

# Hydrometallurgical options for the extraction of (glauconite) green sands

RG McDonald and CA Jeffery EP154013

June 2015

Prepared for: Tracker Geoservices Pty Ltd

Commercial in Confidence



[Insert partner or collaborator logos here, scale to fit, 3cm maximum height (delete if not required)]

Enquiries should be addressed to:

Dr Robbie McDonald CSIRO Mineral Resources Flagship PO Box 7229 Karawara, WA 6152

 Tel:
 +61 8 9334 8061

 Fax:
 +61 8 9334 8001

 E-mail:
 robbie.mcdonald@csiro.au

#### **Distribution list**

Tracker Geoservices Pty Ltd John Canaris Dennis Gee CSIRO Robbie McDonald Keith Barnard CSIRO Records

#### **Copyright and Disclaimer**

© 2015 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

#### **Important Disclaimer**

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

## Contents

| E | xecutive Summary1                                                                    |
|---|--------------------------------------------------------------------------------------|
| 1 | INTRODUCTION                                                                         |
| 2 | EXPERIMENTAL                                                                         |
| 3 | RESULTS AND DISCUSSION                                                               |
| 4 | CONCLUSION10                                                                         |
| 5 | AKCNOWLEDGEMENTS11                                                                   |
| 6 | REFERENCES12                                                                         |
| A | PPENDIX A: PARTICLE SIZE DISTRIBUTION DATA FOR THE GLAUCONITE<br>CONCENTRATE FEEDS13 |
| A | PPENDIX B: MASS BALANCE SPREADSHEET DATA FOR THE LEACHING<br>EXPERIMENTS16           |

## **List of Figures**

| Figure 1 | Extraction of metals by 4 M citric acid from a glauconite sample milled to -25 $\mu$ m at 95 °C (10% w/w pulp density)                                                                                                                                                 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2 | Extraction of metals by 2.5 M sulphuric acid from a glauconite sample milled to -25 $\mu$ m at 95 °C (10% w/w pulp density).                                                                                                                                           |
| Figure 3 | XRD patterns for the glauconite feed materials used in the test work. The bottom trace corresponds to the -25 $\mu$ m feed and the upper trace to the ring milled feed                                                                                                 |
| Figure 4 | Extraction of metals by 4 M citric acid from the ring milled glauconite feed at 95 °C (10% w/w pulp density).                                                                                                                                                          |
| Figure 5 | Crystal structure of celadonite, a mineral that is isostructural with glauconite. The atoms shown in this structure are potassium (purple), silicon (blue), magnesium/iron/aluminium (yellow) and oxygen (red) (Reference: http://clay.uga.edu/courses/8550/CM09.html) |

## List of Tables

| Table 1 | Description of experiments conducted to examine the extraction of potassium from a glauconite concentrate |
|---------|-----------------------------------------------------------------------------------------------------------|
| Table 2 | Elemental analyses of glauconite concentrate milled to -25 $\mu$ m and the ring milled sample             |

#### **EXECUTIVE SUMMARY**

## HYDROMETALLURGICAL OPTIONS FOR EXTRACTION OF (GLAUCONITE) GREEN SANDS

#### Robbie McDonald and Coby Jeffery

A short program of experiments was conducted for Tracker Geoservices under Consulting Services Agreement #2015020497 to assess the extraction of potassium from a glauconite concentrate. In particular the use of citric acid as an extractant was assessed and compared with sulphuric acid. An additional test was conducted to determine if lime roasting promotes leaching.

Glauconite concentrate was milled to -25  $\mu$ m to prepare feed material for leaching. A portion of this was additionally ring milled to determine if this further enhances extraction. Leaching with 4 M citric acid at 95 °C for 10 h using a 10% w/w pulp produced 11% potassium extraction. In comparison, after ring milling the final extraction of potassium increased to 41%. Of particular interest here was that the extraction after 1 h was almost 32% while it was not known how quickly during that time that the potassium was released. Comparison of the XRD patterns for the feeds suggests ring milling reduced the crystallinity of the concentrate and generated "amorphous" material which is more readily leached. Further work to determine the extent to which glauconite concentrate can be "mechanically activated" for leaching and, the conditions under which leaching occurs, is indicated.

For comparison with citric acid leaching, the use of 2.5 M sulphuric acid at 95 °C for 8 h using a 10% w/w pulp resulted in 76% potassium extraction. In all acid leaching tests the extractions of leachable metals hosted in the glauconite, Al, Fe, K and Mg, followed similar trends. The data also suggested that the extent of leaching is somewhat higher for the metals hosted predominantly in octahedral sites of the glauconite lattice, *i.e.* Al and Mg.

The glauconite concentrate contains accessory apatite. In each of the acid leaching tests this mineral dissolves rapidly to release calcium and phosphate. In the presence of sulphuric acid most of the calcium re-precipitates as gypsum.

Lime roasting without the addition of salt generates a product that cannot be leached in water. XRD analysis indicates that several calcium aluminosilicates are formed. In comparison it is expected that potassic aluminosilicates were also formed though no such minerals commonly found in nature could be identified.

## **1 INTRODUCTION**

Following an initial approach to CSIRO by John Canaris (Tracker Geoservices Pty Ltd) and Dennis Gee (Independent Mining and Metals Professional) a project to examine a concept proposed to CSIRO involving the use of citric acid to leach glauconite was developed for the client. It was agreed that the following topics should be addressed by the proposal:

- 1. The effectiveness of high concentration citric acid for the extraction of potassium from glauconite (from concentrate);
- 2. Comparison of citric acid with sulphuric acid, which is known to be effective for extraction;
- 3. Leaching under atmospheric conditions at a temperature of 90-95°C, and relatively low pulp density, to optimise the extent of leaching;
- 4. Use of fine grind size feed, -25 microns, including examination of the effect of mechanical activation via milling upon extraction;
- 5. The impact of pre-roasting upon extraction.

A series of four tests were designed to address these topics and the results of these tests are described in this brief report.

## **2 EXPERIMENTAL**

A sample of glauconite concentrate generated from ore collected from the Daly River region in the Northern Territory was provided by the client for this project. The proposed work program consists of four tests as described in Table 1 below. The solubility of (anhydrous) citric acid is high increasing from 117 g per 100 mL water at  $10^{\circ}$ C to 148 g per 100 mL water at  $20^{\circ}$ C right up to 548 g per 100 mL water at  $100^{\circ}$ C; the concentration of citric acid that can be produced for leaching is therefore high (PubChem Open Chemistry Data Base). A saturated ~4 M citric acid solution was prepared at room temperature for the tests using this lixiviant and this is consistent with a reported citric acid mole fraction of a saturated solution as 0.1224 at  $20^{\circ}$ C (Oliveira *et al.*, 2013). Citric acid solubility data have also been presented by Apelblat (2014).

The milling of the glauconite concentrate to  $-25 \ \mu m$  was conducted using a ceramic ball mill on bottle roller over a period of several days to minimise the impact upon the crystallinity of the product. A portion of the product was employed for ring-milling via a Labtechnics unit with checks of the crystallinity of the material using XRD after 15 min and 27 min of milling.

| Table 1 | Description of experiments condu | icted to examine | the extraction | of potassium | from a | glauconite |
|---------|----------------------------------|------------------|----------------|--------------|--------|------------|
|         | concentrate.                     |                  |                |              |        |            |

| Test No. | Conditions                                                                                                                                                                                           |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G1       | Concentrated (4 M) citric acid, 95°C, 10% w/w pulp density, -25 $\mu$ m concentrate, 10 h leaching, with sampling (five samples).                                                                    |
| G2       | Concentrated (4 M) citric acid, 95°C, 10% w/w pulp density, ring milled concentrate, 8 h leaching, with sampling (five samples).                                                                     |
| G3       | Moderate strength (2.5 M) sulphuric acid, 95°C, 10% w/w pulp density, -25 $\mu$ m concentrate, 10 h leaching, with sampling (five samples).                                                          |
| G4       | Use of glauconite concentrate roasted with lime (CaO) at 1150°C for 2 h. This was followed by water leaching of the calcine, 95°C, 10% w/w pulp density, 6 h leaching, with sampling (five samples). |

Sub-samples collected during the leaching tests were filtered, the solids washed and dried, and solids and liquids sent for assay via ICP-OES; here Sigma 12:22 lithium borate flux was employed for fusion of the solids. The elements analysed were Al, Ca, Fe, K, Mg, P and Si. The density and pH of the leach liquors were also recorded. Samples of -25  $\mu$ m and ring-milled concentrate were submitted for laser sizing via a Malvern Hydro 2000G instrument.

The particle size analysis data for the glauconite concentrate feed samples and, the mass balance spreadsheet summaries for the leaching tests described in Table 1, are presented in Appendices A and B, respectively.

## **3 RESULTS AND DISCUSSION**

Elemental analyses of the glauconite concentrate sample milled to -25  $\mu$ m and the ring milled sample are given in Table 2. Notably there are differences in the analyses of the two samples; however, these are within the combined sub-sampling variation and analytical error for the analysis method.

| Samula      |      |      | Elemer | ntal analysis (% | % w/w) |      |      |
|-------------|------|------|--------|------------------|--------|------|------|
| Sample      | Al   | Ca   | Fe     | K                | Mg     | Р    | Si   |
| -25 μm      | 3.68 | 3.52 | 14.5   | 6.09             | 2.28   | 1.07 | 22.0 |
| Ring milled | 3.60 | 3.04 | 14.3   | 5.95             | 2.24   | 0.98 | 22.0 |

Table 2 Elemental analyses of glauconite concentrate milled to -25 µm and the ring milled sample.

XRD analysis of the glauconite concentrate samples indicated that the primary minerals in the sample were apatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>(F,Cl,OH)), glauconite ((K,Na)(Fe<sup>3+</sup>,Al,Mg)<sub>2</sub>(Si,Al,Fe<sup>3+</sup>)<sub>4</sub>O<sub>10</sub>)(OH)<sub>2</sub>) and quartz (SiO<sub>2</sub>). The molar ratio of calcium in these samples is estimated from the analysis data to be 2.4-2.5 which is somewhat higher than the expected value of 5/3, if all of the calcium is hosted in the apatite.

Particle size analysis data for the -25  $\mu$ m and the ring milled samples is given in Appendix A. The P<sub>80</sub> value for the -25  $\mu$ m fraction is 14.2  $\mu$ m whereas that for the ring milled fraction is only marginally smaller, 11.3  $\mu$ m, indicating that ring milling did not significantly reduce the volume weighted particle size though there is a noticeable reduction in the proportion of larger particles. It is also notable that particles of size above 25  $\mu$ m were detected and this suggests that, although a dispersant and sonication was employed prior to measurement, a small fraction of the sample may still have remained agglomerated.



