Classification (Atterberg Limits)

TEST IN ACCORDANCE WITH AS 1289

Client:	Minemakers Ltd.	NATA Report No.: R13513
Address:	Level 2, 34 Colin St	Job No.: 112312.01
	West Perth	
Project:	Wonarah - BFS	Location: NT

Τ.....

Register Number	Sample Description		Liquid Limit (%)	Plastic Limit (%)	A CONTRACTOR OF THE	Plasticity Index (%)	Linear Shrinkage (%)	Sample Curled (CU) / Crumbled (CR)
15913	APH Slimes		60	21		39		
16013	MPH Slimes		45	25		20		
🗵 Sample	d by ATC Williams Pt provided by the clien ts relate only to the	nt	ance with AS	1289.1.2.1				
 □ Liquid L ⊠ Liquid L ⊠ Plastic ⊠ Plastici □ Linear S 	Image: Statistic of the field of the f							
Sample Prep	paration:							
□ Natural □ Wet Sie		Air Dried Dry Sieved	Over Unsie	Dried eved		Unknown		
NATA ACCREDITED LABORATORY NUMBER: 3372 This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 Approved Signatory								

ATC Williams Pty Ltd 19 Beach Avenue, Mordialloc Vic 3915 T +61 3 9590 9222 F +61 3 9590 9228 melb@atcwilliams.com.au www.atcwilliams.com.au ABN 64 005 931 288 ATC Williams unites the companies of Australian Tailings Consultants and MPA Williams & Associates

Determination of the Soil Particle Density of a Soil

TEST IN ACCORDANCE WITH AS 1289.3.5.1

Client:	Minemakers Ltd	NATA Report No.: R13613
Address:	Level 2, 34 Colin St	Job No.: 112312.01
	West Perth	
Project:	Wonarah - BFS	Location: NT

Register Number	Sample Description	Test Temperature (°C)	% of Sample >2.36 mm	Particle Density (g/cm ³)		
15913	APH Slimes	21	0	2.82		
16013	MPH Slimes	21	0	2.87		
Notes:	 Sampled by ATC Williams Pty Ltd in accordance with AS 1289.1.2.1 Sample provided by the client * apparent average soil particle density - particle size less than 2.36 mm X = apparent average soil particle density - particle size greater than 2.36 mm # = soil particle density of the total sample The test results relate only to the items tested. 					
ACCREDITED FOR TECHNICAL COMPETENCE	Approved Signatory					

ATC Williams Pty Ltd 19 Beach Avenue, Mordialloc Vic 3915 T +61 3 9590 9222 F +61 3 9590 9228 melb@atcwilliams.com.au www.atcwilliams.com.au ABN 64 005 931 288 ATC Williams unites the companies of Australian Tailings Consultants and MPA Williams & Associates

Partic	cle Size Dist	ribution F	Result	S					
TEST IN A	ACCORDANCE WITH	AS 1289		5					
	nod 3.6.1 Drying Method 2.1		Method 3	3.6.3			ATC	GROUND	iam ED IN DESIG
Client:	Minemakers Ltd.					NATA Re	port No.:	R13713	
ddress:	Level 2, 34 Colin St West Perth	t,				Job No.:		112312.	01
roject:	Wonarah -BFS					Register Location		15913 NT	
imple Desc	cription: APH Slimes Sar	nple				Borehole No:		Test Pit Depth:	
Dispersion	Method used: Mechanical	Stirrer for 1 minute		Hydro	meter Typ	e Used: ASTN	152H		
] Sample Note 1: The	d by ATC Williams Pty Ltd ir e sample was oven-drìed du	accordance with AS a uring sample preparati	1289.1.2.1 Cl ion and not a	ause 6.5.1 air-dried as	stated in A	☑ S AS 1289.3.6.3	ample provide	d by the Clie	nt
stirrer ra in AS 128	The sample was mixed with ther than inverting the cyli 39.3.6.3. result relates only to the it	inder as described		Austra	alian Star	ndard Sieve	e Aperture:	5 (mm)	
100 -			0.038	0.150	0.300 0.425 0.600	1.18 2.36	4.75 6.70 9.50	13.2 19.0 26.5 37.5	53.0 75.0 100
90				1					
80		A A A A A A A A A A A A A A A A A A A				Sieve Analys		rometer Data 1m) % Passing	
70		1				100.0 75.0 53.0	- 0.062 - 0.044 - 0.03	27 99.8 14 99.8	
260 -		1				37.5 26.5 19.0	- 0.02 - 0.015 - 0.015	100.1 2 93.5	
60 50	/					13.2 9.50 6.70	- 0.005	0 84.0 8 77.6	
40	\$					4.75 2.36 1.18	- 0.002	9 65.4 4 59.1	
40 30	-					0.600 0.425 0.300	- 0.000		
20						0.150 0.075	100.0	•	
10						0.038			
0.000	0.001	0.01	Particle	0.1 e Size (n	ווי וווי)	1	10		100
	CLAY	SILT			SAND		GRAV		COBBLES
	0.00	Fine Medium	Coarse 0.06	Fine 0.2	Medium 0.6	Coarse 2	Fine Mediu	ım Coarse	60
	This docum Accredited Approved S	gnatory: Peter L	ordance wi h ISO/IEC 1	th NATA's	accredita	ition require		29 th April.	2013
	Laboratory 19 Beach Ave	enue, Mordialloc Vic) 9222 F +61 3 9590 93							

melb@atcwilliams.com.au www.atcwilliams.com.au ABN 64 005 931 288

Form RSN 004.14 (PSD)

