REDBANK COPPER LIMITED

NORTHERN TERRITORY

EL 26965, 26999, 27737 - ANNUAL EXPLORATION REPORT (BRIDGING)

18 June 2011 to 31 March 2012

FOR

THE NORTHERN TERRITORY

DEPARTMENT OF RESOURCES

Author: J Ceplecha
26th September 2012
Redbank Copper Limited
A.C.N. 059 326 519
Level 1,
141 Hay Street
Subiaco WA 6008

Phone:
+61 8 6389 6400
Fax:
+61 8 6389 6410
Email:
info@redbankcopper.com.au
Executive Summary

The tenement block comprising EL’s 26965, 26999 and 27737 are granted leases within the Redbank Copper operational area in the Northern Territory, and currently in the third year of tenure.

Work undertaken during the period consisted of a regional airborne magnetic and radiometric survey flown during August 2011 at 200m line spacing as part of a collaborative funding with the NTGS. This survey covered the Calvert Project area straddling the Calvert Fault.

An independent assessment was made of the available hyper spectral data covering the Redbank tenements.

Follow up field investigations of anomalies generated from the hyper spectral and airborne magnetic surveys are planned for the 2012 and 2013 field seasons. These field investigations will initially involve soil geochemistry.
CONTENTS

(i) Title Page, Executive Summary

1.0 BACKGROUND - REDBANK COPPER OPERATIONS

2.0 REGIONAL GEOLOGICAL SETTING

3.0 TENEMENT GEOLOGY

4.0 EXPLORATION MODEL

5.0 PREVIOUS EXPLORATION

6.0 EXPLORATION FOR THE PERIOD 18 June 2011 TO 31 March 2012

7.0 PROPOSED EXPLORATION FOR THE NEXT 12 MONTHS

FIGURE LIST

Figure 1 Location and regional setting of Redbank Copper Limited
Figure 2 Redbank Infrastructure on ERL94, November 2010
Figure 3 Tenement Holding of Redbank Copper Limited
Figure 4 First pass image of 200m line spaced aeromagnetic survey – Calvert Project.
Figure 5 Targets from initial review of available hyper spectral data across Redbank tenements.
Figure 6 Merge of regional and 2011 magnetic data,
Figure 7 Interpreted geology overlain on TMI Image, with hyper spectral targets.
1 BACKGROUND - REDBANK COPPER OPERATIONS

The Redbank Copper Mine is located in the north-east of the Northern Territory approximately 30 km from the Queensland border and 70 km from the coast of the Gulf of Carpentaria. It straddles the Savannah Way which connects the townships of Borroloola in the Northern Territory and Burketown in Queensland. It is around 1,200 km south east of Darwin by sealed and unsealed road.

Figure 1: Location and regional setting of Redbank Copper Limited

The Redbank Copper field was discovered in 1916 and small scale mining was carried out until the early 1960’s. Subsequently exploration was carried out during the late 1960’s through to the 1990’s by various groups, culminating in larger scale mining operations being undertaken in the mid 1990’s when the Sandy Flat open pit was developed to supply oxide/sulphide ore to a 250,000 tpa flotation plant built on site. Some very high grade (>25% copper) ore was also direct shipped at this time. The operation ceased after less than 2 years because of declining copper prices. With the exception of the mill, the flotation plant and crushing circuit remain on site. Both are in reasonable condition and are planned to be refurbished to operating condition with a redevelopment of the Project.

The most recent processing was a copper leaching operation that began producing on an intermittent basis in 2004 and utilised oxide ore that had been stockpiled during the previous mining. The current owners have operated the site since 2005 and some of the remaining ore stockpiles from the previous mining venture in the 1990’s have been processed.

In 2009, with new funding and management arrangements, Redbank undertook the following:

- Placed the site on care and maintenance and embarked on a program to improve environmental compliance, in particular to remedy discharges of contaminated water from the site.
- Carried out a review of the project to determine the future direction of its development, and generate a mine study outlining the path to redevelopment.
- Embarked on a well-funded exploration program that aims to discover new resources and to upgrade the status of the existing resources.
The study undertaken by Redbank examined options for future development of the project. Redbank identified that the future of the project is primarily in processing sulphide copper ores, which comprise more than 86% of the current resources, to make quality copper concentrates. In addition copper cathode can be made from the oxide ores. Further work is required to establish additional resources and better define operating parameters. In November 2009 the total resource was estimated by SRK Consultants as 6,244,000 tonnes at a grade of 1.5% copper containing 95,900 tonnes of copper metal.