Figure 1 Extraction of metals by 4 M citric acid from a glauconite sample milled to -25  $\mu$ m at 95 °C (10% w/w pulp density).

Citric acid leaching of the -25 µm sample generated the extraction data shown in Figure 1. The extractions of Ca and P are high indicating dissolution of the apatite and inferring that little, if any of the calcium, is hosted by glauconite. The rate at which these elements are extracted is uncertain and shorter sample times are required. In contrast, the extractions of elements expected to be associated with the glauconite, K, Fe, Al and Mg, is both much slower and significantly less. In particular around 4% of the potassium is extracted after 1 h increasing to around 11% after 10 h. Furthermore, as the Al and Mg extractions are somewhat higher and virtually no Si is extracted, this indicates that the leaching is incongruent; furthermore, leaching from the octahedral (compared to the tetrahedral) site in the structure has lower activation energy. Overall, however, milling the sample to below 25 microns was insufficient to facilitate glauconite leaching by concentrated citric acid solution.

The dissolution of glauconite by mineral acids under atmospheric conditions is well known and is discussed in various articles (*e.g.* Yadav and Sharma, 1992; Yadav *et al.*, 2000). While it was found that hydrochloric acid is more efficient for potassium extraction, sulphuric acid was chosen in the present study since, based upon price, it would be the cheapest acid lixiviant for glauconite leaching. Furthermore, it is the lixiviant of choice for the K-Max process currently being developed by Potash West.

In contrast to the study of Yadav *et al.* (2000) who used a feed with larger particle size (-152, + 125 µm) a sulphuric acid concentration of 6 M and pulp density of 2.5% w/v over 6 h, the present experiment employed a smaller particle size, lower acid concentration with higher pulp density over a longer time frame. Even after 8 h leaching the extractions of Al, Fe, K and Mg were continuing to increase, indicating that the formation of gypsum (CaSO<sub>4</sub>.2H<sub>2</sub>O) does not interfere with leaching of the glauconite. A potassium extraction of 76% was reached at this time; note here that issues beyond the control of the researchers meant that this experiment was terminated after 8 h. The pH of the solution, -0.07, was consistent with residual acid remaining to continue to drive the reaction which becomes increasing slower as metals need to diffuse through an increasingly thicker layer of silica-rich material.



Figure 2 Extraction of metals by 2.5 M sulphuric acid from a glauconite sample milled to -25 μm at 95 °C (10% w/w pulp density).



Figure 3 XRD patterns for the glauconite feed materials used in the test work. The bottom trace corresponds to the -25  $\mu$ m feed and the upper trace to the ring milled feed.

Although ring milling produced a small reduction in particle size (see Appendix A), the product was suggested from the XRD trace to be less crystalline. From Figure 3 it appears that the height of the peaks due to the glauconite is reduced by roughly one third though this may simply correspond to "amorphization" of the sample. The generation of "amorphous" material, however, is suggested by the decreasing peak resolution for the peaks with diffraction angles close to  $25^{\circ}$  20 though this is contributed to by general broadening of the glauconite peaks. Although not shown here there was little difference between snapshot XRD traces obtained after 15 and 27 minutes of ring milling suggesting a limitation in the extent to which this technique is able to reduce the crystallinity of the glauconite.

Citric acid extraction of the ring milled feed gave higher extractions of Al, Fe, K and Mg while again, the high extractions of Ca and P in the first sub-sample demonstrate the faster leaching of the apatite (Figure 4). While the extractions of the former elements only increased by around 10% between the first and final sub-samples, the extractions in the first sample indicated a faster initial release,  $\sim 30\%$  for Al, K and Mg, of the metals hosted by glauconite. This is ascribed to "mechanical activation" of the sample due to ring milling notwithstanding that a slightly smaller particle size of the feed is also produced. Enhancement of leaching by ultrafine grinding has been noted for other difficult to leach minerals such as talc (Temuujin *et al.*, 2002). As suggested from the work of Temuujin *et al.* (2002) there may be potential to produce a high purity porous silica product which may have commercial value from the leaching of glauconite. It is, however, beyond the scope of the present work to assess whether such a product, if generated, has a market value.



Figure 4 Extraction of metals by 4 M citric acid from the ring milled glauconite feed at 95 °C (10% w/w pulp density).

Based on the present results, further work is required to determine (1) how fast the metals are initially leached, (2) if a weaker lixiviant can be used for leaching and (3) whether further mechanical activation of the sample can be achieved, using a different type of mill, *e.g.* attrition, jet, oscillation, planetary or vibration.



Figure 5 Crystal structure of celadonite, a mineral that is isostructural with glauconite. The atoms shown in this structure are potassium (purple), silicon (blue), magnesium/iron/aluminium (yellow) and oxygen (red) (Reference: http://clay.uga.edu/courses/8550/CM09.html)

The crystal structure shown in Figure 5 helps to illustrate the difficulties in leaching mica minerals, and particularly those that are not ion-exchangeable such as muscovite. First, these minerals exhibit perfect cleavage along the [001] direction, *i.e.* parallel to the c-axis, which is also that of the interlayer hosting the potassium ions. The leaching of potassium from these layers is a diffusion controlled process and therefore, to reduce the time to access all of these ions, it is necessary to either disrupt those structural features that stabilise the bonding of the potassium or, to cleave the crystals perpendicular to their natural cleavage plane, which is not energetically favourable. The purpose of mechanical activation, here using ring milling, was to disrupt the crystal structure and thereby reduce the binding energy of the potassium. It is disruption of the crystal structure that is associated with "amorphization", and which improves accessibility of a lixiviant to the more weakly bound leachable metal ions.

A final test to examine the lime roasting of the glauconite was undertaken for which just lime and a higher temperature, 1150 °C, was employed compared with the conditions used for the Tschirner process (Tschirner, 1919) which uses a lower temperature, 800 °C, and salt (NaCl) in addition to a calcium additive (*e.g.* limestone). Leaching was conducted in water with around 15 mg/L potassium leached after 6 h confirming that a readily soluble potassium salt was not formed during roasting. It was not determined if the product could be leached with acid as has been shown for the lime roasted material produced by the invention underpinning the ThermoPotash process (Ladeira, 2014). Examination of the XRD pattern for the roasted product from this work suggested the formation of hematite and various calcium silicates that include an akermanite-gehlenite solid solution, wollastonite, and augite. Although it is not clear whether potassic aluminosilicates formed this is certainly possible. Furthermore, a test to determine the leachability of potassium from the roasted product with acid could be considered as part of future work.

#### **4** CONCLUSION

The current study indicated that (high strength) citric acid leaching of glauconite ( $P_{100}$  -25 µm) under atmospheric conditions is slow and around 11% of the potassium is leached over a 10 h period at 95 °C. In comparison the leaching of the accessory mineral apatite is fast and 96% of both the calcium and phosphorus were found to be dissolved in the first sub-sample taken (after 1 h). Mechanical activation of the sample via ring milling results in the rapid initial release of around 30% of the potassium under the same conditions. It is suggested, however, that this milling technique is not optimum for mechanical activation of the sample and that other techniques could be considered in future work. In addition, the rate of potassium extraction and conditions required for extraction from "activated" materials requires closer consideration. The present work does not indicate how fast the metals were initially extracted from the ring milled sample nor is it known whether a weaker lixiviant can be employed, whether this is citric or a mineral acid.

In comparison to leaching with citric acid, sulphuric acid leaching released 76% of the potassium after 10 h with the data indicating that further extraction was possible. For all leaching tests with either acid, other metals associated with glauconite, Al, Fe and Mg, were leached to similar extents as potassium.

Lime roasting in the absence of salt generated a product from which potassium could not be leached by de-ionised water. It is suggested that the potassium may be associated with aluminosilicates formed during the roasting test, and although these may be leachable under acid or alkaline conditions, the leach liquor could contain other contaminants such as Al, Ca and Mg. In contrast, iron appears to be associated with hematite and would be expected to leach slowly, if at all.

#### **5** AKCNOWLEDGEMENTS

The authors would like to thank Shaun O'Donnell for the particle size distribution data, Sophia Surin for measurement of the XRD patterns and, Tuyen Pham and Milan Chovancek for provision of the analytical data.

#### **6 REFERENCES**

Apelblat, A., 2014. Citric Acid. Springer International Publishing, Switzerland, 357 pp.

Ladeira, P.L.G., 2014. Potash product, method and apparatus. World Patent Application 2014/087118A1, 22pp.

Oliveira M.L.N., Malagoni, R.A., Franco Jr., M.R., 2013. Solubility of citric acid in water, ethanol, n-propanol and in mixtures of ethanol + water. Fluid Phase Equilibria 352, 110-113.

PubChem Open Chemistry Data Base, Compound Summary for CID 311: Citric Acid. http://pubchem.ncbi.nlm.nih.gov/compound/311#section=Experimental-Properties.

Temuujin, J., Okada, K., Jadambaa, T.S., Mackenzie, K.J.D., Amarsanaa, J., 2002. Effect of grinding on the preparation of porous material from talc by selective leaching. Journal of Materials Science Letters 21, 1607-1609.

Tschirner, F., 1919. Process of treating glauconite and similar materials.US Patent Application 1,292,929A, 3 pp.

Yadav, V.P., Sharma, T., 1992. Leaching of glauconitic sand stone in acid lixiviants. Minerals Engineering 5(6), 715-720.

Yadav, V.P., Sharma, T., Saxena, V.K., 2000. Dissolution kinetics of potassium from glauconitic sandstone in acid lixiviant. International Journal of Mineral Processing 60, 15-36.

