InfoCentre

NT Minerals and Energy

Petroleum Exploration Reports

This file contains scanned images of hardcopy reports/data submitted to the Northern Territory Government under Petroleum Legislation.

Bringing Forward Discovery

This information is made available to assist future petroleum explorers and may be distributed freely.

Scanning information

The quality of the scan reflects the condition of the original hardcopy report/data.

InfoCentre

Call: \quad +61 889996443
Click: geoscience.info@nt.gov.au
www.minerals.nt.gov.au
Visit: $\quad 3^{\text {rd }}$ floor
Centrepoint Building
Smith Street Mall
Darwin
Northern Territory 0800

PR87-69

SOIL GAS ALKANE SURVEY EP 9

PEDIRKA BASIN, N.T.
for
EP 9 Joint Venture
Base Resources Ltd (Operator)

1. SUMMARY 1
2. INTRODUCTION 2
3. SURVEY METHODS 3
3.1 Introduction
3.2 Hydrocarbon Microseeps
3.3 Detection of Hydrocarbon Microseeps
3.4 Interpretation of results
4. OPERATIONS 8
5. RESULTS 10
6. CONCLUSIONS 12
7. REFERENCES 13
FIGURES
Figure 1: Map showing location of samples
TABLES
Table 1: Methane, ethane, propane and butane concentrations (ppmv) and derived ratios of soil gas samples.

1. SUMMARY

A first-pass, helicopter supported, soll gas survey was carried out from widely spaced lines over the majority of EP 9 to ascertain the petroleum potential of the permit.

Throughout the survey area ethane, propane and butane concentrations are low with no anomalous samples present. Methane concentrations are low to moderate with one zone of anomalous concentrations and one zone of elevated concentrations, both located in the central region of the permit.

The ratios of the alkane concentrations suggest a gas-rich source for the hydrocarbons. However, it is possible that high methane concentrations observed in some samples may be derived from a remote source. Also heavy rain during July and August 1986 may have preferentially removed the heavier alkanes as it moved downwards through the soil suggesting that potentially anomalous areas would not be as gas rich as the ratios indicate.

The results of the soil gas survey indicate the permit to have a low prospectivity for the discovery of large oilfields.

2. INTRODUCTION

Base Resources Limited, operator of the EP 9 Joint Venture, commissioned Petrofocus to carry out a soil gas alkane survey as a first pass appraisal of the permit area. The aim of the present survey was to evaluate the petroleum prospectivity of the region. The area has received little seismic survey coverage, although a limited regional survey carried out in the 1960's has identified some poorly defined structural highs in the southwest. Two other lines are located to the central-eastern section of the permit. No subsequent exploration activity has occurred in the area.

Because of navigational difficulties in the monotonous sand dune terrain, sampling locations could be determined only to $\pm 5 \mathrm{~km}$. The western extent of the permit could be located fairly accurately with respect to a 1960's seismic survey line and some topographic features but the eastern limit was not accurately positioned on the ground.

Some of the samples contained very high methane levels, and prompted the sampling of a north-south cross-section through the zone. It is suggested that at least some methane may have migrated some considerable distance from gas-rich parts of the basin. This would have the effect of raising the proportion of methane with respect to the heavier alkanes, and thus give rise to ratios that indicate a source that is less oil rich.

Since 1981, Petrofocus, and its predecessor Petrosearch, have carried out soil gas geochemical surveys, both in a broad-spaced reconnaissance mode in wildcat regions, and detailed, intensive sampling surveys over seismic survey leads and prospects. In addition, over 15 orientation surveys have been carried out over and adjacent to known oil and gas fields in the Surat, Eromanga, Canning and Amadeus Basins, and these show enhanced concentrations of the light alkane gases to be present in soils above or peripheral to the fields.

3. SURVEY METHODS

3.1 Introduction

Although success has been claimed over the past thirty or more years for various geochemical exploration techniques, enthusiasm for their employment is not widely shared by professionals in the petroleum industry.

