Results of 1982 Field Program

McArthur River ONSHORE
Permits OP191/0P198
Northern Territory, Australia




Lm"“/' ARN{@EM LAND /o )
Y(‘ \
o

West
Australia

AUSTRALIA

|Nonhem"

Territory . and

’_ s e i —

i !

o South |

| Australia I\—
!

,‘ \s) “Mt Kelly ’
sHodgson Downt

0O h

s  aiy -
$ I \' M'If "x’f:’lluy
Al
(3 ,\\\ \ | ¥

¢ Maspn Bluff

SIR EDWARD PELLEW GROUP

5

- L
Waest /§ &z C Vanderlin

[%Bum C)nm l(g szdorIInl
».n«m McArthu 1,’
) Fy pa (

/éMnu'mqoofl "
N

NN S o
&/ \aSeven Emu
& N (ﬂ
S S /\é
[hru Knogl s /‘i = R z/ B
— g V: @ X
i S : / \
°OV.Downs  §%° C(\,“!’ﬁ 5{’/ (’ E § é‘s‘ 4
/2 7’ \\w S
\ 38 Rui;‘luﬁn’ﬂlv«vnﬁh~ ¥ Vi
\ / N Z ‘\ 12, % /
' \ Ve 1 FAY Y
) '}“ / < "/ \‘\ l' /,‘ (J\& < ,ﬁl
0 Memotisl / s S ‘ / Y(® 3
) /(( S P A g ' \\ : \/}'/ s /, v‘d q ‘2 *>
ey, g e DN A V), /g
——— L IVAN YA ) PPy TS
% 1 )& p i,
[: \ &s < g/ N 85 nT rt Hille Vn
\ A i’ /| -\\,‘
L | 0 , ‘a&.
N N
I§
\ g1/ 4
Pu(‘-"n 7 o
¢ 2 i
, : / ',)’1
R/ -
#iniion "CremwaOowns /
Eva Downg 4= \ / ) 7%
R y A -~ o Q‘S? anaCl ‘,"
7 | f Kilometres 100 0 o s/ o )
‘\\ ] —— veeoﬁ‘ 2 . cS
! . T ) ; "‘g
Renser Springs Miles 50 25 0 50 f ) ( '
( . ?nf pring ’ Statute L (9 w8n3kin Cr
FIGURE 1-1

Location Map, McArthur River Area
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Figure 5-1. Diagram showing persistence with depth of
jmportant minerals in Pre-Arkose weathering mantle (after
Wahlstrom, 1948).
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Figure 5-2. Chemical weathering patterns of the primary
rock-forming minerals (after Fieldes and Swindale, 1954).
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Figure 5-3. The solubility of silica and
alumina as a function of pH. Note the insolu-
bility of alumina over the range of 4-10 of pH
(after Mason, 1966).
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Figure 5-4. The solubilities of hematite, gibb-
site, quartz, and their amorphous equivalents as a
function of pH. Fields of stability of laterite,
bauxite and kaolinite are labeled, but metastable
fields also exist (from Blatt et. al., 1980).
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Figure 5-5. The chemical composition of common
sediments. Sediments with compositions falling
in the blank area are rare or nonexistant. The
arrow follows the path of composition of a
weathering quartz arenite with some feldspars
and detrital clay minerals (after Mason, 1966).
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Figure 5-6. The median annual rainfall and
mean maximum temperatures in summer (January)
and winter (July) of Australia (Mabbutt, 1980).
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Figure 5-7. Climatic regions of Australia, using the
Koppen 1936 system modified after Gentilli, 1972.
Detailed legend on Table 5-4. Note that the McArthur
River area lies in the BSwh zone; hot, subhumid, dry

winter (Mabbutt, 1980).
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Figure 579. The degree of preservation of deep weather-
ing profiles in Australia (from Mabbutt, 1980).
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Figure 5-10. The solubilities of
amorphous silica and quartz as a
function of temperature. Note that
with  increasing  temperature a
solution of Si02 becomes increas-
ingly more  oversaturated with
respect to quartz than to amorphous
silica. This favors the precipita-
tion of quartz at higher tempera-
tures {from Blatt et. al, 1980).
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Figure 7-1. Regional tectonics and distribution of Proterozoic
sediments along northwest-trending right-lateral wrench system. A

number of pull-apart basins have developed throughout the trend (from
Plumb, et al, 1980).
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Figure 7-2. Sketch of an idealized pull-apart basin in a right-lateral
wrench fault system (from Crowell, 1974).
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Figure 7-3. Polar wander curve for
Australia during the Proterozoic as
established from paleomagnetic data
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side of figure. Approximate ages
shown are in millions of years {from
Embleton, 1980).
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Plate 1-1. Eight Mile Waterhole Base Camp, on the McArthur
River. The camp provided accomodation for 12 to 15 people.

Plate 1-2. Bell 206-B Jet Ranger III helicopter slinging
200 litre (44 Imperial gallons) fuel drums of diesel fuel to
drill rig. This helicopter was also utilized for geological
fieldwork.