#### APPENDIX A: PARTICLE SIZE DISTRIBUTION DATA FOR THE GLAUCONITE CONCENTRATE FEEDS

| Analysis Re                                                                                                                                                                                                                                                                                                                                       | port                     |                            |                          |                     | Ра                 | C S              | I R O<br>Il R O                      | vice                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|--------------------------|---------------------|--------------------|------------------|--------------------------------------|--------------------------|
| Sample Name:                                                                                                                                                                                                                                                                                                                                      | G1 FEED                  |                            |                          |                     |                    |                  |                                      |                          |
| Batch No:                                                                                                                                                                                                                                                                                                                                         | R1514224                 |                            |                          |                     |                    |                  |                                      |                          |
| PASIDNo:                                                                                                                                                                                                                                                                                                                                          | P80223                   |                            |                          |                     |                    |                  |                                      |                          |
| Dispersant:                                                                                                                                                                                                                                                                                                                                       | Water                    |                            |                          | RI/ABS:             |                    | 2.74/1           |                                      |                          |
| Additives:                                                                                                                                                                                                                                                                                                                                        | 10 ml Calgon             |                            |                          | Analysis Mo         | del:               | General pur      | pose (spher                          | ical)                    |
| Sonication:                                                                                                                                                                                                                                                                                                                                       | 20 minutes in ultraso    | nic bath                   |                          | Result units        | :                  | V olume          |                                      |                          |
| Concentration:                                                                                                                                                                                                                                                                                                                                    | 0.0037 % vol V           | /ol.Weighted Mean D[       | 4,3]:                    | 8.049 µn            | n                  | d(0.1):          | 0.953                                | μm                       |
| Obscuration:                                                                                                                                                                                                                                                                                                                                      | 14.13 % S                | Surface Weighted Mea       | n D[3,2]:                | 2.198 µn            | n                  | d(0.5):          | 4.483                                | μm                       |
| Weighted Residual:                                                                                                                                                                                                                                                                                                                                | 0.491 % 5                | specific Surface Area:     |                          | 2.73 m <sup>2</sup> | /cc                | P80:             | 14.173                               | μm                       |
|                                                                                                                                                                                                                                                                                                                                                   |                          |                            |                          |                     |                    | d(0.9):          | 20.746                               | μm                       |
| 10<br>9<br>8<br>7<br>7<br>6<br>9<br>8<br>7<br>7<br>6<br>9<br>8<br>7<br>7<br>6<br>9<br>8<br>7<br>7<br>7<br>6<br>9<br>8<br>7<br>7<br>7<br>9<br>8<br>7<br>7<br>7<br>9<br>8<br>7<br>7<br>9<br>8<br>7<br>7<br>9<br>8<br>7<br>7<br>9<br>8<br>7<br>7<br>9<br>8<br>7<br>7<br>9<br>8<br>7<br>7<br>9<br>9<br>8<br>7<br>7<br>9<br>9<br>8<br>7<br>9<br>7<br>9 | 0.1                      | 1 10<br>Size (             | μm)                      |                     | 1                  |                  | 100<br>80<br>60<br>40<br>20<br>10000 | % by Volume Passing size |
| Size(µm) VolUnder %                                                                                                                                                                                                                                                                                                                               | Size(µm) VolUnder %      | Size (µm) Vol Under %      | Size (µm)                | Vol Under %         | Size (µm)          | VolUnder %       | Size(µm)                             | Vol Under %              |
| 0.020 0.00 0.022 0.00                                                                                                                                                                                                                                                                                                                             | 0.142 0.00<br>0.159 0.00 | 1002 10.84<br>1125 12.98   | 7.098<br>7.982           | 6195<br>64.83       | 50.238<br>56.368   | 100.00<br>100.00 | 355.656<br>399.052                   | 100.00<br>100.00         |
| 0.025 0.00<br>0.028 0.00                                                                                                                                                                                                                                                                                                                          | 0.178 0.05<br>0.200 0.19 | 1262 15.38<br>1416 18.01   | 8.934<br>10.024          | 67.73<br>70.69      | 63.248<br>70.963   | 100.00<br>100.00 | 447.744<br>502.377                   | 100.00<br>100.00         |
| 0.032 0.00<br>0.038 0.00                                                                                                                                                                                                                                                                                                                          | 0.224 0.45<br>0.252 0.79 | 1589 20.85<br>1783 23.84   | 11247<br>12.6 <b>1</b> 9 | 73.72<br>78.82      | 79.621<br>89.337   | 100.00<br>100.00 | 563.677<br>632.456                   | 100.00<br>100.00         |
| 0.040 0.00<br>0.045 0.00                                                                                                                                                                                                                                                                                                                          | 0.283 120<br>0.317 165   | 2.000 26.97<br>2.244 30.20 | 14.159<br>15.887         | 79.97<br>83.12      | 100.237<br>112.468 | 100.00<br>100.00 | 709.827<br>798.214                   | 100.00<br>100.00         |
| 0.050 0.00<br>0.058 0.00                                                                                                                                                                                                                                                                                                                          | 0.356 2.11<br>0.399 2.57 | 2.518 33.49<br>2.825 36.82 | 17.825<br>20.000         | 86.20<br>89.12      | 126.191<br>141589  | 100.00<br>100.00 | 893.367<br>1002.374                  | 100.00<br>100.00         |
| 0.083 0.00<br>0.071 0.00                                                                                                                                                                                                                                                                                                                          | 0.448 3.08<br>0.502 3.81 | 3.170 40.17<br>3.557 43.49 | 22.440<br>25.179         | 9180<br>94.15       | 158.868<br>178.250 | 100.00<br>100.00 | 1124.683<br>1261915                  | 100.00                   |
| 0.080 0.00                                                                                                                                                                                                                                                                                                                                        | 0.584 4.27               | 3.991 48.76<br>4.477 49.98 | 28.251<br>3.1898         | 96.13<br>97.71      | 200.000            | 100.00           | 1415.892<br>1588 656                 | 100.00                   |
| 0.100 0.00                                                                                                                                                                                                                                                                                                                                        | 0.710 8.12               | 5.024 53.08                | 35.566                   | 98.87               | 251785             | 100.00           | 1782.502                             | 100.00                   |
| 0.128 0.00                                                                                                                                                                                                                                                                                                                                        | 0.893 8.99               | 6.325 59.08                | 44.774                   | 99.99               | 318.979            | 100.00           | 2000.000                             | 00.00                    |

| Analysis Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eport                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                                |                                                                                                                                                                              | Pa                                                                                                                                                                                     | C S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I RO                                                                                                                                                                                | vice                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Name:<br>Batch No:<br>PA S ID No:                                                                                                                                                                                                                                                                                                                                                                                                                                          | G3 FEED<br>R1514224<br>P80224                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                         |
| Dispersant:<br>Additives:<br>Sonication:                                                                                                                                                                                                                                                                                                                                                                                                                                          | Water<br>10 ml Calgon<br>20 minutes in ultr                                                                                                                                                                                                                                                                                                                                                                                                                 | asonic bath                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                                                                                                | RI/ABS:<br>Analysis M<br>Result unit                                                                                                                                         | odel:<br>s:                                                                                                                                                                            | 2.74 / 1<br>General pui<br>V olume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rpose (sphei                                                                                                                                                                        | ical)                                                                                                                                                   |
| Concentration:<br>Obscuration:<br>Weighted Residual:                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0039 % v ol<br>15.86 %<br>0.708 %                                                                                                                                                                                                                                                                                                                                                                                                                         | Vol. Weight<br>Surface We<br>Specific Su                                                                                                                                                                                                                                                                                                                                                                                                                                           | aed Mean D[4<br>ighted Mean<br>rface Area:                                                                                                                           | 4,3]:<br>n D[3,2]:                                                                                                                                                             | 7.293 μ<br>2.024 μ<br>2.96 n                                                                                                                                                 | m<br>m<br>f/cc                                                                                                                                                                         | d(0.1):<br>d(0.5):<br>P80:<br>d(0.9):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.881<br>3.802<br>11.344<br>18.877                                                                                                                                                  | μm<br>μm<br>μm                                                                                                                                          |
| 10<br>9<br>7<br>7<br>8<br>7<br>8<br>8<br>7<br>7<br>8<br>8<br>7<br>7<br>8<br>9<br>7<br>7<br>9<br>7<br>9                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>Size (                                                                                                                                                         | μm)                                                                                                                                                                            |                                                                                                                                                                              |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100<br>80<br>60<br>40<br>20<br>10000                                                                                                                                                | % by Volume Passing size                                                                                                                                |
| Size ( µm)         Vol Under %           0.020         0.00           0.022         0.00           0.028         0.00           0.028         0.00           0.032         0.00           0.032         0.00           0.034         0.00           0.040         0.00           0.056         0.00           0.056         0.00           0.058         0.00           0.080         0.00           0.080         0.00           0.101         0.00           0.102         0.00 | Size (µm)         Vol Under           0.42         0           0.759         0           0.778         0           0.200         0           0.224         0           0.252         0           0.263         0           0.377         0           0.356         2           0.448         3           0.502         3           0.564         4           0.632         5           0.710         6           0.796         8           0.893         10 | Size (µm)           00         1002           00         1125           02         1282           08         14'8           32         1589           67         1783           1.11         2.000           161         2.244           12         2.5'8           65         2.825           121         3.170           85         3.557           62         3.991           59         4.477           83         5.024           37         5.637           24         6.325 | Vol Under %<br>12.44<br>14.94<br>17.70<br>20.68<br>23.82<br>27.09<br>30.45<br>33.87<br>37.34<br>40.85<br>44.38<br>47.94<br>51.49<br>55.02<br>58.51<br>61.92<br>65.22 | Size (µm)<br>7.098<br>7.962<br>8.934<br>10.024<br>11247<br>12.8 9<br>14.159<br>15.887<br>17.825<br>20.000<br>22.440<br>25.179<br>28.251<br>31698<br>35.568<br>39.905<br>44.774 | Vol Under %<br>68.41<br>7148<br>74.37<br>77.18<br>79.81<br>82.32<br>84.70<br>86.94<br>89.02<br>90.94<br>92.69<br>94.26<br>95.84<br>96.82<br>97.82<br>97.82<br>98.83<br>99.25 | <b>Size (µm)</b><br>50.238<br>56.368<br>63.244<br>79.62<br>89.337<br>10.237<br>112.466<br>126.9<br>14.1585<br>58.866<br>178.250<br>200.000<br>224.404<br>251.786<br>282.508<br>316.975 | VolUnder %<br>99,91<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,00<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000<br>00,000000 | Size ( µm)<br>355.656<br>399.052<br>447.744<br>502.377<br>632.456<br>709.627<br>796.244<br>893.367<br>102.374<br>124.683<br>12619.15<br>145.892<br>1588.656<br>1782.502<br>2000.000 | Vol Under 1<br>100 00<br>100 00 |