Anomalous concentrations of hydrocarbon gases were first reported above petroleum reservoirs in the 1930's (Laubmeyer, 1933; Sokolov, 1933; Horvitz, 1939). These results quickly lead to the development of techniques for use in petroleum exploration, and in 1959 Sokolov summarised successful applications of the techniques in the U.S.S.R. as follows:
> "Under favourable geological conditions, the proportion of correct predictions (from geochemical surveys) is rather high - about 70 percent. For instance, in the North Caucasus (Kuban), predictions made by gas surveys were confirmed in thirteen cases out of seventeen."

Although successful uses of geochemical techniques have been documented in the western literature results obtained by industry users in the course of normal exploration have commonly produced negative or, at best, equivocal results which have led the techniques to disfavour. In many instances the unsatisfactory results can be attributed to poor sample collection, storage, preparation and analytical procedures. Most importantly, however, results of many surveys have not been interpreted properly. There is, in general, a poor understanding of what can be expected from geochemical methods and, particularly, of their limitations.

Within the past few years there has been, however, renewed interest in geochemical exploration techniques following the successful identification of surface anomalies above petroleum reservoirs by the Geosat Committee's study in which the Multispectral Scanner and the Thematic Mapper, now aboard Landsat 4, were flown over three test sites in the USA. The alteration features, verified on the ground, in soils, rocks and/or vegetation have been
shown to result from leakage of light hydrocarbon gases from the moderately deep reservoirs (Rock, 1984; Patton and Manwaring, 1984; Matthews et al., 1984).

3.2 Microseeps

Successful employment of geochemical exploration techniques relies upon the phenomenon of vertical migration of light hydrocarbons that leak in trace amounts from petroleum reservoirs. This has been a hotly disputed issue, but the weight of evidence from reliable sources clearly demonstrates that vertical migration does, in fact, occur. It must now be conceded that light hydrocarbon gases do leak from at least some moderately deep to deep petroleum reservoirs and can be detected as microseeps located vertically above, or peripheral to, the surface projection of the reservoir as -
(i) free gas in the soil or absorbed to soil minerals (Debnam, 1969; Devine and Sears, 1977; Horvitz, 1972, 1979; Jones and Drozd, 1983; Richers et al., 1982; Rock, 1984; Matthews et al., 1984), or
(ii) as a chemical or mineralogical alteration of soil and surface rocks (Karstev, 1959; Donovan, 1974), or
(iii) in vegetation as either morphological or chemical effects (Donovan and Dalziel, 1977; Richers et al., 1982; Rock, 1984).

In addition, case studies conducted by Petrofocus since 1980 unambiguously show anomalous concentrations of light hydrocarbon gases directly above or immediately peripheral to the surface projection of 14 known petroleum reservoirs in the Surat, Cooper, Eromanga and Amadeus Basins.

3.3 Detection of Hydrocarbon Gas Microseeps

There are now in use several indirect techniques which exploit various manifestations of the vertical migration of hydrocarbons or associated gases leaking from deep petroleum reservoirs. These include magnetic, electrical (electromagnetic and induced polarization), radiometric and helium emanometry methods. However, the principal disadvantage in employing these methods is
that the effects they respond to can also be produced by causes unrelated to the leakage of hydrocarbon gases.

Clearly, it is advantageous to detect and quantify the hydrocarbon microseeps themselves - this is the approach adopted by Petrosearch in which the light hydrocarbon gases in the soil gas are detected.

The detection of the light hydrocarbon gases was selected as the most reliable sampling medium since only gaseous hydrocarbons can pass directly through aquifers which are commonly present above petroleum reservoirs in many Australian sedimentary basins. On the other hand, hydrocarbons transported in solution, including dissolved gases, will be entrained in the aquifer or in the surficial groundwater system and may be released at some remote location which cannot be related to the parent petroleum reservoir.