Form RSN 004.14 (PSD) Date of Issue: April 2011

Particle Size Distribution Results

TEST IN ACCORDANCE WITH AS 1289

Method 3.6.3

☑ Oven Drying Method 2.1.1

✓ Method 3.6.1

ATC Williams

Clie	nt:	Minemal	kers Ltd.								NATA	Report	: No.:	R13813	
Add	ress:		34 Colin St,								Job No	o.:		112312.()1
Pro <u></u>	ject:	West Per Wonarah						····			Registe Locatio		:	16013 NT	
Sample Description: MPH Slimes Sample No:							Borehole No:	e 🗌		Test Pit Depth:					
	Dispersion Method used: Mechanical Stirrer for 1 minute Hydrometer Type Used: ASTM 152H Sampled by ATC Williams Pty Ltd in accordance with AS 1289.1.2.1 Clause 6.5.1 Image: Sample provided by the Client Note 1: The sample was oven-dried during sample preparation and not air-dried as stated in AS 1289.3.6.3								t						
s i	tirrer ra n AS 128	ther than inv 19.3.6.3.	vas mixed with verting the cyline s only to the iter	der as de	er type scribed				lian S	tan	dard Sie	eve Ape	ertures	5 (mm)	
	100	1 10 10 10 10 10 10 10 10 10 10 10 10 10				0.038		0.150	0.300	0.600	1.18	2.36	6.70 9.50	19.0 26.5 37.5	75.0
Percentage Passing	90 80 70 60 50 40 30 20 10 0,000	D1	0.001		0.01		0.1				Sieve A Size (n 75, 53, 6 26, 5 19, 2 13, 2 9, 5 6, 77 4, 75 2, 3 6, 77 4, 75 2, 3 6, 77 4, 75 2, 3 6, 77 4, 75 2, 3 6, 18 4, 19 6, 60 0, 70 0, 60 0, 70 0,	0	ing Size (rr 0.040 0.022 0.020 0.014 0.010 0.007 0.005 0.003 0.002 0.002 0.002 0.002 0.002	-7 99.9 8 99.9 5 97.6 0 92.9 4 88.2 4 83.6 9 69.5 8 69.5 8 62.6 2 58.1 2 40.7	100
		CLA	Y		SILT	Partic	le Size	e (m	sand				GRAV	FI	COBBLES
				Fine	Medium	Coarse	Fine		Medium		Coarse	Fine	Mediu		
0.002 0.006 0.02 0.06 0.2 0.6 2 6 NATA ACCREDITED LABORATORY NUMBER: 3372 This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 Approved Signatory: Date: Name of Signatory: Peter Lam															
	1		ATC Williams Laboratory	Pty Ltd											

Outotec	
Sales	

Thickening Test Report 106924TA WONARAH PHOSPHATE Part A

29.05.13

na	.06.	12	
09.	.00.	10	

1	/	1	8	

Customer:	ATC Williams
Contact Person(s):	Quan Nguyen (<u>QuanN@atcwilliams.com.au</u>) John Leavy (<u>johnl@atcwilliams.com.au</u>)
Country:	Australia
Place:	Northern Territory
Application:	Thickening of Clay Fines for TSF
Product of Test:	Wonarah Slimes tailings
Case. No.:	106924TA
Case Manager:	Chris Greenwood
Test Case No.:	106924TA
Test Performed by:	Yefrey Joe
Date of Test:	29, 30- 05 - 2013
Location of Test:	Melbourne, Australia
Test equipment:	99mm Diameter Supaflo High Rate Thickener
Date of Test report:	09-06-2013

CONTENT

1.	GENERAL INFORMATION	2
2.	OBJECTIVE OF TESTS AND SELECTED TEST EQUIPMENT	3
3.	CUSTOMER PROCESS DATA AND SIMPLIFIED FLOWSHEET	5
4.	DESCRIPTION OF THICKENING PROCESS	6
5.	TEST – PRODUCT DATA	7
6.	TESTING RESULTS	8
7.	CONCLUSION	14
8.	CONTACT INFORMATION	14
9.	APPENDIX	15

1. **GENERAL INFORMATION**

Minemakers Limited's (Minemakers) 100% owned Wonarah phosphate project is the largest known phosphate deposit in Australia.

The current estimated mineral resources are set out above. Mineral resources that are not mineral reserves do not have demonstrated economic viability. Inferred resources are considered too speculative geologically to have economic considerations applied to them that would enable them to be classified as mineral reserves. There is no assurance that any part of the Inferred resources will ultimately be converted to mineral reserves.

Minemakers aims to take advantage of Australia's political stability and Wonarah's favourable installed and available infrastructure to develop a major centre for the production of super phosphoric acid (SPA).

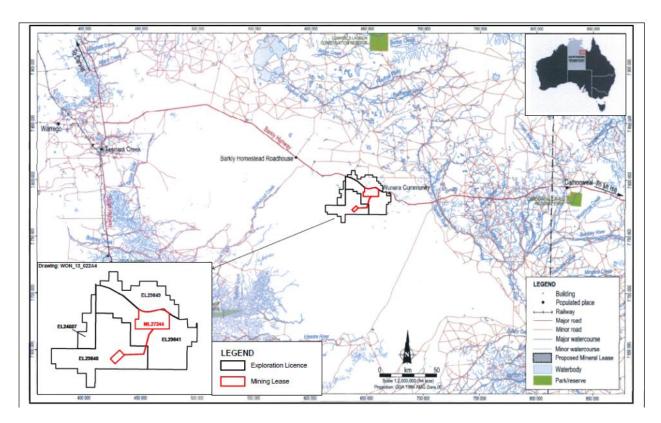


Figure 1: Wonarah Phosphate Project Location

References: http://www.minemakers.com.au

TEST CASE NO.: 106924TA

3/18

2. **OBJECTIVE OF TESTS AND SELECTED TEST EQUIPMENT**

The purpose of the testing was to conduct thickener test work on Wonarah Slimes Tailings from MPH and APH ores, with the objectives to determine:

- flocculant type and dose
- overflow clarity -
- underflow density _
- underflow yield stress

A 99mm Diameter Supaflo High Rate Thickener test rig was used in this test campaign.