## APPENDIX B: MASS BALANCE SPREADSHEET DATA FOR THE LEACHING EXPERIMENTS

|   |                |                        |             |                  |                          |       | TEST CONDI      | TIONS:     |                  |               |       |      |  |
|---|----------------|------------------------|-------------|------------------|--------------------------|-------|-----------------|------------|------------------|---------------|-------|------|--|
|   | CLIENT         | NAME:                  | Track       | er Geoservices   | Pty Ltd                  |       | Ore(g):         |            | 76.69            |               |       |      |  |
|   | JOB NU         | JMBER:                 |             | G                |                          |       | Water (g):      |            | 0                |               |       |      |  |
|   | SAM            | IPLE:                  | Gla         | uconite Concen   | trate                    |       | Solution (mL):  |            | 532              |               |       |      |  |
|   | TEST           | NO.:                   |             | 1                |                          |       | Solution (g):   |            | 691.1            | Temperature ° | с:    | 95   |  |
|   | DA             | TE :                   |             | 20-April-2015    |                          |       | Solution Densi  | ty (g/mL): | 1.299            |               |       |      |  |
|   |                |                        |             |                  |                          |       | Pulp Density, 9 | ‰ (w/w):   | 10.0             |               |       |      |  |
|   | SOLIDS         |                        |             |                  |                          |       |                 |            |                  |               |       |      |  |
|   |                | Sampl                  | e wt., g    |                  |                          |       |                 | s          | olid Analysis, % | ó*            |       | 1    |  |
|   | Sample mins    | Slurry                 | Solid (dry) |                  |                          | Al    | Ca              | Fe         | К                | Mg            | Р     | Si   |  |
|   | Feed Solid     | 764.1                  | 76.7        |                  |                          | 3.68  | 3.52            | 14.5       | 6.09             | 2.28          | 1.07  | 22.0 |  |
|   | 60             | 43.9                   | 3.8         |                  |                          | 3.94  | 0.195           | 15.4       | 6.39             | 2.21          | 0.061 | 24.5 |  |
|   | 120            | 31.2                   | 2.7         |                  |                          | 3.86  | 0.192           | 15.4       | 6.44             | 2.19          | 0.036 | 24.8 |  |
|   | 240            | 46.7                   | 4.0         |                  |                          | 3.78  | 0.174           | 15.3       | 6.30             | 2.17          | 0.031 | 25.2 |  |
|   | 360            | 42.6                   | 3.7         |                  |                          | 3.69  | 0.157           | 15.2       | 6.21             | 2.13          | 0.040 | 25.4 |  |
|   | 480            | 61.8                   | 5.3         |                  |                          | 3.62  | 0.162           | 14.9       | 6.05             | 2.10          | 0.042 | 25.6 |  |
|   | Final          | 517.8                  | 47.0        |                  |                          | 3.57  | 0.180           | 14.8       | 6.04             | 2.08          | 0.044 | 25.5 |  |
|   |                |                        |             |                  |                          |       |                 |            |                  |               |       |      |  |
|   | LIQUORS        |                        |             |                  |                          |       |                 |            |                  |               |       |      |  |
|   |                |                        | Lie         | luor             |                          |       |                 | Liq        | uor Analysis, m  | g L4          |       |      |  |
|   | Sample mins    | FA<br>gL <sup>-1</sup> | рН          | Eh<br>mV Ag/AgCl | Density kgL <sup>4</sup> | Al    | Ca              | Fe         | К                | Mg            | Р     | Si   |  |
|   | Feed Liquor    |                        |             |                  |                          | 0     | 0               | 0          | 0                | 0             | 0     | 0    |  |
|   | 60             |                        | 0.57        |                  | 1.336                    | 602   | 5260            | 649        | 343              | 495           | 1830  | 206  |  |
|   | 120            |                        | 0.64        |                  | 1.324                    | 691   | 4935            | 778        | 432              | 522           | 1663  | 163  |  |
|   | 240            |                        | 0.68        |                  | 1.330                    | 872   | 5097            | 1130       | 621              | 596           | 1627  | 170  |  |
|   | 360            |                        | 0.72        |                  | 1.326                    | 966   | 4985            | 1351       | 732              | 638           | 1553  | 150  |  |
|   | 480            |                        | 0.90        |                  | 1.306                    | 1127  | 5018            | 1788       | 905              | 708           | 1352  | 160  |  |
|   | Final          |                        |             |                  | 1.381                    | 1115  | 4931            | 1760       | 909              | 707           | 1599  | 183  |  |
|   |                |                        |             |                  |                          |       |                 |            |                  |               |       |      |  |
|   | METAL EXTR     | RACTIONS               |             |                  |                          |       |                 |            |                  |               |       |      |  |
|   | Time           |                        |             |                  | Extraction, %            |       |                 |            |                  |               |       |      |  |
|   | mins           | Al                     | Ca          | Fe               | к                        | Mg    | Р               | Si**       |                  |               |       |      |  |
|   | 60             | 10.9                   | 95.6        | 3.3              | 4.1                      | 15.2  | 96.0            | 0.7        |                  |               |       |      |  |
|   | 120            | 12.6                   | 95.4        | 3.9              | 5.1                      | 16.1  | 97.4            | 0.5        |                  |               |       |      |  |
|   | 240            | 15.7                   | 96.0        | 5.6              | 7.4                      | 18.2  | 97.7            | 0.5        |                  |               |       |      |  |
|   | 360            | 17.5                   | 96.3        | 6.7              | 8.7                      | 19.5  | 96.9            | 0.5        |                  |               |       |      |  |
|   | 480            | 20.2                   | 96.2        | 8.9              | 10.8                     | 21.6  | 96.3            | 0.5        |                  |               |       |      |  |
|   | ** May include | some colloidal         | silica      |                  |                          |       |                 |            |                  |               |       |      |  |
|   | ACCOUNTAB      | BILITY                 |             |                  |                          |       |                 |            |                  |               |       |      |  |
|   |                |                        |             | Accountabi       | lity, % (Out/In)         |       |                 |            |                  |               |       |      |  |
|   | Physical Mass  | Al                     | Ca          | Fe               | К                        | Mg    | Р               | Si         |                  |               |       |      |  |
|   | 96.9           | 105.0                  | 100.1       | 97.2             | 96.2                     | 100.1 | 104.2           | 100.7      |                  |               |       |      |  |
|   |                |                        |             |                  |                          |       |                 |            |                  |               |       |      |  |
|   | HEAD GRAD      | E                      |             |                  |                          |       |                 |            |                  |               |       |      |  |
|   |                |                        |             | Analy            | sis, %                   |       |                 |            |                  |               |       |      |  |
|   |                | Al                     | Ca          | Fe               | К                        | Mg    | Р               | Si         |                  |               |       |      |  |
|   | Calculated     | 3.86                   | 3.52        | 14.1             | 5.86                     | 2.28  | 1.12            | 22.2       |                  |               |       |      |  |
|   | Actual         | 3.68                   | 3.52        | 14.5             | 6.09                     | 2.28  | 1.07            | 22.0       |                  |               |       |      |  |
|   |                |                        |             |                  |                          |       |                 |            |                  |               |       |      |  |
| · |                |                        |             |                  |                          |       |                 |            |                  |               |       |      |  |