In Petrofocus surveys soil gas samples are carefully collected from depths ranging from 0.5 to 1 metres using a probe of proprietary design and pre-prepared microsyringes. The gas samples are carefully packed in airtight containers for shipment to the analytical facility, which is located at the field base camp. Samples are analysed for the light alkanes methane through pentane by a gas chromatographic technique. The sensitivity of the chromatograph, as presently employed, is approximately 0.5 ppmv methane, 0.05 ppmv ethane, 0.02 ppmv propane, and 0.005 ppmv butane. The alkane concentrations of samples are determined by comparison with known concentrations in a specially prepared gas standard. Reproducibility of results is typically better than $+5 \%$.

3.4 Interpretation of Results

Because of differences in the proportion of oil and gas from reservoir to reservoir, and in the composition of the oil and gas phases, together with differences in reservoir parameters and in soil characteristics from region to region, an attempt is always made to carry out orientation surveys over known reservoirs as close as possible to the survey area. By comparing results from the survey area with those from the known reservoir an estimate can be made of the type of hydrocarbons giving rise to the microseeps detected in the survey area. Estimates of the size of the hydrocarbon reservoir in the survey area
are difficult to establish and can only be attempted within areas having closely similar reservoir and soil characteristics because the magnitude of an anomaly may be determined by the ease of the migration of gases from the reservoir, rather than by the volume of gas in the reservoir. There is emerging some confidence that the ratios of the various alkanes present in soil gas can be an indication of the type of parent hydrocarbons in the reservoir (Jones and Drozd, 1983; Richers et al., 1982). The various ratios which may indicate the "oilyness" of a reservoir are determined for each anomaly detected, but this serves only as a non-definitive indicator, since the parameters which govern the amount and type of hydrocarbon gases present in near-surface environments are only imperfectly understood. They include the following:
(i) Depth of the reservoir and the nature of the overlying rocks.
(ii) Reservoir characteristics relating to the form of the reservoir, the integrity of its seal, the proportion of gas and the pressure under which it is constrained.
(iii) Soil properties, particularly the clay content, degree of compaction and moisture content of the soil.

(iv) Atmospheric variables, particularly atmospheric pressure, ambient temperature and rainfall.

When an area is re-surveyed it is commonly found that the location and intensity of soil gas anomalies has changed somewhat. The reasons for this are not always simple, but commonly conditions under which the later surveys are conducted are different from those pertaining during the original survey. The greatest effects are experienced after substantial rainfall when soil gas concentrations are greatly reduced due to their being flushed out of the near-surface zone. Anomalous areas defined by the original survey are much subdued after rainfall but generally can still be distinguished over depressed background readings.

However, the interpretation of results of soil gas surveys is more concerned the with anomaly to background contrast rather than with the absolute
magnitude of anomalies. Comparison with results obtained from over known reservoirs considerably facilitates interpretation of those obtained from survey areas, but when comparisons with known reservoirs in the same region is not undertaken estimates of the commercial significance of soil gas anomalies cannot be reliably given.

4. OPERATIONS

Field operations, including the analytical facilities, were based at the 01d Andado station, which is located some 80 km south-west of the edge of the survey area.

The survey was carried out during the period 16-29 November 1986, inclusive. Mobilisation and demobilisation from and to Sydney involved two days. Because there is only one track into the permit area, located near the western boundary, sampling was carried out from a Bell Long Ranger helicopter chartered from Central Australian Helicopters of Alice Springs. Jet fuel was positioned at 01d Andado station and at North Bore, situated some 40km southwest of the permit area.

Sampling was carried out at approximately 2 km intervals from sites at the sides of dunes about 1 to 2 metres above the general level of the interdune troughs. This permitted easy entry of the probe to the sampling depth of 0.8 to 1.0 metres and provided a good seal around the probe without encountering the cemented horizons that are developed between the dunes.