Plate 1-3. Long year 44 Diamond Coring Rig on site
at Corehole 82-7: Jumping Wallaby No. 1. This rig
disassembled into sixteen segments and was shuttied
between coresites by a Bell 206-B Jet Ranger III
helicopter. The heaviest component of the rig is
the gear box, weighing on the order of 1300 pounds.



Plate 7-1. View looking to the north-northeast (grid
location 5967-135980) along faulted en echelon domes.
Exposed unit in structure's core is Krnoig Sandstone.
Approximate areal extent of dome is 28 km® (11 miZz.).

*““

Plate 7- 2. Numerous vertical to sub-vertical fractures
within Bessie Creek Sandstone in right-lateral strike-slip
fault zone in northwestern corner of 0.P. 198. Commonly,
silicification of strata occurs within fault zones in the
region. More typically, the Bessie Creek Sandstone is
friable at surface.



Plate 8-1. Cauliflower chert (nodular anhydrite
pseudomorphs) in Mallapunyah Formation. Similar forms exist
within the Donnegan Member of the Lynott Formation

J"l{"&'u ’; 4"‘»0'?%1 P =9, { %

P}a;e.8—2. Conglomerate-breccia in Lynott Formation in
vicinity of Tawallah Fault.
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Plate 8-3. Turbiditic sequences within Middle to Lower
Lynott Formation. Note fining-upward nature of sandstone
interbeds.



Plate 8-4. Stretton Sandstone conglomeratic facies at
Catfish Hole (Catfish Conglomerate-informal name). Clasts
are silicified algal dolomite from Yalco Formation. Note
sandy interbed. Corehole 82-6 was collared approximately
200 to 300 meters northeast of this outcrop.

Plate 8-5. View to north at Vizard Formation ridge (near
coordinates 5868-742493). Note conspicuous whitish-pink
tuff bed near ridge top. The remainder of the unit consists
of interbedded silts, shales, and very fine-grained
sandstones.
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Plate 8-6. Massive conglomerate within Mt. Birch Sandstone
in the northwest portion of 0.P. 198. Trees are on the
order of 7 to 8 meters in height (grid location
5868-721500).

Plate 8-7. Mt. Birch Sandstone at same location as
Plate 8-6. Note oligomictic quartz sandstone-clast
supported nature of unit. Matrix consists of subangular
coarse-grained litharenite.



Plate 8-8. Mt. Birch Sandstone west of Corehole 82-5.
Contact between conglomeratic lens and sandstone.

Plate 8-9. Wedge-shaped cross-stratification within Mt.
Birch Sandstone west of Corehole 82-5.



Plate 8-10. Solution Breccia within oolitic carbonate
member of Kookaburra Creek Formation. Infill of this
paleokarst surface by quartz sandstone has occurred.
Possible preservation of porosity may exist at depth at this
stratigraphic level.

Plate 8-11. Resistant ridge of silicified Limmen Sandstone.
Contrast this with porous Hodgson Sandstone outcrop pattern
in Plate 8-13. Breaches in the ridge appear to correlate
with local porosity development.
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Plate 8-12. Large wavelength - low amplitude ripples or
possible hummocky cross-stratification in Arnold Sandstone.

- \'f \ {eti R '

Plate 8-13. Castle or pillar topography characteristic of
the Hodgson Sandstone. Reservoir properties derived from
cored Limmen and Hodgson Sandstone units appear to indicate
that surface topography and surface sample "reservoir"
characteristics allow qualitative evaluation of sandstone
units at depth.



Plate 8-14. Pancake-1ike mudstone concretions in Corcoran
Formation.

Plate 8-15. Bitumen in Broadmere Sandstone Member (informal)
of Cobanbirini Formation encountered in Corehole 82-1.
Bitumen occurs infilling porosity and as large clots, such

as at the right hand end of the core. Depth of this sample
js from 238.58 to 238.85 meters. Scale is in centimetres

and inches.



olivine
augite Ca plagioclase
hornbiende Na-Ca plagiociase

biotite Na plagioclase

K-feldspar

muscovite
!

quartz

Table 5-1. The "“"Weatherability"
series for the common igneous sili-
cate minerals. This series is the
reverse of Bowen's reaction series
for mineral crystallization from
igneous melts (after Goldich, 1938).

Mineral WPI mean WP range
olivine 54 4465
augite 39 2146
hornblende 36 21-63
biotite 22 7-32
labradorite 20 18-20
andesine 14

oligoclase 15

albite 13

muscovite 10

quartz 1

Table 5-2. The Reiche weathering
potentials 1index (WPI) for some
common silicate minerals ({after
Carroll, 1970).