Picture 1 – 99mm Diameter Supaflo High Rate Thickener

3. CUSTOMER PROCESS DATA AND SIMPLIFIED FLOWSHEET

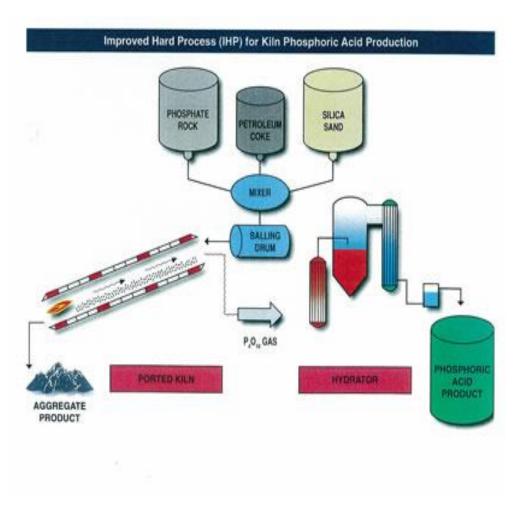


Figure 2: Wonarah Phosphate Phosphoric Acid Production Flowsheet

4. DESCRIPTION OF THICKENING PROCESS

4.1 Sample Characterisation

The solids from the slurry samples and the underflow samples that were generated from each thickening test were dried overnight in an oven at 100 °C.

The suspended solids in the overflow samples collected from each test were determined by filtering 100 mL of overflow liquor through pre-weighed Whatman GF/C filter discs using a vacuum filtration unit. The collected overflow solids were also washed thoroughly with tap water prior to oven drying at approximately 100 °C. The filter discs were then re-weighed to determine the suspended solids content.

Representative samples of the feed slurries were submitted to HRL laboratories Particle Analysis Service for LASER sizing. The results, in graphical form, are shown in Appendices.

4.2 Flocculant Selection

Based on static cylinder tests, the flocculant selected for the dynamic testwork of the samples was Magnafloc 1011. Results can be seen in Section 6.1.

We used BASF and SNF products for the flocculant selection test work. This should not be viewed as an endorsement of these particular suppliers and other equivalent products may be used.

The flocculants used for the screening were BASF Magnaflocs 10, 1011, Alclar 665, and SNF AN910SH.

Further flocculant screening may achieve better results.

4.3 Feed Dilution Tests

Dilution tests were conducted using Outotec's optimum dilution test method. Outotec's optimum dilution method finds the optimum feed solids concentration for use with Outotec's Vane Feedwell.

Full dilution data for these tests can be found in part B of the report.

4.4 General Batch Dynamic Thickening Test Method

The samples were dynamically thickened in the 99 mm rig.

For each test, stock slurry was drawn from an agitated vessel by a variable speed peristaltic pump, and diluted as required 'on the fly' using a second pump.

Flocculant was added at a set flow rate but at a range of concentrations to deliver the required dosage for each test. Stock flocculant solution was hydrolysed in tap water to 0.25 % w/v (2.5 g/L), and then diluted as required using process water supplied. The diluted flocculant was dosed into the diluent line.

The flocculated solids bed was raked continuously at 2 r/min to de-water, using two rotating picket, in conjunction with two stationary pickets.

The overflow samples were collected at the overflow discharge, located near the top of the wall of the 99mm dynamic thickener rig. This sample was analysed to determine the suspended solids content as described above in Section 4.1.

Underflow samples were taken at bed height of 240mm using a positive displacement pump. The solids concentration was then determined as described above in Section 4.1.

All rheological measurements were carried out using a Thermo Haake VT550 rheometer and an "OK600" 4 blade vane. The method measures shear stress versus time with the peak of this curve equating to the yield stress. A constant shear rate of 0.1 sec-1 was used. For each dynamic test underflow sample, a simple un-sheared vane yield stress was measured.

Note: Due to limited amount, process water was recycled and may contain excess flocculant.

The underflow yield stress is measured to generate data for use in the sizing of the thickener rake drive, it is not intended to be used for any other purpose.

5. TEST – PRODUCT DATA

Two samples were delivered to Outotec's Melbourne laboratory. MPH and APH slimes tailings samples were received as slurry. Some process water was also received and to be used for dilution purposes.

All tests were conducted at ambient temperature.

	APH	MPH
Temperature	23	23
Density (t/m ³)	1.209	1.203
Solid SG	2.79	2.87
рН	7.7	7.7
Sizing p80 (µm)	12	11
Solid Composition	clay slimes	clay slimes
Liquid Composition	process water	process water
Corossive element	No	No