A total of 625 samples were collected from 20 lines oriented at about 150°, following dune corridors, and spaced at approximately 10km intervals; and one line, oriented at 180°, through the centre of the permit. Surface features, such as overgrown, but still recognisable, 1960's seismic survey lines, scattered play lakes and the Hale, Plenty and Hay Rivers facilitated navigation. However, in the easternmost regions of the permit, and in central areas where the sand dune terrain was monotonous, there were no such navigational aids to assist in spot locations. In these circumstances, sample stations could only be estimated to about $\pm 5 \mathrm{~km}$. Sample locations are shown on Figure 1.

Solls in the survey area are very poorly developed and the entire area is covered by stabilised longitudinal sand dunes, generally trending about 150°, supporting sparse native grasses and shrubs. Between the dunes, playa lakes are extensively developed and are characterised by the presence of insipient calcrete. There is no development of organic horizons in the sand soils, and there is no reason to suspect the presence of microbially derived alkanes in soil gas samples.

During the survey, the weather was fine to hot, with maximum daily temperatures ranging from $28^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Local thunderstorm activity occurred on the evening of November 16, but falls were patchy and did not impede sampling. Heavy rains fell in the area during July and August, and although the period since then has remained relatively dry, some longterm effect of this rain could still persist.

There are no nearby oil or gas fields over which to carry out orientation surveys to permit calibration and interpretation of results from the present survey.

Considerable operational difficulties were experienced with the helicopter during the survey. These showed up as lack of power and endurance. The survey was interrupted on the 27 November and finally terminated on the 29 November. The cause of the problems is reported to be due to excessive dust intake into the turbine compressor, despite the insertion of dust filters, during take-offs and landings for sample collection.

5. RESULTS

The methane, ethane, propane and butane contents of the soil gas samples are listed in Table 1 and locations are shown on Figure 1.

Over the entire survey area the concentrations of ethane, propane and butane in the soil gas samples are low. Most of the methane concentrations are low to medium with a few higher concentrations being recorded from one line in the centre of the permit.

Inspection of Table 1 indicates the range of methane concentrations to be extreme, from 0.10 to 187.80 ppm , with 95% of the gas samples having concentrations of less than 20 ppm. Ethane concentrations range from 0.02 to 0.74 ppm , propane from 0.01 to 0.19 ppm and butane from 0.01 to 0.30 ppm .

None of the gas samples contain concentrations of ethane, propane or butane that are high enough above the background concentrations to be considered anomalous. There is also no clustering of samples with higher concentrations that could suggest a suppressed geochemical anomaly.

Samples 340 to 363 on Line L contain contain clearly anomalous concentrations of methane. The concentration of ethane, propane and butane in these samples do not show a corresponding increase in value which suggests a portion of the methane may be from a remote source. Some methane may have migrated a considerable distance from gas rich parts of the basin and been trapped in structures developed in this area. Line U was sampled to test the anomalous methane results, however the high methane concentrations were not reproduced. This may be due to the navigational difficulties experienced in the area.

Of the remaining samples only four (276, 278, 470 and 519) have methane concentrations above an anomalous threshold of 25.0 ppm . Elevated levels of methane are present in other samples on Line J near samples 276 and 278 suggesting either a suppressed anomaly or more than one source for the methane.

Overall, the results of the present survey are considerably lower than results from previous surveys conducted in nearby permits. This is most likely a consequence of the heavy rains which fell in the area during July and August 1986. The porous nature of the soil allows the gases present to be flushed out more easily than from a more clay rich and well developed soil. The ratios of the alkane concentrations $C_{1} / C_{1}+C_{2}+C_{3}+C_{4}$ for the present survey are high and the \% wetness is low, suggesting a gas rich source. However, it is possible that the heavier alkanes have been removed preferentially by the heavy rain. This effect has been observed in previous surveys.

6. CONCLUSIONS

The present first pass survey achieved its prime objective of sampling almost all of EP 9 except for a couple of small areas in the southeast of the permit.

