Kalkarindji through the geophysical lens

Structural characteristics of the Kalkarindji basalt from non-seismic geophysical data

Jelena Markov | 20th April 2021

Australia's National Science Agency

Acknowledgment

Collaboration with **Ernest Swierczek** (formerly CSIRO, now BHP) and **Clive Foss** (CSIRO) with scientific contributions from **Claudio Delle Piane** (CSIRO) and **Mohinudeen Faiz** (CSIRO)

Talk outline

- Data, processing and interpretation:
 - Tempest GALEI inversion
 - Bell Geospace FTG curvature analysis
 - Aeromagnetic edge enhancement, 3D modelling
- Spatial propagation, thickness of the KV, thickness of the overlaying sediments
- Modelling of low magnetisation zones in the KV

c.511 Ma Early – Middle Cambrian

Fig. 1. (a) Sketch map showing the distribution and constituent suites of the Kalkarindji continental flood basalt province

Bryant D Ware, Fred Jourdan, Renaud Merle, Massimo Chiaradia, Kyle Hodges, The Kalkarindji Large Igneous Province, Australia: Petrogenesis of the Oldest and Most Compositionally Homogenous Province of the Phanerozoic, Journal of Petrology, Volume 59, Issue 4, April 2018, Pages 635– 665, <u>https://doi.org/10.1093/petrology/egy040</u>

Available data and resolution limitations

Available data	Line spacing (m)	Sensor height (m)	Line direction
Aeromagnetic	400*	80-100 m	Various*
Ground gravity	N/A	Ground level	N/A
FTG	500 - 2000	80 (draped survey)	EW
Tempest	20000	120	NS (in NT)

Available data	Resolution along the lines	Resolution across the lines (grid)	Depth limit
Aeromagnetic	~20 m	400 m	Geology dependent/survey design
Ground gravity	N/A	N/A	Geology dependent/survey design
FTG	~20 m	1000 - 4000 m	Geology dependent/survey design
Tempest	~20 m	40 000*	~ few hundreds of meters

2D Seismic lines* (> 9000 km), ~ 25 wells with geophysical logs

Basalts of the Kalkarindji Suite

Ground gravity and full tensor gravity (FTG) gradiometry data

Tempest data – availability

Aeromagnetic data availability

CSIR

Enhancement of aeromagnetic data

Conductivity profile mapping top of the KV

Curvature Analysis

 Synthetic model – 1km cube, +1 g/cc (left) and -1 g/cc contrast compared to 2.67 g/cc background. Cubes are separated by 1 km and depth to top is 100 m

Figure 5. Gaussian curvature and its zero contour (black) over the synthetic model cubes shown by the white outlines (denser body on left). Values range from $-9.9 \times 10^{-9} \text{ m}^{-2}$ (blue) to 23.2 x 10^{-9} m^{-2} (pink).

Figure 2. . Mean curvature over the synthetic model cubes shown by the white outlines (denser body on left). Values range from $-1.6 \times 10^{-7} m^{-1}$ (blue) to $1.6 \times 10^{-7} m^{-1}$ (pink).

Figure 6. AGG Geometry Map over the synthetic model cubes shown by the white outlines (denser body on left). Values range from -1.0 (blue) to 1.0 (red).

$$K_{g} = \frac{T_{xx}T_{yy} - T_{xy}^{2}}{g^{2}} \qquad K_{m} = -\frac{T_{xx} + T_{yy}}{2g} = -\frac{T_{zz}}{2g} \qquad SI = \frac{2}{\pi}tan^{-1}\frac{-T_{xx} - T_{yy}}{2\sqrt{T_{xy}^{2}} + T_{uv}^{2}}$$

Figures from Cevallos Carlos, Kovac Peter, Lowe Sharon (2013) Application of curvatures and Poisson's relation to airborne gravity gradient data in oil exploration. ASEG Extended Abstracts **2013**, 1-4.

Formulas from Li Xiong (2015) Curvature of geometric surface and curvature of gravity and magnetic anomalies. Geophysics, vol.80, no.1, G15-G26.

FTG Data – Mean and Gaussian Curvatures

Km – location of mass distribution, negative *Km* positive density contrast *Kg* – zero contour of the Gaussian curvature lithological boundaries

FTG Data – Shape Index Analysis

Magnetic Anomalies over Holes in a Volcanic Sheet

Clive Foss & Tania Dhu (2016) The Bark without a Dog - Magnetic Anomalies over Holes in a Volcanic Sheet in the greater McArthur Basin, NT, ASEG Extended Abstracts, 2016:1, 1-5, DOI:10.1071/ASEG2016ab276

Integrated Interpretation

Low magnetisation zones in the western Beetaloo

Susceptibility = 0.05 SI Depth to top ~ 200 m to 300 m Thickness ~ 50 - 75 m

Low magnetisation zones correlation with faults

Vertical exaggeration x 20

Low magnetisation zones in <u>oceanic</u> basalts

• Hydrothermal fluid circulation?

Szitkar, F., Dyment, J., Choi, Y., and Fouquet, Y. (2014), What causes low magnetization at basalt-hosted hydrothermal sites? Insights from inactive site Krasnov (MAR 16°38'N), *Geochem. Geophys. Geosyst.*, 15, 1441–1451, doi:10.1002/2014GC005284.

(a, left) Perspective view of the high-resolution multibeam bathymetry and (right) reduced-to-the-pole magnetic anomaly in the Krasnov hydrothermal area. (b) Perspective view of the base of the overlying nonmagnetic layer (left; thick lines on the block sides mark the base of the magnetic layer) and (right) the corresponding magnetic anomaly.

 Doubrovine, P. V., and J. A. Tarduno (2006), Alteration and self-reversal in oceanic basalts, J. Geophys. Res., 111, B12S30, doi:10.1029/2006JB004468.

Conclusion

- Aeromagnetic data provides insight into faulting occurring in the KV and maps the edges of the unit
- We highlighted a potential damage zones in the basalt sheet which might be result of faulting or hydrothermal activity(?)
- FTG provided information on the subsurface density variation, most likely under the KV
- Conductivity profiles can provide information on the top of the KV, where the KV is shallower then ~400 m (NW in the Eastern Beetaloo)

A snapshot of our activities

CSIRO

Linking properties and processes across scales through integration of microstructural/geochemical investigations with geophysical measurements to reveal patterns between depositional, diagenetic, deformational processes and rock properties distribution in sedimentary basins.

Thank you!

CSIRO Deep Earth Imaging

Jelena Markov Research Scientist

+61 8 6436 8829

<u>Jelena.markov@csiro.au</u> research.csiro.au/dei/team/jmarkov/

Australia's National Science Agency