Table 1: Product data – APH and MPH Tailings

6. TESTING RESULTS

6.1 Flocculant Screening

APH Tailings

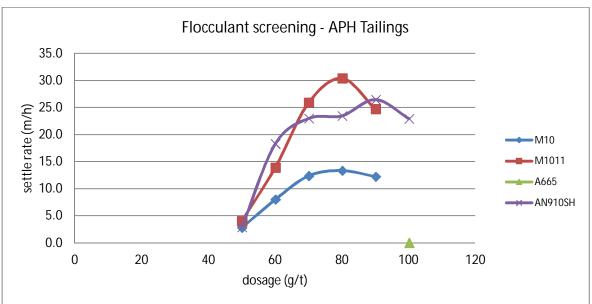
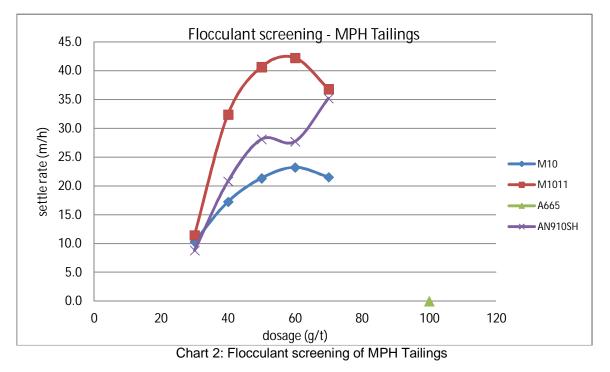


Chart 1: Flocculant screening of APH Tailings

Picture 2: 500ml static cylinder test – APH Tailings


Chart 1, above, show the settling rates of APH Tailings achieved in 500 mL static cylinder tests. As previously discussed in section 4.2, the flocculant selection was conducted on several different types, *see picture 2.*

Fastest settling rates were achieved with Magnafloc 1011. The flocculant was selected, as it gave the fastest settling rates and good supernatant clarity at a dose of 80 g/t. It was started at 80 g/t in the dynamic tests.

MPH Tailings

Picture 3: 500ml static cylinder test – MPH Tailings

Chart 2, above, show the settling rates of MPH Tailings achieved in 500 mL static cylinder tests. As previously discussed in section 4.2, the flocculant selection was conducted on several different types, *see picture 3.*

Fastest settling rates were achieved with Magnafloc 1011. The flocculant was selected, as it gave the fastest settling rates and good supernatant clarity at a dose of 60 g/t. It was started at 60 g/t in the dynamic tests.

6.2 Dynamic Thickening Tests

APH Tailings

r					1			
	FEE	FEED - APH		JLANT	UNDERFLO	O' FLOW		
Run	Solids	Liquor RR	Туре	Dose	Meas.Solids	YS	Clarity	
No.	(t/m2h)	(m/h)		(g/t)	(%w/w)	(Pa)	(ppm)	
1	0.26	3.8	M1011	80	36.7	74	120	
2	0.26	3.8	M1011	100	36.4	74	190	
3	0.26	3.8	M1011	60	36.4	66	240	
4	0.52	7.6	M1011	80	34.9	53	270	
5	0.52	7.6	M1011	100	34.0	43	390	
6	0.16	2.4	M1011	80	38.2	105	180	
7	0.16	2.4	M1011	60	38.7	120	160	
8	"compression"		M1011	60	40.6	142	-	
Table 2: Dynamic thickening testwork results of APH Tailings								

Table 2: Dynamic thickening testwork results of APH Tailings

Table 2, above, shows the dynamic thickening results of APH Tailings

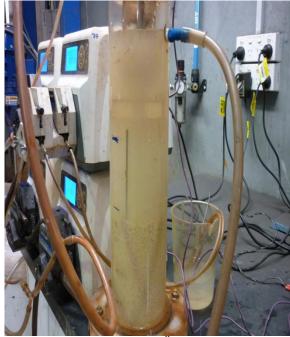
The first run was conducted at a flux rate of 0.26 $t/(m^2 \cdot h)$ with flocculant dose of 80g/t. This achieved an underflow density of 36.7 % solids (w/w) with accompanying yield stress measured 74 Pa. The overflow quality was measuring 120 ppm suspended solids.

The second run was conducted at a flux rate of 0.26 t/($m^2 \cdot h$) with flocculant dose of 100g/t. This achieved an underflow density of 36.4 % solids (w/w) with accompanying yield stress measured 74 Pa. The overflow quality was measuring 190 ppm suspended solids.

The third run was conducted at a flux rate of 0.26 $t/(m^2 \cdot h)$ with flocculant dose of 60g/t. This achieved an underflow density of 36.4 % solids (w/w) with accompanying yield stress measured 240 Pa. The overflow quality was measuring 240 ppm suspended solids.

The fourth run was conducted at a flux rate of 0.52 t/($m^2 \cdot h$) with flocculant dose of 80g/t. This achieved an underflow density of 34.9 % solids (w/w) with accompanying yield stress measured 53 Pa. The overflow quality was measuring 270 ppm suspended solids.

The fifth run was conducted at a flux rate of 0.52 t/($m^2 \cdot h$) with flocculant dose of 100g/t. This achieved an underflow density of 34.0 % solids (w/w) with


Outotec	Thickener Test Report	TESTING 29.05.13
Sales	TEST CASE NO.: 106924TA	11 / 18

accompanying yield stress measured 43 Pa. The overflow quality was measuring 390 ppm suspended solids.

The sixth run was conducted at a flux rate of 0.16 $t/(m^2 \cdot h)$ with flocculant dose of 80g/t. This achieved an underflow density of 38.2 % solids (w/w) with accompanying yield stress measured 105 Pa. The overflow quality was measuring 180 ppm suspended solids.

The seventh run was conducted at a flux rate of 0.16 t/($m^2 \cdot h$) with flocculant dose of 60g/t. This achieved an underflow density of 38.7 % solids (w/w) with accompanying yield stress measured 120 Pa. The overflow quality was measuring 160 ppm suspended solids.

"Compression Test" was conducted on the eighth run. The bed from the 7th run was topped up and raked for an hour. The compression test is run only to observe if further compression is achievable with the sample. <u>The results are only indicative</u> and should not be used for predictive or sizing purposes. This achieved an underflow density of 40.6 % solids (w/w) with accompanying yield stress measured 142 Pa.