|                                                                                                                      |                                                                                                               |                                                                                    |                                                                                                |                                                                                                                   |                                                                               | TEST CONDIT                                                                                              | TONS:                                                        |                |                                        |           |        |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------|----------------------------------------|-----------|--------|
| CLIENT                                                                                                               | NAME :                                                                                                        | Track                                                                              | er Geoservices                                                                                 | Pty Ltd                                                                                                           |                                                                               | Ore(g):                                                                                                  |                                                              | 76.38          | Sulfuric Acid M                        | fass (g): | 136.70 |
| JOB NU                                                                                                               | JMBER:                                                                                                        |                                                                                    | G                                                                                              |                                                                                                                   |                                                                               | Water (g):                                                                                               |                                                              | 0              | H <sub>2</sub> SO <sub>4</sub> Conc. ( | ‰ w/w):   | 98     |
| SAM                                                                                                                  | (PLE:                                                                                                         | Gla                                                                                | uconite Concen                                                                                 | trate                                                                                                             |                                                                               | Solution (mL):                                                                                           |                                                              | 598            |                                        |           |        |
| TEST                                                                                                                 | 'NO. :                                                                                                        |                                                                                    | 2                                                                                              |                                                                                                                   |                                                                               | Solution (g):                                                                                            |                                                              | 687.7          | Temperature °                          | C:        | 95     |
| DA                                                                                                                   | TE :                                                                                                          |                                                                                    | 21-April-2015                                                                                  |                                                                                                                   |                                                                               | Solution Densit                                                                                          | y (g/mL):                                                    | 1.150          |                                        |           |        |
|                                                                                                                      |                                                                                                               |                                                                                    |                                                                                                |                                                                                                                   |                                                                               | Pulp Density, %                                                                                          | % (w/w):                                                     | 10.0           |                                        |           |        |
| SOLIDS                                                                                                               |                                                                                                               |                                                                                    |                                                                                                |                                                                                                                   |                                                                               |                                                                                                          |                                                              |                |                                        |           |        |
|                                                                                                                      | Sample                                                                                                        | e wt., g                                                                           |                                                                                                |                                                                                                                   |                                                                               |                                                                                                          | s                                                            | olid Analysis, | %*                                     | с.<br>    |        |
| Sample mins                                                                                                          | Slurry                                                                                                        | Solid (dry)                                                                        |                                                                                                |                                                                                                                   | Al                                                                            | Ca                                                                                                       | Fe                                                           | К              | Mg                                     | Р         | Si     |
| Feed Solid                                                                                                           | 764.1                                                                                                         | 76.4                                                                               |                                                                                                |                                                                                                                   | 3.68                                                                          | 3.52                                                                                                     | 14.5                                                         | 6.09           | 2.28                                   | 1.07      | 22.0   |
| 60                                                                                                                   | 41.7                                                                                                          | 3.4                                                                                |                                                                                                |                                                                                                                   | 3.04                                                                          | 0.072                                                                                                    | 14.2                                                         | 5.68           | 1.94                                   | 0.040     | 27.1   |
| 120                                                                                                                  | 39.8                                                                                                          | 3.0                                                                                |                                                                                                |                                                                                                                   | 2.68                                                                          | 0.067                                                                                                    | 12.7                                                         | 4 99           | 1.72                                   | 0.019     | 29.4   |
| 240                                                                                                                  | 35.1                                                                                                          | 23                                                                                 |                                                                                                |                                                                                                                   | 2.13                                                                          | 0.056                                                                                                    | 10.0                                                         | 3.97           | 1 39                                   | 0.026     | 32.0   |
| 360                                                                                                                  | 38.1                                                                                                          | 2.5                                                                                |                                                                                                |                                                                                                                   | 1.70                                                                          | 0.073                                                                                                    | 7.9                                                          | 3.11           | 1.09                                   | 0.033     | 34.2   |
| 480                                                                                                                  | 47.7                                                                                                          | 2.5                                                                                |                                                                                                |                                                                                                                   | 1.70                                                                          | 0.093                                                                                                    | 62                                                           | 2.45           | 0.87                                   | 0.025     | 35.5   |
| Final                                                                                                                | 530.8                                                                                                         | 38.1                                                                               |                                                                                                |                                                                                                                   | 1.12                                                                          | 3.001                                                                                                    | 46                                                           | 1.80           | 0.66                                   | 0.053     | 33.5   |
| r mät                                                                                                                | 550.0                                                                                                         |                                                                                    |                                                                                                |                                                                                                                   | 1.12                                                                          | 5.001                                                                                                    |                                                              | 1.07           | 5.00                                   | 0.000     | 32.2   |
| LIQUORS                                                                                                              |                                                                                                               |                                                                                    |                                                                                                |                                                                                                                   |                                                                               |                                                                                                          |                                                              |                |                                        |           |        |
|                                                                                                                      |                                                                                                               | Lic                                                                                | luor                                                                                           |                                                                                                                   |                                                                               |                                                                                                          | Lia                                                          | uor Analysis.  | ng Lª                                  |           |        |
| Sample mins                                                                                                          | FA                                                                                                            | рН                                                                                 | Eh                                                                                             | Density kgL <sup>4</sup>                                                                                          | Al                                                                            | Ca                                                                                                       | Fe                                                           | к              | Mg                                     | Р         | Si     |
| Feed Liquor                                                                                                          | gL"                                                                                                           |                                                                                    | mV Ag/AgCl                                                                                     |                                                                                                                   | 0                                                                             | 0                                                                                                        | 0                                                            | 0              | 0                                      | 0         | 0      |
| reeu Liquoi                                                                                                          |                                                                                                               | 0.22                                                                               |                                                                                                | 1.102                                                                                                             | 1420                                                                          | 278                                                                                                      | 2726                                                         | 1606           | 820                                    | 1417      | 02     |
| 120                                                                                                                  |                                                                                                               | -0.05                                                                              |                                                                                                | 1.172                                                                                                             | 2018                                                                          | 385                                                                                                      | 5748                                                         | 2652           | 1186                                   | 1417      | 80     |