![Redbank Infrastructure on ERL94, July 2009](image)

Figure 2: Redbank Infrastructure on ERL94, July 2009

The operational area consists of an Exploration Retention License (ERL94) and seven Mineral Leases (ML631, ML632, ML633, ML634, ML635, ML636 and ML1108) contained within the ERL. The company has recently applied for a Mining Lease (MLA27385) to replace ERL94 ahead of a decision to mine in 2010. Redbank Mine Operations Pty Ltd, the holder of EL26778, also has a number of exploration interests within the vicinity of the existing Redbank Mine site (EL24654, EL26758, EL26778, EL26779, EL26780, EL26781, EL26999, EL26778, EL26778, EL27329, EL27737, EL28003 and EL28024). These are located mostly to the north and west of the mine site as shown below in Figure 3.

2 **REGIONAL GEOLOGICAL SETTING**

Regionally the Redbank copper deposits lie within the Proterozoic sequences of the MacArthur River Basin (see Figure 1). The basin hosts a number of world class base metal deposits. The Redbank copper mineralisation is hosted by the Lower Proterozoic Gold Creek Volcanics, a sequence of predominantly intermediate sub volcanic intrusions, extrusions, breccia pipes, and intercalated sediments. The copper mineralisation identified to date has been principally interpreted as being contained in volcanic breccia pipes, of which 30 to 50 have been recognised by various explorers. Only a minority of the breccia pipes are mineralised and only some of those contain potentially economic concentrations of copper.

The Packsaddle Microgranites locally intrude the Gold Creek Volcanics and are present close to the known Redbank copper deposits. Gold Creek Volcanics are present in a significant portion of the regional tenements. Further east the Gold Creek Volcanics are obscured beneath surficial Cainozoic sequences. The Hobblechain Rhyolite, a member of the Masterton Formation overlies the Gold Creek volcanics to the west.
3 TENEMENT GEOLOGY

Within EL26778 exposure is extensive and the topography varies from flat peneplain remnants left by the deeply incised drainage pattern following rejuvenation of the stream system that is dominated by structural features. Cainozoic surficial deposits, predominantly lateritic (pisolitic and nodular) duricrust with skeletal sandy soils and ferruginous cemented detritus developed above a well developed deep lateritic weathering profile is also evident in areas with deep creek incisions into the landscape.

Key lithologic units observed but with varying outcrop exposures include:

(i) **Bukalara Sandstone** – early Cambrian shallow marine fluvial sediments, typically feldspathic sandstones, quartz sandstones and pebble to cobble conglomerates.

(ii) **Karns Dolomite** – Proterozoic McArthur Basin Sequence, McArthur Group dolomite, algal dolomite, dolarenite: laminated, oolitic and algal cherts; dolomitic siltstone and sandstone, silty and sandy dolomite, oolitic-chamosite dolomite.

(iii) **McDermott Formation** – Proterozoic McArthur Basin Sequence, Tawallah Group Dolomite, laminated stromatolitic, sandy, oolitic, and intraclast-rich; dolarenite; quartz sandstone, fine to medium clayey: glauconitic sandstone; shale and siltstone.
4 EXPLORATION MODELS

The consensus of most of the modern era (post-1970) explorers in the Redbank area is that the mineralisation is contained in the approximately circular volcanic breccia pipes as the result of fluid circulation in the breccia. The breccia pipes development has also been interpreted as involving largely autochthonous brecciation of the trachyandesite host rock, with little displacement.

There have been some suggestion that there has been post volcanic slumping in some pipes causing minor (<10m) vertical displacement of sediments overlying the Gold Creek volcanics into the pipes. Minor normal faults and jointing have been interpreted as exerting a control on the location and form of the pipes. A peculiarity of the more comprehensively mineralised pipes is the association of the mineralisation with pyrobitumen. The origin of the pyrobitumen has been variously speculated as resulting from intense reduction of carbonate to a high temperature derivative of an organic precursor.

RC and diamond core drilling by Redbank on deposits in the area during 2006 to 2009, has indicated that the mineralisation does not display all the characteristics that could be expected solely from the circulation of mineralised fluids through the prepared breccia pathways. While there are clearly veins of sulphidic copper mineralisation contained within the breccia they are typically fragmented. Also much of the primary mineralisation consists of chalcopyrite and chalcocite grains disseminated through the host trachyandesite. The oxide mineralisation retains the characteristics of the primary mineralisation structures and fabrics with cuprite largely replacing the disseminated chalcocite and chalcopyrite, with a minor amount of azurite and malachite vein formation following ground water migration along open weathering fractures.