Picture 4: Run 3 at 0.26 t/m²h floc dose 60 g/t O'flow 240 ppm

Picture 5: Run 6 at 0.16 t/m²h floc dose 60 g/t O'flow 160 ppm

MPH Tailings

	FEED - MPH		FLOCCULANT		UNDERFLOW		O' FLOW	
Run	Solids	Liquor RR	Туре	Dose	Meas.Solids	YS	Clarity	
No.	(t/m²h)	(m/h)		(g/t)	(%w/w)	(Pa)	(ppm)	
1	0.25	3.7	M1011	60	42.2	59	140	
2	0.25	3.7	M1011	80	42.4	62	150	
3	0.25	3.7	M1011	40	41.7	60	130	
4	0.46	6.8	M1011	80	39.8	41	220	
5	0.46	6.8	M1011	100	39.3	39	170	
6	0.16	5.3	M1011	40	43.2	76	150	
7	0.16	2.3	M1011	60	43.7	82	150	
8	"com	pression"	M1011	60	46.1	113	-	

Table 3: Dynamic thickening testwork results of MPH Tailings

Table 3, above, shows the dynamic thickening results of MPH Tailings

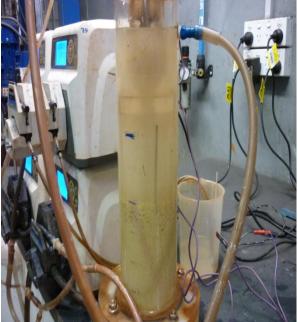
The first run was conducted at a flux rate of 0.25 t/($m^2 \cdot h$) with flocculant dose of 60g/t. This achieved an underflow density of 42.2 % solids (w/w) with accompanying yield stress measured 59 Pa. The overflow quality was measuring 140 ppm suspended solids.

The second run was conducted at a flux rate of 0.25 t/($m^2 \cdot h$) with flocculant dose of 80g/t. This achieved an underflow density of 42.4 % solids (w/w) with accompanying yield stress measured 62 Pa. The overflow quality was measuring 150 ppm suspended solids.

The third run was conducted at a flux rate of 0.25 t/($m^2 \cdot h$) with flocculant dose of 40g/t. This achieved an underflow density of 41.7 % solids (w/w) with accompanying yield stress measured 60 Pa. The overflow quality was measuring 130 ppm suspended solids.

The fourth run was conducted at a flux rate of 0.46 $t/(m^2 \cdot h)$ with flocculant dose of 80g/t. This achieved an underflow density of 39.8 % solids (w/w) with accompanying yield stress measured 41 Pa. The overflow quality was measuring 220 ppm suspended solids.

The fifth run was conducted at a flux rate of 0.46 $t/(m^2 \cdot h)$ with flocculant dose of 100g/t. This achieved an underflow density of 39.3 % solids (w/w) with accompanying yield stress measured 39 Pa. The overflow quality was measuring 170 ppm suspended solids.


The sixth run was conducted at a flux rate of 0.16 $t/(m^2 \cdot h)$ with flocculant dose of 40g/t. This achieved an underflow density of 43.2 % solids (w/w) with accompanying yield stress measured 76 Pa. The overflow quality was measuring 150 ppm suspended solids.

The seventh run was conducted at a flux rate of 0.16 t/($m^2 \cdot h$) with flocculant dose of 60g/t. This achieved an underflow density of 43.7 % solids (w/w) with accompanying yield stress measured 82 Pa. The overflow quality was measuring 150 ppm suspended solids.

"Compression Test" was conducted on the eighth run. The bed from the 7th run was topped up and raked for an hour. The compression test is run only to observe if further compression is achievable with the sample. <u>The results are only indicative</u> and should not be used for predictive or sizing purposes. This achieved an underflow density of 46.1 % solids (w/w) with accompanying yield stress measured 113 Pa.

Picture 6: Run 6 at 0.16 t/m²h floc dose 40 g/t O'flow 150 ppm

Picture 7: Run 3 at 0.46 t/m²h floc dose 80 g/t O'flow 220 ppm

Outotec	Thickener Test Report	TESTING 29.05.13
Sales	TEST CASE NO.: 106924TA	14 / 18

7. CONCLUSION

The test work on Wonarah Tailings samples has shown that the material can be successfully thickened.

All of the results are based on the samples as tested, with conditions specified in section 5 (test product data).

The sole purpose of this report (part A) is to provide the experimental results obtained from the test work performed and the methods used to obtain them. The interpretation of the experimental results obtained and any equipment recommendations made are provided in a separate report (Part B) marked commercial in confidence – property of Outotec (Australia) Pty Ltd.

8. CONTACT INFORMATION

For further questions please contact:

Chris Greenwood Technology Manager – Thickeners Outotec Pty Ltd Tel: 08 9211 2230 Mob: 0407 695 131 Email: <u>chris.greenwood@outotec.com</u> Web: <u>www.outotec.com</u>

END OF REPORT

Yefrey Joe Testwork Engineer Outotec South East Asia Pacific Tel: +61 3 9566 5800 Mob: +61 400 435 240 Email: <u>yefrey.joe@outotec.com</u> Web: <u>www.outotec.com</u>

9. APPENDIX

Appendix 1	PSD for APH OreTailings
Appendix 2	PSD for MPH Ore Tailings
Appendix 3	Rheological Curve – APH OreTailings
Appendix 4	Rheological Curve – MPH Ore Tailings

