methods such as titrimetric and gravimetric analysis, in order to achieve maximum accuracy.

A prepared sample (0.4 g) is digested with concentrated nitric acid for 90 minutes in a graphite heating block. The resulting solution is diluted with concentrated hydrochloric acid before cooling to room temperature. The samples are diluted in a volumetric flask (100 or 250) mL with demineralized water and analyzed using atomic absorption spectrometry.

\*NOTE: ICP-AES is the default finish technique for ME-OG46. However, under some conditions and at the discretion of the laboratory an AA finish may be substituted.

| Element    | Symbol | Units | Lower Limit | Upper Limit |
|------------|--------|-------|-------------|-------------|
| Silver     | Ag     | ppm   | 1           | 1500        |
| Arsenic    | As     | %     | 0.01        | 60          |
| Cadmium    | Cd     | %     | 0.001       | 10          |
| Cobalt     | Со     | %     | 0.0005      | 30          |
| Copper     | Cu     | %     | 0.001       | 50          |
| Iron       | Fe     | %     | 0.01        | 100         |
| Manganese  | Mn     | %     | 0.01        | 60          |
| Molybdenum | Мо     | %     | 0.001       | 10          |
| Nickel     | Ni     | %     | 0.001       | 30          |
| Lead       | Pb     | %     | 0.001       | 20          |
| Sulphur    | S      | %     | 0.01        | 10          |
| Zinc       | Zn     | %     | 0.001       | 30          |