| 240                                                                                                                  |                                                                                                               | -0.05                                                                              |                                                                                                | 1.176                                                                                                             | 2018                                                                          | 426                                                                                                      | 0/26                                                         | 4169           | 1662                                   | 1441      | 72     |
| 240                                                                                                                  |                                                                                                               | -0.07                                                                              |                                                                                                | 1.104                                                                                                             | 2797                                                                          | 420                                                                                                      | 12117                                                        | 5156           | 2045                                   | 1512      | 62     |
| 480                                                                                                                  |                                                                                                               | -0.07                                                                              |                                                                                                | 1.190                                                                                                             | 2756                                                                          | 449                                                                                                      | 1/179                                                        | 5052           | 2045                                   | 1512      | 67     |
| 480                                                                                                                  |                                                                                                               | -0.07                                                                              |                                                                                                | 1.195                                                                                                             | 3730                                                                          | 400                                                                                                      | 14178                                                        | 5955           | 2295                                   | 1547      | 07     |
| Final                                                                                                                |                                                                                                               |                                                                                    |                                                                                                | 1.195                                                                                                             | 3633                                                                          | 437                                                                                                      | 14895                                                        | 6212           | 23/4                                   | 1305      | 23     |
| METAL EVTE                                                                                                           | PACTIONS                                                                                                      |                                                                                    |                                                                                                |                                                                                                                   |                                                                               |                                                                                                          |                                                              |                |                                        |           |        |
| METAL EATS                                                                                                           | ACTIONS                                                                                                       |                                                                                    |                                                                                                |                                                                                                                   |                                                                               |                                                                                                          |                                                              |                |                                        |           |        |
|                                                                                                                      |                                                                                                               |                                                                                    |                                                                                                | Extraction %                                                                                                      |                                                                               |                                                                                                          |                                                              |                |                                        |           |        |
| Time                                                                                                                 |                                                                                                               |                                                                                    |                                                                                                | Extraction, %                                                                                                     |                                                                               |                                                                                                          |                                                              |                |                                        |           |        |
| Time<br>mins                                                                                                         | Al                                                                                                            | Ca                                                                                 | Fe                                                                                             | Extraction, %                                                                                                     | Mg                                                                            | Р                                                                                                        | Si**                                                         |                |                                        |           |        |
| Time<br>mins<br>60                                                                                                   | Al<br>31.7                                                                                                    | Ca<br>6.3                                                                          | <b>Fe</b><br>18.3                                                                              | Extraction, % K 21.7                                                                                              | <b>Mg</b><br>29.5                                                             | <b>P</b><br>97.2                                                                                         | Si**<br>0.3                                                  |                |                                        |           |        |
| Time<br>mins<br>60<br>120                                                                                            | Al<br>31.7<br>44.5                                                                                            | Ca<br>6.3<br>8.7                                                                   | Fe<br>18.3<br>32.6                                                                             | Extraction, %                                                                                                     | Mg<br>29.5<br>42.4                                                            | P<br>97.2<br>98.8                                                                                        | Si**<br>0.3<br>0.3                                           |                |                                        |           |        |
| Time<br>mins<br>60<br>120<br>240                                                                                     | Al<br>31.7<br>44.5<br>61.6                                                                                    | Ca<br>6.3<br>8.7<br>9.7                                                            | Fe<br>18.3<br>32.6<br>53.5                                                                     | Extraction, %<br>K<br>21.7<br>36.2<br>56.2                                                                        | Mg<br>29.5<br>42.4<br>59.4                                                    | P<br>97.2<br>98.8<br>98.6                                                                                | Si**<br>0.3<br>0.3<br>0.3                                    |                |                                        |           |        |
| Time<br>mins<br>60<br>120<br>240<br>360                                                                              | Al<br>31.7<br>44.5<br>61.6<br>70.6                                                                            | Ca<br>6.3<br>8.7<br>9.7<br>10.1                                                    | Fe<br>18.3<br>32.6<br>53.5<br>65.0                                                             | Extraction, %<br>K<br>21.7<br>36.2<br>56.2<br>66.8                                                                | Mg<br>29.5<br>42.4<br>59.4<br>69.4                                            | P<br>97.2<br>98.8<br>98.6<br>98.2                                                                        | Si**<br>0.3<br>0.3<br>0.3<br>0.3<br>0.2                      |                |                                        |           |        |
| Time<br>mins           60           120           240           360           480                                    | Al<br>31.7<br>44.5<br>61.6<br>70.6<br>78.0                                                                    | Ca<br>6.3<br>8.7<br>9.7<br>10.1<br>10.4                                            | Fe<br>18.3<br>32.6<br>53.5<br>65.0<br>75.1                                                     | Extraction, %<br>K<br>21.7<br>36.2<br>56.2<br>66.8<br>76.2                                                        | Mg<br>29.5<br>42.4<br>59.4<br>69.4<br>77.7                                    | P<br>97.2<br>98.8<br>98.6<br>98.2<br>98.8                                                                | Si**<br>0.3<br>0.3<br>0.3<br>0.2<br>0.2                      |                |                                        |           |        |
| Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include                                                     | Al<br>31.7<br>44.5<br>61.6<br>70.6<br>78.0<br>some colloidal                                                  | Ca<br>6.3<br>8.7<br>9.7<br>10.1<br>10.4<br>silica                                  | Fe<br>18.3<br>32.6<br>53.5<br>65.0<br>75.1                                                     | Extraction, %<br>K<br>21.7<br>36.2<br>56.2<br>66.8<br>76.2                                                        | Mg<br>29.5<br>42.4<br>59.4<br>69.4<br>77.7                                    | P<br>97.2<br>98.8<br>98.6<br>98.2<br>98.8                                                                | Si**<br>0.3<br>0.3<br>0.3<br>0.2<br>0.2                      |                |                                        |           |        |
| Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include<br>ACCOUNTAB                                        | Al<br>31.7<br>44.5<br>61.6<br>70.6<br>78.0<br>some colloidal a<br><u>LLTTY</u>                                | Ca<br>6.3<br>8.7<br>9.7<br>10.1<br>10.4<br>silica                                  | Fe<br>18.3<br>32.6<br>53.5<br>65.0<br>75.1                                                     | Extraction, %<br>X<br>21.7<br>36.2<br>56.2<br>66.8<br>76.2                                                        | Mg<br>29.5<br>42.4<br>59.4<br>69.4<br>77.7                                    | P<br>97.2<br>98.8<br>98.6<br>98.2<br>98.8                                                                | Si**<br>0.3<br>0.3<br>0.3<br>0.2<br>0.2                      |                |                                        |           |        |
| Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include<br><u>ACCOUNTAB</u>                                 | Al<br>31.7<br>44.5<br>61.6<br>70.6<br>78.0<br>some colloidal :<br>LITY                                        | Ca<br>6.3<br>8.7<br>9.7<br>10.1<br>10.4<br>silica                                  | Fe<br>18.3<br>32.6<br>53.5<br>65.0<br>75.1<br>Accountabil                                      | Extraction, %<br>X<br>21.7<br>36.2<br>56.2<br>66.8<br>76.2<br>ity, % (Out/In)                                     | Mg<br>29.5<br>42.4<br>59.4<br>69.4<br>77.7                                    | P<br>97.2<br>98.8<br>98.6<br>98.2<br>98.8                                                                | Si**<br>0.3<br>0.3<br>0.3<br>0.2<br>0.2                      |                |                                        |           |        |
| Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include<br><u>ACCOUNTAB</u>                                 | Al<br>31.7<br>44.5<br>61.6<br>70.6<br>78.0<br>some colloidal :<br>ILITY<br>Al                                 | Ca<br>6.3<br>8.7<br>9.7<br>10.1<br>10.4<br>silica<br>Ca                            | Fe<br>18.3<br>32.6<br>53.5<br>65.0<br>75.1<br>Accountabil<br>Fe                                | Extraction, %<br>21.7<br>36.2<br>56.2<br>66.8<br>76.2<br>ity, % (Out/In)<br>K                                     | Mg<br>29.5<br>42.4<br>59.4<br>69.4<br>77.7<br>Mg                              | P<br>97.2<br>98.8<br>98.6<br>98.2<br>98.8<br>98.8                                                        | Si**<br>0.3<br>0.3<br>0.2<br>0.2<br>0.2<br>Si                |                |                                        |           |        |
| Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include<br>ACCOUNTAB<br>ACCOUNTAB                           | Al<br>31.7<br>44.5<br>61.6<br>70.6<br>78.0<br>some colloidal :<br>ILITY<br>Al<br>98.3                         | Ca<br>6.3<br>8.7<br>9.7<br>10.1<br>10.4<br>silica<br>Ca<br>52.4                    | Fe<br>18.3<br>32.6<br>53.5<br>65.0<br>75.1<br>Accountabil<br>Fe<br>97.7                        | Extraction, %<br>K<br>21.7<br>36.2<br>56.2<br>66.8<br>76.2<br>ity, % (Out(In))<br>K<br>96.6                       | Mg<br>29.5<br>42.4<br>59.4<br>69.4<br>77.7<br>Mg<br>96.9                      | P           97.2           98.8           98.6           98.2           98.8           9           107.4 | Si**<br>0.3<br>0.3<br>0.2<br>0.2<br>0.2<br>Si<br>99.1        |                |                                        |           |        |
| Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include<br>ACCOUNTAB<br>ACCOUNTAB<br>Physical Mass<br>96.0  | Al<br>31.7<br>44.5<br>61.6<br>70.6<br>78.0<br>some colloidal :<br>ILITY<br>Al<br>98.3                         | Ca<br>6.3<br>8.7<br>9.7<br>10.1<br>10.4<br>silica<br>Ca<br>52.4                    | Fe<br>18.3<br>32.6<br>53.5<br>65.0<br>75.1<br>Accountabil<br>Fe<br>97.7                        | Extraction, %<br>K<br>21.7<br>36.2<br>56.2<br>66.8<br>76.2<br>ity, % (Out/in)<br>K<br>96.6                        | Mg<br>29.5<br>42.4<br>59.4<br>69.4<br>77.7<br>Mg<br>96.9                      | P<br>97.2<br>98.8<br>98.6<br>98.2<br>98.8<br>98.8<br>98.8<br>98.8<br>98.8<br>98.8                        | Si**<br>0.3<br>0.3<br>0.2<br>0.2<br>0.2<br>0.2<br>Si<br>99.1 |                |                                        |           |        |
| Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include<br>ACCOUNTAB<br>Physical Mass<br>96.0               | Al<br>31.7<br>44.5<br>61.6<br>70.6<br>78.0<br>some colloidal :<br>ILITY<br>Al<br>98.3<br>5                    | Ca<br>6.3<br>8.7<br>9.7<br>10.1<br>10.4<br>silica<br>Ca<br>52.4                    | Fe<br>18.3<br>32.6<br>53.5<br>65.0<br>75.1<br>Accountabil<br>Fe<br>97.7                        | Extraction, %  K 21.7 36.2 56.2 66.8 76.2 ity, % (Out.In) K 96.6                                                  | Mg<br>29.5<br>42.4<br>59.4<br>69.4<br>77.7<br>Mg<br>96.9                      | P<br>97.2<br>98.8<br>98.6<br>98.2<br>98.8<br>98.8<br>98.8<br>98.8<br>98.8                                | Si**<br>0.3<br>0.3<br>0.2<br>0.2<br>0.2<br>Si<br>99.1        |                |                                        |           |        |
| Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include<br>ACCOUNTAB<br>Physical Mass<br>96.0<br>HEAD GRADI | Al<br>31.7<br>44.5<br>61.6<br>70.6<br>78.0<br>some colloidal :<br>ILITY<br>Al<br>98.3<br>E                    | Ca<br>6.3<br>8.7<br>9.7<br>10.1<br>10.4<br>silica<br>Ca<br>52.4                    | Fe<br>18.3<br>32.6<br>53.5<br>65.0<br>75.1<br>Accountabil<br>Fe<br>97.7<br>Analy               | Extraction, %  K 21.7 36.2 56.2 66.8 76.2 ity, % (Out.Ta) K 96.6 sis, %                                           | Mg<br>29.5<br>42.4<br>59.4<br>69.4<br>77.7<br>Mg<br>96.9                      | P<br>97.2<br>98.8<br>98.6<br>98.2<br>98.8<br>98.8<br>98.8<br>98.8                                        | Si**<br>0.3<br>0.3<br>0.2<br>0.2<br>0.2<br>5<br>8<br>99.1    |                |                                        |           |        |
| Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include<br>ACCOUNTAB<br>Physical Mass<br>96.0<br>#EAD GRADI | Al<br>31.7<br>44.5<br>61.6<br>70.6<br>78.0<br>some colloidal :<br>ILITY<br>Al<br>98.3<br>E<br>4<br>Al         | Ca<br>6.3<br>8.7<br>9.7<br>10.1<br>10.4<br>silica<br>Ca<br>52.4<br>Ca              | Fe<br>18.3<br>32.6<br>53.5<br>65.0<br>75.1<br>Accountabil<br>Fe<br>97.7<br>Analy<br>Fe         | Extraction, %  K 21.7 36.2 56.2 66.8 76.2 ity, % (Out/In) K 96.6 sis, % K                                         | Mg<br>29.5<br>42.4<br>59.4<br>69.4<br>77.7<br>Mg<br>96.9                      | P<br>97.2<br>98.8<br>98.6<br>98.2<br>98.8<br>98.8<br>98.8<br>98.8<br>98.8<br>98.8<br>98.8                | Si** 0.3 0.3 0.3 0.2 0.2 0.2 Si Si 99.1 Si                   |                |                                        |           |        |
| Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include<br>ACCOUNTAB<br>Physical Mass<br>96.0<br>HEAD GRADI | Al<br>31.7<br>44.5<br>61.6<br>70.6<br>78.0<br>some colloidal :<br>ILITY<br>Al<br>98.3<br>E<br>E<br>Al<br>3.62 | Ca<br>6.3<br>8.7<br>9.7<br>10.1<br>10.4<br>silica<br>Ca<br>52.4<br>Ca<br>2<br>52.4 | Fe<br>18.3<br>32.6<br>53.5<br>65.0<br>75.1<br>Accountabil<br>Fe<br>97.7<br>Analy<br>Fe<br>14.1 | Extraction, %<br>K<br>21.7<br>36.2<br>56.2<br>66.8<br>76.2<br>ity, % (Out/ln)<br>K<br>96.6<br>sis, %<br>K<br>5.88 | Mg<br>29.5<br>42.4<br>59.4<br>69.4<br>77.7<br>7.7<br>Mg<br>96.9<br>Mg<br>2.21 | P<br>97.2<br>98.8<br>98.6<br>98.2<br>98.8<br>98.2<br>98.8<br>98.8<br>98.8<br>98.2<br>98.8<br>98.8        | Si** 0.3 0.3 0.3 0.2 0.2 0.2  Si 99.1  Si 21.8  21.8         |                |                                        |           |        |