Meters above base Granodiorite 1 10 18 22 24 25 26

8i0; 67.92 68.15 6546 6149 5854 5866 5769 5546
TiO; 0.55 055 044 078 1.12 1.21 1.34 1.53
AlLO2 14.70 1426 13.22 1435 1908 18.02 1844 21.37
Fe;0; 091 2.24 2.79 4.65 6.46 6.55 6.85 8.65
FeO 2.61 103 074 078 044 082 104 037
CaO 2.94 117 204 1.75 083 058 07 038
MgO 0.98 1.19 1.31 2.18 2.01 1.69 2.71 0.56
Na,0 33 195 053 042 061 057 054 049
K.0 4.38 4.76 5.59 6.90 6.71 .10 594 6.48
H:0* 0.80 3.54 5.64 5.81 3.25 332 403 3.58
H,0~ 0.36 048 048 043 1.14 133 093 0.97
P.0s 0.18 012 013 024 038 029 032 02
CO; None 0.10 2.26 090 None None None None
MnO 0.03 004 005 005 002 003 0.03 003
Total 99.67 99,58 100.68 100.73 100.59 100.17 100.62 100.07
Uncombined 8i0» 24 31 28 25 21 20 22 20

Table 5-3. Chemical analyses of a parent granodiorite
and the soil profile developed on it during the Late
Paleozoic (from Wahlstrom, 1948).



A HOT HUMID {no month below 18°C)

Aw Monsoonal, with warm dry winter and hot, wet summer
BS WARM TO HOT, SEMI-ARID

BSwh Hot, sub-humid, dry winter

BSrh Hot, uniform light rainfall
BSfk Warm, uniform light rainfall

BSsh Hot, moist winter, dry summer

BSsk Warm, moist winter, dry summer

BW WARM TO VERY HOT, ARID

BWn Hot, erratic rainfall; sub-cyclonic to west, minsoonal to north
BWk Warm, erratic rainfall, mostly in winter

C WARM TO TEMPERATE, HUMID (at least one month below 18°C)
Cwa Bub-tropical ; dry winter, long hot moist summer

Cfa Bub-tropical; uniform rainfall, mild winter, long hot summer
Csa Long hot dry summer, mild wet winter (Mediterranean)

Crb Cool winter, long warm summer, uniform rainfall

Cfe Cold winter, short mild summer, uniform rainfall

Csb Cool wet winter, long warm dry summer (Mediterranean)
Képpen letter symbols:

a hot summer; hottest month over 22°C

b long mild summer; 4 months over 10°C

° short, mild summer; under 4 months over 10°C

f uniform rainfall

h warm, mean annual temperature over 18°C

k cool, mean annua! temperature below 18°C

$ dry summer

w dry winter

Table 5-4. Characteristics of main climatic regions
in Australia and Koppen letter symbols. Refer to
Figure 5-7 (from Mabbutt, 1980).



PETROLEUM_GENERATING CAPARILITY

Total Generated Hydrocarbons PPM
_Rating Organic Carbon Wt. % by TEA*
Nonsource <0.4 < 600
Poor 0.4-0.6 6001800
Fair 0.6-1.0 1800~-3000
Good 1.0-1.5 3000-6000
Very Good 1.5 >6000

*Thermal evolution analysis on thermally immature samples

KEROGEN_TYPE

Visual Kerogen Generated Hydrocarbons®/ Bitumen/Total

_ Petroleum Type Type __Total Organic Carbon Elemental H/C** Organic Carbon**
Gas Structured <.15 <0.8 <. 05
Gas and condensate Mixed .15-.25 <1.0 <. 05
0il Amorphous ».25% >1.0 >.05 <.300kt

(sometimes mixed)

*From thermal evolution analysis for thermally immature kerogens
#*For thermally immature samples
+H*For uncontaminated samples, and where bitumens are not thermally cracked to gas
#hikyalues >.30 indicate non-indigenous oil or contamination; saturate hydrocarbon/bitumen
ratio >.70 also indicates non-indigenous oil or contamination.

KEROGEN THFRMAL MATURITY

Peak oil-carly

Early peak oil- peak gas Past peak oil-

Diagenesis Stage _ Pregeneration early gas _{0il expulsion) ~_ peak gas __Advanced
Visual Scale 1-3 4 S 6-7 7
Vitrinite Reflectance % .5 .5-.8 .A-1.2 1.2-2.0 > 2.0
Elementsl % C <718 78-R1 81-85 85-90 > 90
Elemental H/C >1.0 (o0il source) >1.0 (oil source) >.80 {oil source) .40~ 80 < .40 \
TEA Gen HC/TOC* >.25 (oil source) > .25 (oil source) >.15 < .15 < .05
TEA Vol HC/TOC* <.05 > .05 (oil source) >.05 (oil! source) < .05 < .01
TEA Gen HC Max °C 460-490 4R0O-510 490-530 $10->540 > 540
Bitumen/TOC* <. 0% > .05 (oil source) >.05 (oil source) < 05 < .01
Bitumen Chromatogram Immature Immature Mature, oil-like Mature Insufficient extroct

(odd-carbon {odd-carbon molecular for analysis

*Total organic carbon wt .

predominance,
sterane hump}

predominance
sterane hump)

Table 10-1

distribution
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