More detailed studies of petrogenesis and ore formation are planned but the initial indications are that there may be a precursor disseminated style of mineralisation emplaced in the breccia pipes. The source of the precursor mineralisation could represent a major target for large scale disseminated copper mineralisation. As a corollary exploration should not only focus on finding mineralised breccia pipes but should also be trying to discover the source of the precursor disseminated mineralisation which has the potential to be a much larger target.

Conceptually, the possibility exists for ‘Manto’ style stratabound deposits forming at depth below the limit of breccia formation, as a primary mineralisation focus over structural décollements from fluid travelling laterally from major through-going lineaments, such as the Calvert Hills fault immediately north of the EL26965.

A stromatolitic dolomite bed in the McDermott Formation immediately below the Sly Creek sandstone, reports consistently elevated copper and cobalt levels over a few km south of the Calvert Hills homestead.

Packsaddle Microgranite (or rhyolitic) intrusions occur in close association with the Redbank copper Mineralisation. It is not yet apparent if there is any paragenetic significance in this spatial association. The Packsaddle Microgranites have interpreted as associated with a regional 1,725Ma felsic intrusive event in the Macarthur River Basin (Page et al, 2000).
5 PREVIOUS EXPLORATION ON REGIONAL TENEMENTS

Review of the available historic data indicated that it was disjointed and compilation into a modern GIS system was required. Principal explorers were Carpentaria, Rio Tinto, and then later CRA, mainly exploring for base metals, uranium and diamonds in the general area.

Several generations of work starting in the 1960’s can be grouped according to commodity as follows:

(i) 1956 to 1960 – predominantly uranium exploration,
(ii) 1965 to 1971 – again mainly uranium with another focus on copper, particularly at Redbank,
(iii) 1978 to present – uranium, diamonds, gold and base metal, manganese and industrial minerals (phosphates)

Apparently no broad approach to the current land package has been effectively applied, and with no application of new generation of geophysics and deep sensing geochemical methods.

6 EXPLORATION FOR THE PERIOD 29th May 2011 TO 30th May, 2012

Completion in August 2011 of Phase 1 of an airborne magnetic and radiometric survey, as part of a collaborative funding with the NTGS over the Calvert Project (Figure 4). This survey consisted of 8000 line km at a line spacing of 200m. Phase 2 was to be flown at 100m line spacing once an independent interpretation and recommendations are made of the Phase 1 data. This programme has been deferred. Of interest is a broad bulls-eye target within EL27737.

The extent of the Phase 1 survey incorporates part of EL 26965, 26999 and 27737. Preliminary interpretations are shown in Figures 6 and 7 below and include:

 Figure 6: - Merge of regional and 2011 magnetic data,
 Figure 7: - Interpreted geology overlain on TMI Image, with hyper spectral targets.

An initial assessment of available hyper spectral data was made by an independent consultant over the Redbank tenements (Figure 5). A number of spectrally anomalous areas were suggested, but require ground truthing before further exploration activities are recommended.

7 PROPOSED EXPLORATION FOR THE NEXT 12 MONTHS

The company has appointed consultants to direct the exploration within its regional tenement package including EL’s 26965, 26999 and 27737. Within EL’s 26965 and 26999 assessments are continuing, as surface geochemical data from previous exploration activities indicate that Cu, Pb, Ag, Zn and possibly some Au are anomalous in catchments adjacent to some of the hyper spectral targets. However, previous stream sediment geochemical sampling was not conducted across all the tenements due to restricted access.

Future work will include:

(i) Ground truthing of the hyper spectral targets, particularly if anomalous stream geochemistry is present.
(ii) Integration of the newly acquired 2011 airborne magnetic/radiometric data with the hyper spectral and stream geochemical data.
(iii) Once ground investigations have been assessed, determine if further, detailed soil geochemical surveys and ground magnetic surveys are appropriate.
Figure 4. First pass image of 200m line spaced aeromagnetic survey.

Figure 5. Targets from initial review of available hyper spectral data across Redbank tenements.
Figure 6.: Detailed TMI Merge over northwestern EL26999.
Figure 7. TMI image with Interpreted Geology Under Cover, and hyper spectral targets straddling EL 26999 & EL 26778.
REFERENCES

Smith RE., Birrell RD., and Brigden JF.. (1989) The implications to exploration of chalcophile corridors in the Archaean Yilgarn Block, Western Australia, as revealed by Laterite geochemistry.