|                |                  |             |                |                           |      | TEST CONDIT     | TONS:     |                  |                |       |      |  |
|----------------|------------------|-------------|----------------|---------------------------|------|-----------------|-----------|------------------|----------------|-------|------|--|
| CLIENT         | NAME:            | Track       | er Geoservices | Pty Ltd                   |      | Ore(g):         |           | 76.44            |                |       |      |  |
| JOB NU         | UMBER:           |             | G              |                           |      | Water (g):      |           | 0                |                |       |      |  |
| SAM            | IPLE:            | Gla         | uconite Concen | trate                     |      | Solution (mL):  |           | 532              | _              |       |      |  |
| TEST           | r NO. :          |             | 3              |                           |      | Solution (g):   |           | 691.1            | Temperature °( | с:    | 95   |  |
| DA             | TE :             |             | 23-April-2015  |                           |      | Solution Densit | y (g/mL): | 1.299            |                |       |      |  |
|                |                  |             |                |                           |      | Pulp Density, % | % (w/w):  | 10.0             |                |       |      |  |
| SOLIDS         |                  |             |                |                           |      |                 |           |                  |                |       |      |  |
|                | Sample           | e wt., g    |                |                           |      |                 | s         | olid Analysis, % | <b>6</b> *     |       |      |  |
| Sample mins    | Slurry           | Solid (dry) |                |                           | Al   | Ca              | Fe        | к                | Mg             | Р     | Si   |  |
| Feed Solid     | 767.6            | 76.4        |                |                           | 3.60 | 3.04            | 14.3      | 5.95             | 2.24           | 0.98  | 22.0 |  |
| 60             | 38.0             | 2.7         |                |                           | 3.01 | 0.151           | 13.5      | 4.98             | 1.86           | 0.066 | 26.5 |  |
| 120            | 44.0             | 3.3         |                |                           | 2.95 | 0.153           | 13.4      | 4.96             | 1.85           | 0.068 | 27.2 |  |
| 240            | 43.7             | 3.3         |                |                           | 2.86 | 0.136           | 12.9      | 4.79             | 1.78           | 0.096 | 27.3 |  |
| 360            | 39.4             | 2.8         |                |                           | 2.82 | 0.129           | 12.8      | 4.73             | 1.76           | 0.061 | 28.1 |  |
| 480            | 56.9             | 4.2         |                |                           | 2.71 | 0.121           | 12.2      | 4.54             | 1.69           | 0.071 | 28.0 |  |
| Final          | 518.4            | 42.9        |                |                           | 2.68 | 0.133           | 12.2      | 4.57             | 1.69           | 0.062 | 28.0 |  |
|                |                  |             |                |                           |      | _               |           |                  |                |       |      |  |
| LIQUORS        |                  |             |                |                           |      |                 |           |                  |                |       |      |  |
|                |                  | Liq         | uor            |                           |      |                 | Liq       | uor Analysis, m  | g L-1          |       |      |  |
| Sample mins    | FA               | рН          | Eh             | Density kgL <sup>.1</sup> | Al   | Ca              | Fe        | К                | Mg             | Р     | Si   |  |
| Feed Liquor    | gL               |             | III Y Ag/AgCI  |                           | 0    | 0               | 0         | 0                | 0              | 0     | 0    |  |
| 60             |                  | 1.19        |                | 1.325                     | 1501 | 3602            | 4013      | 2327             | 915            | 1308  | 133  |  |
| 120            |                  | 1.16        |                | 1.327                     | 1608 | 3680            | 4480      | 2479             | 988            | 1355  | 133  |  |
| 240            |                  | 0.97        |                | 1.332                     | 1811 | 3852            | 5264      | 2767             | 1109           | 1444  | 135  |  |
| 360            |                  | 1.02        |                | 1.336                     | 1953 | 3953            | 5850      | 2993             | 1181           | 1501  | 137  |  |
| 480            |                  | 1.12        |                | 1.336                     | 2192 | 4107            | 6774      | 3371             | 1325           | 1560  | 151  |  |
| Final          |                  |             |                | 1.328                     | 2240 | 4102            | 6887      | 3420             | 1346           | 1594  | 194  |  |
|                |                  |             |                |                           |      |                 |           |                  |                |       |      |  |
| METAL EXTR     | RACTIONS         |             |                |                           |      |                 |           |                  |                |       |      |  |
| Time           |                  | Į           |                | Extraction, %             |      | 1               |           |                  |                |       |      |  |
| mins           | A1               | Ca          | Fe             | к                         | Mσ   | Р               | Si**      |                  |                |       |      |  |
|                |                  | 05.0        |                |                           |      | 0               | 0.7       |                  |                |       |      |  |
| 60             | 33.0             | 95.9        | 22.7           | 31.6                      | 32.7 | 95.1            | 0.5       |                  |                |       |      |  |
| 120            | 34.1             | 95.8        | 24.0           | 32.1                      | 33.6 | 94.9            | 0.5       |                  |                |       |      |  |
| 240            | 36.8             | 96.3        | 27.3           | 34.7                      | 36.5 | 93.2            | 0.5       |                  |                |       |      |  |
| 360            | 41.0             | 96.8        | 31.3           | 38.8                      | 40.2 | 96.1            | 0.5       |                  |                |       |      |  |
| 480            | 43.3             | 97.0        | 34.4           | 41.2                      | 42.5 | 95.4            | 0.5       |                  |                |       |      |  |
| ** May include | e some colloidal | silica      |                |                           |      |                 |           |                  |                |       |      |  |
| ACCOUNTAB      | <u>MLITY</u>     |             | A              | ity 9/ (C                 |      |                 |           |                  |                |       |      |  |
|                |                  | 6           | Accountabi     | nty, 70 (Out/In)          | v    | - P             | 61        |                  |                |       |      |  |
| Physical Mass  | Al               | Ca          | Fe 07.2        | K                         | Mg   | P               | S1        |                  |                |       |      |  |
| 96.5           | 96.5             | 92.3        | 97.3           | 90.8                      | 97.6 | 110.7           | 98.4      |                  |                |       |      |  |
| HEAD CRAD      | F                |             |                |                           |      |                 |           |                  |                |       |      |  |
| HEAD GRAD      | <u>E</u>         |             | An-l-          | eic %                     |      |                 |           |                  |                |       |      |  |
|                |                  | G           | Analy          | 515, 70                   | N.   | n               | e:        |                  |                |       |      |  |
| C-h 1 + 1      | AI               | 2 00        | 12.0           | 5.75                      | Mg   | P 1.00          | 21.7      |                  |                |       |      |  |
| Actual         | 3.55             | 2.60        | 14.3           | 5.05                      | 2.18 | 0.98            | 21.7      |                  |                |       |      |  |
| Actual         | 5.00             | 3.04        | 14.3           | 3.93                      | 2.24 | 0.98            | 22.0      |                  |                |       |      |  |
|                |                  |             |                |                           |      |                 |           |                  |                |       |      |  |

