

An integrated study of the McArthur River mineral system: From geochemistry, geophysics and sequence stratigraphy to basin-scale models of fluid flow

Heather Sheldon, Peter Schaubs, Teagan Blaikie, Marcus Kunzmann, Susanne Schmid and Sam Spinks

CSIRO Mineral Resources

MINERAL RESOURCES www.csiro.au

Outline

- Conceptual model of the McArthur River mineral system
- Numerical models: Geometry and properties
- Scenario testing:
 - Diagenetic vs. syngenetic mineralisation
 - Effects of deformation: Extension vs. shortening

McArthur River: Geological setting

McArthur River: Conceptual model

Numerical model

Scenario testing 1: Diagenetic vs. syngenetic mineralisation

Stratigraphic interpretation

Syngenetic scenario: black shale = chemical trap on seafloor

Diagenetic scenario: black shale = seal, diverting fluids into BCF

Scenario testing: Diagenetic vs. syngenetic mineralisation

Syngenetic: Fluid flows up Emu Fault to seafloor

Diagenetic: Fluid diverts out of Emu Fault into BCF

Results: Thermal convection, syngenetic scenario

Temperature and fluid flow in aquifer and faults

Results: Thermal convection, syngenetic scenario

Aquifer and faults

 Integrated fluid flux

 4.0e+05

 10000

Barney Creek Fm (vertical exaggeration x10)

135 km³ fluid in 1 m.y.
 c.f. 20 km³ required for McArthur River deposit (20 Mt Zn)

Results: Thermal convection, diagenetic scenario

Temperature and fluid flow in aquifer and faults

Results: Thermal convection, diagenetic scenario

Aquifer and faults

Barney Creek Fm (vertical exaggeration x10)

Scenario testing 2: Effects of extension and shortening on thermal convection

Tectonic setting

Blaikie and Kunzmann 2019

- Lower Barney Creek Formation deposited during North-South extension
- Inversion event ~1640 Ma, during deposition of upper BCF
- Mineralisation occurs in lower BCF
- Implications:
 - Syngenetic mineralisation occurred during extension
 - Diagenetic mineralisation occurred during extension OR inversion

Applying extension/shortening to the model

Results: Effect of deformation on thermal convection

Conclusions

- Thermal convection created localised upwelling of hot metalliferous brine along the Emu Fault
- Syngenetic mineralisation (with minor early diagenetic mineralisation) occurred if Emu fault had high permeability to the seafloor
- Diagenetic mineralisation occurred if Emu fault had low permeability at shallow depths, with black shale acting as a seal
- Thermal convection provided sufficient fluid flux to account for mineralisation
 - < 1 million years for syngenetic mineralisation
 - > 1 million years for diagenetic mineralisation
- Deformation had minimal effect on thermal convection unless strain rates were anomalously high
- Future work should consider effects of:
 - Salinity
 - Large deformations leading to development of topography (fault scarps)
 - Variations in fault permeability with deformation

Thank you

Contact: Dr Heather Sheldon <u>heather.Sheldon@csiro.au</u>

www.csiro.au