29.05.13

TEST CASE NO.: 106924TA

15 / 18

APPENDIX 1

PARTICLE SIZE DISTRIBUTION DATA with LASER

APH Ore Tailings

MASTERSIZER

Result Analysis Report

Sample N CMM13/0	lame: 1513 - 01 WC	MARAH	PHOSPH/	TE - APH	- Average		Mec GK	sured by		Analysed ednesday		2013 6:4	824 PM
Client Outotec													
Particle N Default 1	ane:			Dispersa Watur	nt Name:				is model:			acuration	
Particle R				The decised									
1.520				Dispersa									
Particle A	bsorption:			1.330									
1													
Concentra 0.0040	stion: %Vol			Spen : 3.311				Weighte	d Residua	t		Result un Volume	sta:
					and the second				ighted Mea	o D(4 3)		Mode	
2.41	milloc Area			2.489	um	lean D(3,2)	-	7.482	um	er er er er		8.356	um
d(0.1):	1,003	Latte			d(0.5	5.045	un				d(0.9):	17.706	um
Г				_	Pa	rticle Size 0	Natribution	,		_			1
	5.5		1111		1111			I I I I				100	
	5	-				/	7/						
	4.5					/	X	+++++				-	
	4					/	1				- 1	80	
1	8 3.5					(/					100	
	2 3				1	/					- 1	60	
14	a) aumov					/							
13	> 2				1	/					- 11	40	
	1.5	_			/	/		1					
	1	_	1111		/ /	/		X.		11110		20	
	0.5			1	/			1					
	8	54	0.1		1		10	1	100	100	0 30	8.	
	Q.1	24	52.1			article Siz			100	100	~ ~	00	
	CMM/13/0	513 - 01	WONAF	RAH PHO				Wednes	iday, 5 Ju	ne 2013	6:48:2	3 PM	
	Bar (Jos) Para	table for	Bar june W	COMP. Tol	(Series)V	10.00	Son(pre) 0	U Debr 5	See jurie 1	Char %	There	ni vis chuller	-
	0000	0.001	12742	0.00	1.000	1.00	7.068	61.2E	8120	18.00	39.2	40.0	X
	0.007	0.00	6159	0.00	1.58	11.12	7.962	65.17	5.38	100.00	407		
	0.009	0.00	6,900	500	5.418	12.76	10,960	72.98	70,960	100.00	58.5	r 180	=[
	10252	0.00	6.52	0.00	1.50	19.09	11,267	75.62	75.51	18.00	90.6		
	8,040	0.00	1.70	0.17	2.08	23.20	16.199	94.21	100.007	18.00	78.0	er 186	
	0.96	0.00	6,317	0.46	2.246	36.27	15.807	8724	152-428	1000	78.2		
	1000	0.00	5.00	1.37	2.85	2.0	30.000	82.77	141300	100.00	1982.2		
	0.060	0.00	0.448	2.00	2:00	35.77	30,440	94.00	152,800	1000	108.8		
	0.071	0.00	0.502	2.78	3.907	39.10	25.179	90.07	176,250	100.00	10012		
	0.089	0.00	0.632	4.06	4.477	46.20	31.008	99.08	225.404	100.00	1505.6	56 100	00
	0.930	6.00	0.710	5.78	1.08	49.87	25,568	99.75	250.000	105.00	1782.5		
	0.112	0.00	0.796	7.04	5.637	13.59	39.905	100100	202,500	100.00	2001.0	100 100	mil

Thickener Test Report

29.05.13

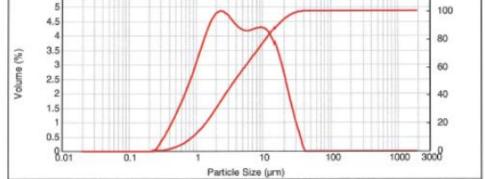
TEST CASE NO.: 106924TA

16 / 18

APPENDIX 2

PARTICLE SIZE DISTRIBUTION DATA with LASER

MPH Ore Tailings



MASTERSIZER

Result Analysis Report

Sample Name: CMM/13/0513 - 02. WONARAH PH Client Cutotec	OSPHATE - MPH - Average	Measured by: Analysed GK Wednesday	, 5 June 2013 6:53:21 PN
Particle Name: Default 1 Particle RI:	Dispersant Name: Water	Analysis model: General purpose	Obscuration: 10.27 %
1.520	Dispersant RI:		
Particle Absorption:	1.330		
Concentration: 1.0029 %Vol	Span : 4.110	Weighted Residual: 0.646 %	Result units: Volume
Specific Surface Area: 2.77 m ² icc	Surface Weighted Mean D[3,2]: 2.167 um	Vol. Weighted Mean D[4,3]: 6.548 um	Mode 2.373 um
d(0.1): 0.889 um	d(0.5): 3.779	um	d(0.9): 16.421 um

-CMM/13/0513 - 02 WONARAH PHOSPHATE - MPH - Average, Wednesday, 5 June 2013 6:53:20 PM

Size (µm)	Val Under %	Size (prv)	Vol Under %	Size (Jurg-	Voi Under %	See (perc)	Vol Linder %	San (pro)	Vol Under %	Size (Jine)	Vol Under %
0.089	0.00	0.542	0.00	1.002	12.22	7.056	67.45	50,000	100-00	395-656	100.00
0.022	0.00	0.199	0.00	1.125	14.63	7.962	70.64	56.393	100-00	320.052	100.00
6025	0.00	0.179	0.00	1,262	17.30	0.934	73.65	63,000	100.00	447.744	100.00
0.028	0.00	0.200	0.00	1.415	20.23	10.000	77.01	70.963	100-00	532.377	100.00
9.032	0.05	02N	0.00	1.589	23-41	11.247	80.26	79.621	100-00	583-677	100.00
0.036	0.00	0.252	0.02	1.763	16.79	12/6/10	83.41	89.337	100-00	600.000	100.00
0.040	0.00	0.283	0.10	2.000	30.32	14.169	86.42	100,237	100.00	729.627	100.00
0.045	0.00	0.317	0.36	2,244	33.94	15.007	89.24	112.468	100:00	796214	100.00
0.050	0.00	0.396	0.71	2.500	37.37	17.825	91.79	126.191	100.00	893.367	100.00
0.056	0.00	0.399	1.29	2.825	41.25	20.000	94.02	141.582	100.00	1002.374	100.00
6.063	0.00	0.640	1.982	3.170	44.77	22.440	95.90	158,865	100.00	1124460	100.00
0.071	0.00	0.502	2.79	3.587	48.22	25.179	197.40	176,250	100.00	1261.015	100.00
6.080	0.00	0.994	3.94	3,991	51.57	28,251	30.53	200.000	100.00	1415.892	100.00
0.089	0.00	0.632	5.08	4,477	59.83	31.050	99.32	224.404	100.00	1588.006	100.00
0.100	0.00	6.710	6.52	5.004	58:DF	35,560	39.83	250,000	100.00	1782.502	100.00
0.112	0.00	0.796	8.18	5.607	01.10	33,905	100.00	282,508	100.00	2000.000	100.00
0.126	0.00	0.883	10.00	6325	64.30	44,774	100.00	316.979	100.001		


29.05.13

TEST CASE NO.: 106924TA

17 / 18

APPENDIX 3

RHEOLOGICAL CURVE – APH Ore Tailings

ID 12-2: Curve discussion : Method tin s tin Pa Greatest value 13.59 120.3 Maximum 13.15 120.1 ID 13-2: Curve discussion : Method tin s tin Pa Greatest value 148.2 93.69 Maximum 147.4 93.73 ID 14-2: Curve discussion : Method tin s tin Pa Greatest value 280.9 73.01 Maximum 285.5 71.49

Thickener Test Report

29.05.13

8

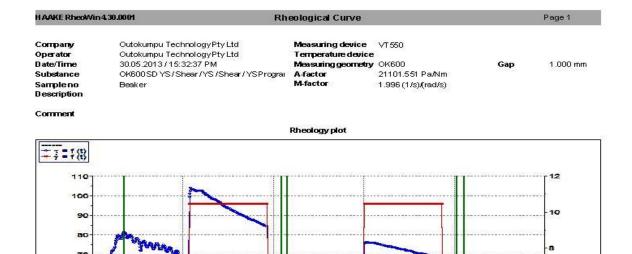
e

4

2

350

280


F In 1/8

TEST CASE NO.: 106924TA

18/18

APPENDIX 4

RHEOLOGICAL CURVE – MPH Ore Tailings

70 60

60 40

30 20

> 10 00

HAAKE RheoWin 4.30.0001

t in Pa

C:\Users\YefJoe\Documents\Thermo\Rheo\Vin\Jobs\OK600YIELDDOUBLESHEAR2.rvj

t in s

210

140

70

Method	tin s	t in Pa
Greatest val Maximum 2		
ID 13-2: Cur Method		
Greatest val		
Maximum 1		

Outotec	
Sales	

Thickening Test Report 106924TA Wonarah Phosphate Part B 09.06.13

29.05.13 1 / 5

Customer:	ATC Williams
Contact Person(s):	Quan Nguyen (<u>QuanN@atcwilliams.com.au</u>) John Leavy (<u>johnl@atcwilliams.com.au</u>)
Country:	Australia
Place:	Northern Territory
Application:	Thickening of Clay Fines for TSF
Product of Test:	Wonarah Slimes tailings
Case. No.:	106924TA
Case Manager:	Chris Greenwood
Test Case No.:	106924TA
Test Performed by:	Yefrey Joe
Date of Test:	29, 30- 05 - 2013
Location of Test:	Melbourne, Australia
Test equipment:	99mm Diameter Supaflo High Rate Thickener
Date of Test report:	09-06-2013

CONTENT

1.	PRODUCTION DATA REQUIREMENTS	2
2.	FEED DILUTION TESTS	2
3.	CONCLUSION	2
4.	RECOMMENDATIONS	3
5.	CONTACT INFORMATION	4
6.	APPENDIX	4

CONFIDENTIALITY – COMMERCIAL IN CONFIDENCE

This report remains the property of Outotec Pty Ltd and must not be disclosed to any third party not appearing above or used or copied in any form whatsoever without the prior written consent of Outotec Pty Ltd.

TEST CASE NO.: 106920TA

1. PRODUCTION DATA REQUIREMENTS

	APH	MPH	comment
Feed rate (Mtpa)	0.7 to 3.5	0.7 to 3.5	initially 0.7 then increases to 3.5 (max, after 5 years)
Underflow density (%w/w)	50 - 70	50 - 70	(no specific target)
Overflow Clarity, ppm	< 250	< 250	(no specific target)

2. FEED DILUTION TESTS

Dilution tests were conducted using Outotec's optimum dilution test method. Outotec's optimum dilution method finds the optimum feed solids concentration for use with Outotec's Vane Feedwell.

The optimum feed solids concentrations of the samples were as follows;

	Optimum Feed Density (%w/w)
APH Tailings	6.5
MPH Tailings	6.5

3. CONCLUSION AND INTERPRETATION OF RESULTS

The test work on the Wonarah Clay Slimes Tailings has shown that the material can be successfully thickened.

All of the results are based on the samples as tested, with conditions specified in section 6 (test product data).

