

| DENNIS GEE                                          | 26-3-2015 |
|-----------------------------------------------------|-----------|
| BUSSELTON                                           |           |
| WESTERN AUSTRALIA                                   |           |
|                                                     |           |
|                                                     |           |
| Our reference 23807                                 |           |
|                                                     |           |
| PREPARATION OF GLAUCONITE CONCENTRATE FROM ROCK SAM | PLES.     |
|                                                     |           |
|                                                     |           |
| ROGER TOWNEND                                       |           |

### **INTRODUCTION**

Various glauconite sandstone rocks were submitted for treatment to produce a glauconite concentrate.

The rocks were very lightly crushed and screened through 500, 300 and 106  $\mu$ .

The -500+300, and the -300+106  $\mu$  fractions were magnetically separated. This produced a glauconite concentrate.

### **RESULTS**

# SUMMARY The glauconite content of the -500+106 $\mu$ fraction was about 27%.

| +500 μ                  | 314 g  | 6.2%  |  |
|-------------------------|--------|-------|--|
| -500 + 300 μ GLAUCONITE | 272 g  | 5.4%  |  |
| -500 +300 μ NON-MAGS    | 1216 g | 24.4% |  |
| -300+106 μ GLAUCONITE   | 769 g  | 15.4% |  |
| -300+106 μ NON-MAGS     | 1595 g | 32%   |  |
| -106 μ                  | 822 g  | 16.6% |  |

The -106  $\mu$  fraction is being wet screened at 53  $\mu$ , for magnetic separation of glauconite from the +53-106  $\mu$  fraction.

## NON MAGS.

TBE SEPARATIONS

-500+ 300u TBE SKS 0.5%

-300 +106U TBE SKS 1.5%

Note by DGee: These are very low values and indicate that single-grain apatite is not a significant part of the TBE sinks of the non-mag fraction, and therefore needs not be included as a recoverable product in scoping studies. However this low level is contrary to the initial sample GNT014, and this aspect needs to be re-examined when the proper quantitative mineralogy is done on drill core.

MINERALOGY.

TBE SINKS.

Dominantly composed of collophane type APATITE

TBE FLOATS

Dominantly composed of QUARTZ, plus traces of CARBONATE.



# Observation.

These samples differ from the earlier results, by the lack of K feldspar. This means that the K2O value could be used to calculate glauconite content, as its value in that mineral is pretty constant.

FRACTION -106 U.

| 106 +53 u.       | 40%         |
|------------------|-------------|
| -53 u            | 60%         |
|                  |             |
| -106+ 53 u MAGS. | 7% (of 40%) |

The -106+ 53 u mag. fraction is a GLAUCONITE concentrate, with traces of carbonate.

Note this table below inserted by DGee to amalgamate the fine <106 fraction into the other size fractions used in the preparation of the mini-bulk separation. It shows that very little glauconite occurs in the -106 +53 $\mu$ m fraction, indicating that relatively coarse grinding is sufficient to produce a quality concentrate.

| +500 μ                  | 314g  | 6.2%  |
|-------------------------|-------|-------|
| -500 + 300 μ GLAUCONITE | 272g  | 5.4%  |
| -500 +300 μ NON-MAGS    | 1216g | 24.4% |
| -300+106 μ GLAUCONITE   | 769g  | 15.4% |
| -300+106 μ NON-MAGS     | 1595g | 32%   |
| -106 +53 GLAUCONITE     | 23g   | 0.5%  |
| -106 +53                | 305g  | 6.1%  |
| -53 fines               | 493g  | 10.0% |
| Total                   | 4987g | 100%  |

This is probably a minimum value . See image below.