The results of the survey indicate one zone of anomalous methane concentrations and one zone of elevated methane concentrations in the central region of the permit. No anomalous zones are evident from the ethane, propane and butane concentrations which are all low.

The relative low concentrations of ethane, propane and butane encountered in the present survey would suggest a gas rich source, however, it is possible that these heavier gases have been removed preferentially by the heavy rain that fell prior to the survey. The very high concentrations of methane in some samples suggest that there may be more than one source for the methane. It is possible that the methane may, in part, be derived from deep within the basin.

Due to the absence of known petroleum fields in the region over which calibration surveys can be carried out, the results of the present survey cannot be interpreted reliably.

The results of the present survey do not indicate the presence of either oil or gas fields of substantial size. It is recommended no further soil gas surveys be carried out in EP 9, but if additional surveys are considered by Base Resources Limited they should be carried out only after a prolonged period of dry weather.

7. REFERENCES

Technical References

Debnam, A.H., 1969. Geochemical prospecting for petroleum and natural gas in Canada. Geol. Surv. Can. Paper 64:15.

Devine, S.B. and Sears, H.W., 1977. Soil hydrocarbon geochemistry, a potential exploration tool in the Cooper Basin, Australia. J. Geochem. Explor. 8 , pp. 397-414.

Donovan, T.J., 1974. Petroleum microseepage at Cement, Oklahoma; evidence and mechanism. Bull, Amer, Assoc, Petrol, Geol., 58 pp. 429-446.

Donovan, T.J. and Dalziel, M.C., 1977. Late diagenetic indicators of buried $0 i 1$ and gas. U.S. Geol. Surv. Open File Rept. pp. 77-817.

Horvitz, L., 1939. On geochemical prospecting. Geophys. 4, pp. 210-225

Horvitz, L., 1972. Vegetation and geochemical prospecting for petroleum. Bull. Amer. Assoc. Petrol. Geol. 56. pp. 925-940.

Horvitz, L., 1979. Near surface evidence of hydrocarbon movement from depth. In Problems of Petroleum Migration. Amer. Assoc. Petrol. Geol. Stud. Geol., 10, pp. 241-270.

Jones, V.T. and Drozd, R.J., 1983. Predictions of oil or gas potential by near-surface geochemistry. Amer. Assoc. Petrol. Geol. Bull. 67, 932-952.

Karstev, A.A., Tabasaranski, Z.A., Subbota, M.I. and Mogilevskii, G.A., 1959. Geochemical methods of prospecting and exploration for petroleum and natural gas. UCLA Press.

Laubmeyer, G., 1933. A new geophysical prospecting method, especially for deposits of hydrocarbons. Petroleum, 29, pp. 1-4.

Matthews, M.D., Jones, V.T., and Richers, D.M., 1984. Remote sensing and surface hydrocarbon seepage. Remote Sensing for Exploration Geology Conference, Colorado Springs, April 1984. Environmental Research Institute of Michigan, pp. 1-6.

Patton, K.H. and Manwaring, M., 1984. Evaluation of a Landsat derived tonal anomaly for hydrocarbon microseepage, Southwest Kansas. Remote Sensing for Exploration Geology Conference, Colorado Springs, April 1984. Environmental Research Institute of Michigan, p. 66.

Richers, D.M., Reed, R.J., Horstman, K.C., Michels, G.D., Baker, R.N. Lundel, L., and Marrs, R.W., 1982. Landsat and soil-gas geochemical study of Patrick Draw oil field, Sweetwater Country, Wyoming. Amer. Assoc. Petrol. Geol. Bull., 66 pp. 903-922.

Rock, B.N., 1984. Remote detection of geobotanical anomalies associated with hydrocarbon microseepage. Remote Sensing for Exploration Geology Conference, Colorado Springs, April 1984. Environmental Research Institute of Michigan, p. 24.

Sokolov, V.A., 1933. New prospecting method for petroleum and gas. Technika. Feb. Bull. NGRI No. 1.