<u>APH Tailings</u> sample testwork was conducted at flux rates of between 0.15 t/($m^2 \cdot h$) and 0.52 t/($m^2 \cdot h$) produced underflow density 34 – 38.7 %w/w, with flocculant of 60-100g/t and overflow clarity of 120 -390 ppm.

Further "Compression test" was conducted on APH Tailings sample to observe if further compression is achievable with the sample. It achieved an underflow density of 40.6 %w/w solids with accompanying yield stress of 142Pa.

<u>MPH Tailings</u> sample testwork was conducted at flux rates of between 0.16 t/($m^2 \cdot h$) and 0.46 t/($m^2 \cdot h$) produced underflow density 39.3 – 43.7 %w/w, with flocculant of 60- 100g/t and overflow clarity of 130 -220 ppm.

Further "Compression test" was conducted on MPH sample to observe if further compression is achievable with the sample. It achieved an underflow density of 46.1 %w/w solids with accompanying yield stress of 113Pa.

The "compression test" result is only indicative and should not be used for predictive or sizing purposes.

4. **RECOMMENDATIONS**

From the results of the testwork conducted, the following thickener design specifications are recommended. These recommendations should be read in conjunction with the range of test results obtained in Part A of the test report.

The thickener recommendation is for an Outotec High Rate thickener with Outotec Vane feedwell.

Process Stream	APH	MPH		
Solids feed rate (Mtpa)	0.7 to 3.5	0.7 to 3.5		
Solids feed rate (tph)*	440	440		
Solids loading (t/m ² h)	0.16	0.16		
Feed slurry density (%w/w solids)	< 30	< 30		
Slurry pH	7.7	7.7		
Flocculant type	M1011	M1011		
Flocculant dosage (g/t)	60	60		
Underflow density (%w/w solids)	39 – 41	44 – 46		
Overflow clarity (ppm)	< 200	< 200		
Required thickener diameter (m)	60	60		
lide food rate 110tab is equivalent to 2 ENtro				

*solids feed rate 440tph is equivalent to 3.5Mtpa

Outotec's experience with testwork and full-scale operation of thickeners allows us to reliably include an estimate of 2 - 3 % increase in thickener underflow density when comparing the testwork to a full-size thickener. This has been taken into account with the above recommendations.

TEST CASE NO.: 106920TA

4/5

5. CONTACT INFORMATION

For further questions please contact:

Chris Greenwood Technology Manager – Thickeners Outotec Pty Ltd Tel: 08 9211 2230 Mob: 0407 695 131 Email: <u>chris.greenwood@outotec.com</u> Web: <u>www.outotec.com</u>

END OF REPORT

Yefrey Joe Testwork Engineer Outotec South East Asia Pacific Tel: +61 3 9566 5800 Mob: +61 400 435 240 Email: <u>yefrey.joe@outotec.com</u> Web: <u>www.outotec.com</u>

6. APPENDIX

Appendix 1 Questionnaire for Wonarah phosphate

08.05.13

TEST CASE NO.: 106920TA

<u>5 / 5</u>

APPENDIX 1 - Questionnaire for Wonarah phosphate

THICKENING QUESTIONNAIRE

3.5.2013

1(1)

CUSTOMER INFORMATION

Project name	Wonarah Phosphate		
Customer	ATC Williams	Invoicing address	ATC Williams
			21 Teddington Road, 6100
Contact person	Quan Nguyen	Telephone/fax	T 8 9355 8700 F8 9355 0711
Title	Senior Engineer	e-mail	QuanN@atcwilliams.com.au

GENERAL INFORMATION ABOUT MATERIAL TO BE THICKENED

Application	Clay fines from pre process wash plant to be stored in a TSF			
Sample name	Wonarah Slimes Tailings (2 x Samples from MPH and APH ores)			
Composition of solids	Clay Slimes	Chem. formula of solids	Tailings from phosphate P2Os	
Composition of liquid	Ordinary Water	Chem. formula of liquid	H ₂ O	
Corrosive compounds	None			
Other information Two ore type samples are provided. MPH will be mined fit			2	

PURPOSE OF TESTWORK

Assessing tailings storage solutions. Tailings would be washing clay fines from the crushed ore
and deposition as slurry into a tailings storage facility. It is envisioned that the slurry will be thickened prior to discharge.

THICKENER CONDITIONS

Process Information	Client Information	Example
Process Description	Beneficiation by washing	Concentrate, Float Tail, Pre-leach.
Feed Rate	0.7 to 3.5 Mtpa (5 x 0.7 Mtpa Modules)	tph, tpa
Feed % Solids to thickener	<30% w/w	25% w/w
Slurry pH	7 to 9	9 to 10
pH Adjustment	N/A	Lime, H ₂ SO ₄
Feed Temperature	32° C	30°C
Particle Size Distribution	-30µm: (see attached PSD)	p80 ?um, Slimes / Clay ??
Estimated Solids SG	2.82 - 2.87	t/m ³
Estimated Liquor SG	0.80 to 1.00	t/m ³
Target Underflow Density	50-70	50 to 55%, don't just put max pls.
Underflow to ?	CTD/Dam	Detox, Leach, CTD, Dam.
Target Overflow Clarity	Process Water Plant <250ppm	Process water reuse, <250ppm
Coag/Flocculant Description (If any)	Alclar A665 & Magnafloc 1011 trials	Flocculant Type & supplier.
Any restrictions on coag/flocc?	N/A	
Is there a limit on thickener size?	N/A	

PRESENT THICKENING EQUIPMENT V Does not exist

Type of thickener	100 000 000 000 000	Thickener diameter	m
Underflow density	% Solids	Overflow clarity	mg/L
Flocculant used		Flocculant dose	g/t