|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                                               | TEST CONDIT                                                                                                                                                                                                                                                                                                                                     | IONS:                                                    |                  |                   |       |      |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------|-------------------|-------|------|
| CLIENT                                                                                                                                  | NAME :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Track                                                                            | er Geoservices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pty Ltd                                                                         |                                                                                               | Ore(g):                                                                                                                                                                                                                                                                                                                                         |                                                          | 81.66            |                   |       |      |
| JOB NU                                                                                                                                  | JMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                                                                                               | Water (g):                                                                                                                                                                                                                                                                                                                                      |                                                          | 585              |                   |       |      |
| SAM                                                                                                                                     | (PLE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limed Roas                                                                       | sted Glauconite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Concentrate                                                                     |                                                                                               | Solution (mL):                                                                                                                                                                                                                                                                                                                                  |                                                          | 586              |                   |       |      |
| TEST                                                                                                                                    | 'NO. :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                                                                                               | Solution (g):                                                                                                                                                                                                                                                                                                                                   |                                                          | 585.0            | Temperature °     | C:    | 95   |
| DA                                                                                                                                      | TE :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  | 24-April-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                                                               | Solution Densit                                                                                                                                                                                                                                                                                                                                 | y (g/mL):                                                | 0.998            |                   |       |      |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                                               | Pulp Density, %                                                                                                                                                                                                                                                                                                                                 | (w/w):                                                   | 12.2             |                   |       |      |
| SOLIDS                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                 |                                                          |                  |                   |       |      |
|                                                                                                                                         | Sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e wt., g                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                                               | -                                                                                                                                                                                                                                                                                                                                               | s                                                        | olid Analysis, % | é*                |       |      |
| Sample mins                                                                                                                             | Slurry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Solid (dry)                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 | Al                                                                                            | Ca                                                                                                                                                                                                                                                                                                                                              | Fe                                                       | к                | Mg                | Р     | Si   |
| Feed Solid                                                                                                                              | 666.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76.4                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 | 3.37                                                                                          | 11.65                                                                                                                                                                                                                                                                                                                                           | 14.3                                                     | 5.74             | 2.52              | 0.78  | 21.2 |
| 60                                                                                                                                      | 32.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 | 3.11                                                                                          | 15.855                                                                                                                                                                                                                                                                                                                                          | 13.2                                                     | 4.01             | 2.66              | 0.784 | 19.7 |
| 120                                                                                                                                     | 29.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.3                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 | 3.04                                                                                          | 16.789                                                                                                                                                                                                                                                                                                                                          | 12.9                                                     | 3.56             | 2.67              | 0.803 | 19.2 |
| 240                                                                                                                                     | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 | 2.93                                                                                          | 18.320                                                                                                                                                                                                                                                                                                                                          | 12.3                                                     | 2.84             | 2.70              | 0.791 | 18.5 |
| 360                                                                                                                                     | 34.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 | 3.12                                                                                          | 15.061                                                                                                                                                                                                                                                                                                                                          | 13.3                                                     | 4.26             | 2.60              | 0.788 | 19.7 |
| 480                                                                                                                                     | 34.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 | 3.14                                                                                          | 14.660                                                                                                                                                                                                                                                                                                                                          | 13.4                                                     | 4.40             | 2.58              | 0.804 | 19.8 |
| Final                                                                                                                                   | 487.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.7                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 | 3.32                                                                                          | 11.069                                                                                                                                                                                                                                                                                                                                          | 14.9                                                     | 5.68             | 2.46              | 0.790 | 20.9 |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                 |                                                          |                  |                   |       |      |
| LIQUORS                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                 |                                                          |                  |                   |       |      |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lie                                                                              | luor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                 | Liq                                                      | uor Analysis, m  | g L <sup>.1</sup> |       |      |
| Sample mins                                                                                                                             | FA<br>aL <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | рН                                                                               | Eh<br>mV Ag/AgCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Density kgL <sup>4</sup>                                                        | Al                                                                                            | Ca                                                                                                                                                                                                                                                                                                                                              | Fe                                                       | к                | Mg                | Р     | Si   |
| Feed Liquor                                                                                                                             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 | 0                                                                                             | 0                                                                                                                                                                                                                                                                                                                                               | 0                                                        | 0                | 0                 | 0     | 0    |
| 60                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.35                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.001                                                                           | 2                                                                                             | 560                                                                                                                                                                                                                                                                                                                                             | 4                                                        | 16               | 6                 | 2     | 23   |
| 120                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.37                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.001                                                                           | 2                                                                                             | 587                                                                                                                                                                                                                                                                                                                                             | 1                                                        | 19               | 6                 | 2     | 24   |
| 240                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.96                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.001                                                                           | 2                                                                                             | 452                                                                                                                                                                                                                                                                                                                                             | 9                                                        | 16               | 7                 | 2     | 26   |
| 360                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.97                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.001                                                                           | 1                                                                                             | 295                                                                                                                                                                                                                                                                                                                                             | 0                                                        | 16               | 7                 | 2     | 27   |
| 480                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.89                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.001                                                                           | 0                                                                                             | 329                                                                                                                                                                                                                                                                                                                                             | 0                                                        | 15               | 7                 | 2     | 26   |
| Final                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.999                                                                           | 1                                                                                             | 530                                                                                                                                                                                                                                                                                                                                             | 0                                                        | 14               | 9                 | 2     | 31   |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                 |                                                          |                  |                   |       |      |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                 |                                                          |                  |                   |       |      |
| METAL EXTR                                                                                                                              | ACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                 |                                                          |                  |                   |       |      |
| METAL EXT                                                                                                                               | RACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Extraction, %                                                                   |                                                                                               |                                                                                                                                                                                                                                                                                                                                                 |                                                          |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins                                                                                                              | AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ca                                                                               | Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Extraction, %                                                                   | Mø                                                                                            | P                                                                                                                                                                                                                                                                                                                                               | Si**                                                     |                  |                   |       |      |
| METAL EXTI                                                                                                                              | Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ca                                                                               | Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Extraction, %                                                                   | Mg                                                                                            | P                                                                                                                                                                                                                                                                                                                                               | Si**                                                     |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60                                                                                                        | Al<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ca<br>6.5                                                                        | <b>Fe</b> 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Extraction, % K 0.8                                                             | Mg<br>0.4                                                                                     | P<br>0.5                                                                                                                                                                                                                                                                                                                                        | Si** 0.2                                                 |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60<br>120                                                                                                 | AI<br>0.2<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ca<br>6.5<br>7.3                                                                 | <b>Fe</b> 0.1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Extraction, % K 0.8 1.2                                                         | Mg<br>0.4<br>0.5                                                                              | P<br>0.5<br>0.4                                                                                                                                                                                                                                                                                                                                 | Si**<br>0.2<br>0.3                                       |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60<br>120<br>240                                                                                          | AI<br>0.2<br>0.1<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ca<br>6.5<br>7.3<br>5.6                                                          | <b>Fe</b><br>0.1<br>0.0<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Extraction, %<br>K<br>0.8<br>1.2<br>1.3                                         | Mg<br>0.4<br>0.5<br>0.6                                                                       | P<br>0.5<br>0.4<br>0.6                                                                                                                                                                                                                                                                                                                          | Si** 0.2 0.3 0.3 0.3                                     |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60<br>120<br>240<br>360<br>400                                                                            | AI<br>0.2<br>0.1<br>0.2<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ca<br>6.5<br>7.3<br>5.6<br>2.5                                                   | Fe 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Extraction, %<br>K<br>0.8<br>1.2<br>1.3<br>0.5                                  | Mg<br>0.4<br>0.5<br>0.6<br>0.3                                                                | P<br>0.5<br>0.4<br>0.6<br>0.4                                                                                                                                                                                                                                                                                                                   | Si** 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60<br>120<br>240<br>360<br>480                                                                            | AI<br>0.2<br>0.1<br>0.2<br>0.1<br>0.2<br>0.1<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ca<br>6.5<br>7.3<br>5.6<br>2.5<br>2.6                                            | Fe<br>0.1<br>0.0<br>0.2<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Extraction, %<br>K<br>0.8<br>1.2<br>1.3<br>0.5<br>0.4                           | Mg<br>0.4<br>0.5<br>0.6<br>0.3<br>0.3                                                         | P<br>0.5<br>0.4<br>0.6<br>0.4<br>0.4<br>0.3                                                                                                                                                                                                                                                                                                     | Si**<br>0.2<br>0.3<br>0.3<br>0.2<br>0.2                  |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60<br>120<br>240<br>360<br>480                                                                            | AI<br>0.2<br>0.1<br>0.2<br>0.1<br>0.2<br>0.1<br>0.0<br>some colloidal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ca<br>6.5<br>7.3<br>5.6<br>2.5<br>2.6<br>silica                                  | Fe<br>0.1<br>0.0<br>0.2<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Extraction, %<br>K<br>0.8<br>1.2<br>1.3<br>0.5<br>0.4                           | Mg<br>0.4<br>0.5<br>0.6<br>0.3<br>0.3                                                         | P<br>0.5<br>0.4<br>0.6<br>0.4<br>0.3                                                                                                                                                                                                                                                                                                            | Si**<br>0.2<br>0.3<br>0.3<br>0.2<br>0.2                  |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include<br>ACCOUNTAB                                             | AI<br>0.2<br>0.1<br>0.2<br>0.1<br>0.2<br>0.1<br>0.0<br>some colloidal<br>HLITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ca<br>6.5<br>7.3<br>5.6<br>2.5<br>2.6<br>silica                                  | Fe<br>0.1<br>0.0<br>0.2<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Extraction, % K 0.8 1.2 1.3 0.5 0.4                                             | Mg<br>0.4<br>0.5<br>0.6<br>0.3<br>0.3                                                         | P<br>0.5<br>0.4<br>0.6<br>0.4<br>0.3                                                                                                                                                                                                                                                                                                            | Si**<br>0.2<br>0.3<br>0.3<br>0.2<br>0.2                  |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include<br>ACCOUNTAB                                             | ACTIONS AI 0.2 0.1 0.2 0.1 0.2 0.1 0.0 some colloidal ILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ca<br>6.5<br>7.3<br>5.6<br>2.5<br>2.6<br>silica                                  | Fe<br>0.1<br>0.0<br>0.2<br>0.0<br>0.0<br>0.0<br>Accountabil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Extraction, % K 0.8 1.2 1.3 0.5 0.4 ity, % (Out/in)                             | Mg<br>0.4<br>0.5<br>0.6<br>0.3<br>0.3                                                         | P<br>0.5<br>0.4<br>0.6<br>0.4<br>0.3                                                                                                                                                                                                                                                                                                            | Si**<br>0.2<br>0.3<br>0.3<br>0.2<br>0.2                  |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60<br>120<br>240<br>480<br>** May include<br>ACCOUNTAB<br>Physical Mass                                   | ACTIONS AI O.2 O.1 O.2 O.1 O.2 O.1 O.2 O.1 O.2 O.1 ILITY AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ca<br>6.5<br>7.3<br>5.6<br>2.5<br>2.6<br>silica                                  | Fe<br>0.1<br>0.0<br>0.2<br>0.0<br>0.0<br>0.0<br>Accountabil<br>Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Extraction, % K 0.8 1.2 1.3 0.5 0.4 ity, % (Out In) K 0.5                       | Mg<br>0.4<br>0.5<br>0.6<br>0.3<br>0.3<br>0.3<br>Mg                                            | P<br>0.5<br>0.4<br>0.6<br>0.4<br>0.3<br>P                                                                                                                                                                                                                                                                                                       | Si** 0.2 0.3 0.3 0.2 0.2 Si                              |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include<br>ACCOUNTAB<br>Physical Mass<br>97.1                    | ACTIONS AI O.2 O.1 O.2 O.2 O.1 O.2 O.2 O.1 O.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ca<br>6.5<br>7.3<br>5.6<br>2.5<br>2.6<br>silica<br>Ca<br>102.7                   | Fe           0.1           0.0           0.2           0.0           0.0           0.0           0.0           0.0           0.0           0.1           0.2           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0      < | Extraction, %  K 0.8 1.2 1.3 0.5 0.4 ity, % (Out in) K 96.1                     | Mg<br>0.4<br>0.5<br>0.6<br>0.3<br>0.3<br>0.3<br>Mg<br>98.8                                    | P<br>0.5<br>0.4<br>0.6<br>0.4<br>0.3<br>0.3<br>P<br>P<br>101.1                                                                                                                                                                                                                                                                                  | Si**<br>0.2<br>0.3<br>0.3<br>0.2<br>0.2<br>Si<br>98.1    |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60<br>120<br>240<br>360<br>360<br>360<br>360<br>9** May include<br>ACCOUNTAB<br>Physical Mass<br>97.1     | ACTIONS AI O.2 O.1 O.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ca<br>6.5<br>7.3<br>5.6<br>2.5<br>2.6<br>silica<br>Ca<br>102.7                   | Fe           0.1           0.0           0.2           0.0           0.0           0.0           0.0           0.0           0.1           0.2           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0      < | Extraction, %  K 0.8 1.2 1.3 0.5 0.4 ity, % (Out in) K 96.1                     | Mg<br>0.4<br>0.5<br>0.6<br>0.3<br>0.3<br>0.3<br>Mg<br>98.8                                    | P<br>0.5<br>0.4<br>0.6<br>0.4<br>0.3<br>0.3<br>P<br>101.1                                                                                                                                                                                                                                                                                       | Si** 0.2 0.3 0.3 0.2 0.2 Si Si 98.1                      |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60<br>120<br>240<br>360<br>** May include<br>ACCOUNTAB<br>Physical Mass<br>97.1<br>HEAD GRAD              | ACTIONS AI O.2 O.1 O.2 O.1 O.2 O.1 O.2 O.1 O.2 O.1 O.2 O.1 O.0 Some colloidal ILITY AI 97.9 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ca<br>6.5<br>7.3<br>5.6<br>2.5<br>2.6<br>silica<br>Ca<br>102.7                   | Fe           0.1           0.0           0.2           0.0           0.0           Accountabil           Fe           103.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Extraction, %  K  0.8  1.2  1.3  0.5  0.4  ity, % (Out in)  K  96.1             | Mg<br>0.4<br>0.5<br>0.6<br>0.3<br>0.3<br>0.3<br>Mg<br>98.8                                    | P<br>0.5<br>0.4<br>0.6<br>0.4<br>0.3<br>0.3<br>P<br>101.1                                                                                                                                                                                                                                                                                       | Si**<br>0.2<br>0.3<br>0.3<br>0.2<br>0.2<br>Si<br>98.1    |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60<br>120<br>240<br>360<br>** May include<br>ACCOUNTAB<br>Physical Mass<br>97.1<br>HEAD GRAD              | ACTIONS AI O.2 O.1 O.2 O.1 O.2 O.1 O.2 O.1 O.0 Some colloidal ILITY AI 97.9 E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ca<br>6.5<br>7.3<br>5.6<br>2.5<br>2.6<br>silica<br>ilica<br>102.7                | Fe<br>0.1<br>0.0<br>0.2<br>0.0<br>0.0<br>0.0<br>Accountabil<br>Fe<br>103.3<br>Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extraction, %  K 0.8 1.2 1.3 0.5 0.4  lity, % (Out in) K 96.1                   | Mg<br>0.4<br>0.5<br>0.6<br>0.3<br>0.3<br>0.3<br>Mg<br>98.8                                    | P<br>0.5<br>0.4<br>0.6<br>0.4<br>0.3<br>0.3<br>P<br>101.1                                                                                                                                                                                                                                                                                       | Si** 0.2 0.3 0.3 0.2 0.2 Si Si 98.1                      |                  |                   |       |      |
| METAL EXTI<br>Time<br>mins<br>60<br>120<br>240<br>360<br>480<br>** May include<br>ACCOUNTAB<br>Physical Mass<br>97.1<br>HEAD GRAD       | ACTIONS AI O.2 O.1 O.2 O.2 O.1 O.2 | Ca<br>6.5<br>7.3<br>5.6<br>2.5<br>2.6<br>silica<br>silica<br>102.7<br>Ca         | Fe           0.1           0.0           0.2           0.0           0.0           0.0           0.0           0.0           0.0           0.1           0.2           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0           0.0        | Extraction, %  K 0.8 1.2 1.3 0.5 0.4  ity, % (Out in) K 96.1  vsis, % K         | Mg<br>0.4<br>0.5<br>0.6<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3 | P<br>0.5<br>0.4<br>0.6<br>0.4<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.4<br>0.5<br>0.5<br>0.4<br>0.5<br>0.5<br>0.4<br>0.5<br>0.5<br>0.4<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                                                       | Si** 0.2 0.3 0.3 0.2 0.2 Si Si Si Si                     |                  |                   |       |      |
| METAL EXT<br>Time<br>mins<br>60<br>120<br>240<br>360<br>** May include<br>ACCOUNTAB<br>Physical Mass<br>97.1<br>HEAD GRAD<br>Calculated | ACTIONS AI AI 0.2 0.1 0.2 0.1 0.2 0.1 0.0 some colloidal ILITY AI 97.9 E AI 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ca<br>6.5<br>7.3<br>5.6<br>2.5<br>2.6<br>silica<br>silica<br>02.7<br>Ca<br>102.7 | Fe<br>0.1<br>0.0<br>0.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Extraction, %  K 0.8 1.2 1.3 0.5 0.4  itity, % (Out fn)  K 96.1  vsis, % K 5.51 | Mg<br>0.4<br>0.5<br>0.6<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3 | P<br>0.5<br>0.4<br>0.6<br>0.4<br>0.3<br>0.3<br>0.3<br>0.3<br>0<br>0.3<br>0<br>0.3<br>0<br>0.3<br>0<br>0.3<br>0<br>0.5<br>0<br>0.5<br>0<br>0.5<br>0<br>0.4<br>0.5<br>0.4<br>0.5<br>0.5<br>0.4<br>0.5<br>0.5<br>0.4<br>0.5<br>0.5<br>0.4<br>0.5<br>0.5<br>0.5<br>0.5<br>0.4<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | Si** 0.2 0.3 0.3 0.2 0.2 Si Si Si 20.8                   |                  |                   |       |      |

#### CONTACT US

- t 1300 363 400 +61 3 9545 2176
- e enquiries@csiro.au
- w www.csiro.au

#### YOUR CSIRO

Australia is founding its future on science and innovation. Its national science agency, CSIRO, is a powerhouse of ideas, technologies and skills for building prosperity, growth, health and sustainability. It serves governments, industries, business and communities across the nation.

#### FOR FURTHER INFORMATION

#### **Mineral Resources Flagship**

- Robbie McDonald
- t +61 8 9334 8061
- e robbie.mcdonald@csiro.au
- w www.csiro.au/Business-Units/Mineral-Resources-Flagship.aspx