Sokolov, V.A., 5959. Geochemical methods of prospecting for oil and gas deposits. Izd. Akad. Nauk SSR, Moscow.

TABLE 1. Methane, ethane propane, butane concentrations (ppmu) and derived ratios for soil gas samples

LINE E

LINE F

-

,

$\stackrel{\infty}{\circ}$
 1.20
7.40
9.60
2.00
3.48
3.70
1.90
0.50
9.30
1.2 80

.02

LINE G

¢ 80
00
40

LINE 1

LINE J

 1
1
1
1
2
2
2
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1.5
1.1
1.6
1.8
2.4
2.9
11.1
13.0
1.0
2.1
1.5

LINE L

LINE K
r

隹

[^0]
LINE M

```
LINE T
```

LINE
LINE S

oióo ó"O

-
08
05
05

440.00
195.00
265.00
565.00
350.00
410.00
185.00
75.00
170.00
215.00
265.00
175.00
140.00
105.00
130.00
160.00
115.00
160.00
95.00
115.00
55.00
85.00
85.00
125.00
320.00
350.00
620.00
490.00
790.00
705.00
455.00
990.00
870.00
570.00
940.00
1005.00
625.00
620.00
260.00
300.00
1105.00
710.00
235.00
230.00
320.00
375.00
380.00
245.00
500.00
232.50
216.07
370.00
132.00
246.07
85.00
55.00
20.00
120.00
390.00
155.00
305.00
335.00
50.00
235.00
145.00
175.00
150.00
380.00
190.00
360.00
145.00
110.00
245.00
85.00
360.00

LINE
 von an
$\begin{array}{r}4.80 \\ 1.90 \\ 75.80 \\ 3.10 \\ 2.30 \\ 7.60 \\ 8.50 \\ 6.50 \\ .60 \\ 3.60 \\ 3.60 \\ 3.50 \\ 2.80 \\ 2.10 \\ 2.20 \\ 4.30 \\ 16.30 \\ 4.80 \\ 11.30 \\ 9.00 \\ 5.80 \\ 4.20 \\ 3.20 \\ 4.10 \\ 1.10 \\ 4.30 \\ 2.20 \\ 4.60 \\ 3.90 \\ 3.70 \\ 5.90 \\ 5.90 \\ 4.70 \\ 1.80 \\ 4.70 \\ 4.40 \\ .80 \\ \hline\end{array}$

LINE N

591	7.00
592	6.80
593	10.00
594	2.60
595	11.20
596	8.20
597	3.60
598	9.50
599	8.90
600	8.80
601	3.40
602	2.10
603	1.20
604	.90
605	.70
606	.70
607	7.90
608	3.40
609	2.20
610	2.60
611	1.30
612	1.50
613	2.60
614	1.80
615	7.80
616	6.20
617	7.30
618	2.50
619	2.70
620	6.50
621	2.90
622	5.50
623	7.40
624	2.90
625	8.30

19
17
18
16
17
17
16
21
21
18
14
17
10
13
14
09
13
10
12
10
11
10
15
11
13
11
16
15
11
.958
.954
.962
.893
.961
.964
.940
.952
.960
.964
.926
.896
.841
.795
.843
.971
.955
.928
.945
.897
.909
.929
.923
.971
.970
.968
.919
.941
.962
.942
.945
.965
350.00
113.33
111.11
52.00
86.15
164.00
180.00
55.88
127.14
146.67
85.00
105.00
60.00
45.00
35.00
35.00
197.50
170.00
110.00
130.00
65.00
75.00
86.67
90.00
390.00
310.00
365.00
125.00
135.00
325.00
145.00
183.33

MAXIMUM	187.80	.74	.19	.30
MJNIMUM	.10	.02	.01	.01
MEAN DENN.	9.69	.03	.03	.04
STD. DENN.	20.09	.04	.03	.04

[^0]:

