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Introduction 

The ca 1815–1450 Ma southern McArthur Basin contains 
sedimentary sequences from four vertically stacked and 
unconformity-bound superbasins (Figure  1; Rawlings 
1999, Jackson et al 2000, Ahmad et al 2013). These 
superbasins evolved in response to far-field plate boundary 
processes, which influenced periods of extension and crustal 
shortening across the basin. Extension and shortening 

events varied in their orientation and intensity, and resulted 
in the development of a complex fault and depositional 
architecture. 

This abstract discusses results from the interpretation 
and modelling of new and historical geophysical data 
from across the southern McArthur Basin. We summarise 
the tectonic evolution of the basin, which was derived 
from integration of our geophysical and structural 
interpretation into the geodynamic framework of the 
North Australian Craton. We also discuss implications 
of new geophysical modelling results for understanding 
Zn‑Pb-Ag mineralisation within the basin, with a focus on 
metals source regions, fault and sub-basin architecture, and 
tectonic triggers for fluid migration.

Figure 1. Regional geological map of McArthur and Mount Isa Basins showing location of major stratiform Zn-Pb-Ag deposits (after 
Ahmad et al 2013).
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Regional scale geophysical modelling 

Recent acquisition and modelling of gravity data across 
the Batten Fault Zone and southern McArthur Basin 
has provided new insight into the 3D architecture of the 
region. Both solid geology and structural interpretations 
of Proterozoic stratigraphy were completed, with most 
regions mapped down to formation scale (eg Blaikie and 
Kunzmann 2018). This allowed the lateral extent of major 
lithological units to be defined, as well as constrained 2D 
forward models of the Batten Fault Zone. Interpretations 
were also integrated with the detailed sedimentological 
evaluation and sequence stratigraphic framework developed 
by Kunzmann et al (2019) for the middle McArthur Group. 
This allowed observations of different depositional cycles, 
and shifting of depocentres to be placed in context of the 
structural framework. 

Seven cross-sections were forward modelled and 
define the current 3D architecture of the region, including 
the nature of major basin controlling structures. The 
cross-sections were located along 500  m spaced gravity 
profiles, which were acquired along six east–west and one 
north – south traverse during the Batten Fault Zone gravity 
survey conducted in late 2017 (CSIRO 2018). Figure  2 
shows a 3D rendering of all cross-sections. The sections 
highlight the architecture of the fault zone, including 
regional scale folding, nature of major faults, and variations 
in the preserved thickness of stratigraphy. 

Of significance for Zn-Pb-Ag mineralisation, forward 
modelling suggests that an anomalously thick sequence of 
mafic volcanics are preserved within the Tawallah Group 
in several regions of the Batten Fault Zone. The largest 
of these volcanic units has a strong spatial association to 
known mineralisation, including the McArthur River 
and Teena deposits. The volcanic unit is interpreted to be 
a thick accumulation of either or both of the Settlement 

Creek Dolerite and Gold Creek Volcanics. These units have 
experienced extensive potassic metasomatism and base 
metals depletion (eg Pietsch et al 1991, Haines et al 1993, 
Rawlings et al 1993); they have previously been interpreted 
as the source of base metals in the region (Cooke et  al 
1998, Huston et al 2006). Geophysical modelling has also 
identified regions of granitic basement within the Batten 
Fault Zone. Granitic clasts are recognised within several 
siliciclastic units of the Tawallah Group. These granites may 
represent a secondary source of metals, which were leached 
directly from the basement, or from clasts preserved within 
the Tawallah Group. 

Recognition of anomalously-thick mafic volcanics 
within the Tawallah Group and felsic volcanics within 
the basement provides significant evidence of crustal 
pre‑conditioning for base metals mineralisation; this 
implies that the source of base metals was located relatively 
close to major deposits discovered in the region. Modelling 
also recognises a number of aquifer and basement tapping 
faults, which would have provided a pathway for metal rich 
fluids to ascend. 

Modelling sub-basin architecture

The McArthur Group was deposited during intermittent 
periods of extension and minor crustal shortening, which 
formed a complex array of sub-basins and palaeohighs. 
Forward models of the Batten Fault Zone were 
constructed at a regional scale, and although they model 
major sub‑basin bounding faults, they do not focus on 
sub‑basin architecture (less than 5 km scale). Integration 
of high-resolution geophysical data with the sequence 
stratigraphic framework developed by Kunzmann et al 
(2019) allowed more detailed geophysical models of 
sub‑basin architecture to be constructed (eg Blaikie et al 
2018, Blaikie and Kunzmann 2018).

Figure 2. 3D rendering of forward modelled geological sections with surfaces for major faults overlain.
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Figure 3. Map of geophysically 
defined, and previously interpreted 
(eg McGoldrick et al 2010) sub-basins in 
the central Batten Fault Zone.
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Two styles of sub-basins in the Batten Fault Zone 
are recognised from the interpretation of geophysical 
data (Figure  3; note: Barney Creek Formation may not 
be preserved in all sub-basins). North–south trending 
transtensional sub-basins developed between segments of 
the north–northwest-trending Emu Fault Zone (eg Glyde 
sub-basin. Figure 3; Type 1); and approximately east – west-
trending sub-basins developed adjacent to east–west-
trending normal and north–northwest-trending transfer 
faults located between the Hot Spring Fault and Emu Fault 
Zone (eg Teena sub-basin. Figure 3; Type 2). 

These sub-basins are too small for detailed modelling 
on the regional scale cross-sections; however, many have 
high-resolution geophysical data acquired over them plus a 
number of drillholes to constrain interpretations. Figure 4 
shows the 3D architecture of the Glyde sub-basin, determined 
from forward modelling of gravity and magnetics, and 
interpretation of AEM data. Interpretation and modelling 
show thickening of the Barney Creek Formation between 

the Emu Fault Zone and Cowdreys Fault, with the greatest 
thickening of the formation occurring adjacent the Emu 
Fault Zone (Figure 4).

Tectonic evolution of the southern McArthur Basin

The structural and solid geological interpretation, and 
forward modelling of the potential field data, highlight the 
nature and overprinting relationships of major fault systems, 
regional scale folding and variations in the preserved 
thickness of stratigraphy within the Batten Fault Zone. 
This has allowed a synthesis of the basins depositional and 
structural evolution to be developed.

The Tawallah Group (ca 1710–1790 Ma) was deposited 
during at least two extensional events, separated by a mild 
period of inversion (Figure 5a–c). These events were driven 
by subduction roll-back and collisions along the southern 
and eastern margins of the North Australian Craton 
(Betts and Giles 2006). North–south-directed extension at 
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ca 1760–1740 Ma caused the reactivation and development 
of northwest normal and northeast to north–northeast 
strike-slip faults (Figure 5a). A minor, east–west-directed 
inversion event is recognised at ca  1740  Ma (Figure  5b; 
Bull and Rogers 1996), which caused reverse movement 
along north–northeast faults. Northwest–southeast 
extension between ca 1730–1690  Ma caused development 
of north–northeast to northeast normal faults and strike-slip 
movement along northwest faults (Figure 5c). 

Deposition of the ca  1670–1600  Ma McArthur 
Group and the ca 1600–1575  Ma Nathan Group occurred 
predominantly within a sag basin, which experienced short-
lived periods of extension and inversion in response to 
deformation occurring at the margin of the North Australian 
Craton. A broadly north–south-directed period of extension 
occurred during deposition of the middle McArthur Group 
(ie during Barney Creek Formation; Figure 5d). This event 
compartmentalised the basin, causing significant deepening 
of sub-basins in some areas, and uplift and erosion in others 
(McGoldrick et al 2010 ,Kunzmann et al 2019). We speculate 
that a minor compressional event at ca 1640 Ma caused syn-
depositional uplift along extensional faults resulting in an 
influx of breccias into previously developed sub-basins. 
The timing of this event is coincident with the Riversleigh 
Event on the Lawn Hill Platform (eg Bradshaw et al 2000), 
which has been correlated to the accretion of the Warumpi 
province (eg Hollis et al 2013; Scrimgeour et al 2005) on 
the southern margin of the craton at ca 1640 Ma (Betts and 
Armit 2011; Gibson et al 2017). Alternatively, if collision of 
the Warumpi province occurred at ca 1130 Ma as proposed 
by Wong et al 2015, then the ca 1640 Ma deformation 
recognised in the north Australian basins may be related 
to intraplate instability associated with broader scale plate 
reorganisation, which triggered a reversal in plate motion 
(eg Idnurm 2000). 

The Isan Orogeny, driven by orogenesis at the margins 
of the North Australian Craton, caused significant uplift 
and erosion across the southern McArthur Basin. Initially, 
sedimentation of the upper McArthur and Nathan groups 
continued during the onset of the earliest phase of the orogeny. 
Sedimentation had ceased by ca 1570 Ma, with minor east–
west folding and reverse faulting along extensional basin 
faults occurring during the late first stage of the orogeny 
(Figure 5e). The late Isan Orogeny caused reverse movement 
along north–northwest to north–northeast faults, which 
resulted in significant uplift and erosion, particularly in the 
north of the Batten Fault Zone (Figure 5f).

During the Mesoproterozoic, renewed basin 
development caused the widespread deposition of the 
Roper Group across the region (Figure 5g). Following this 
period of deposition, northeast–southwest-directed crustal 
shortening caused thrust faulting and folding in the Batten 
Fault Zone (Figure  5h; Rogers 1996, Keele and Wright 
1998, Rawlings et  al 2004). Timing of this event is not 
well constrained but is thought to be after the ca 1313 Ma 
(Collins et  al 2018) emplacement of the Derim Derim 
Dolerite dykes and sills.

Tectonic triggers of fluid migration

Zn-Pb-Ag mineralisation within the McArthur Basin 
occurred when fluids from aquifers at depth (ie Tawallah 
Group; Polito et  al 2006) flowed upward into a suitable 
trap at or near the surface. Although extensional conditions 
are favourable for formation of suitable metal traps, such 
as restricted sub-basins in the case of the McArthur Basin, 
they are not conducive to mineralisation because fluids will 
largely tend to migrate downward (Sheldon and Schaubs 
2018). However, compressional stresses associated with 
a short-lived, ca  1640 Ma compressional event provide a 

Figure 4. Architecture of the Glyde sub-basin determined from geophysical interpretation and modelling. (a-b) Forward modelled cross-
sections of the Glyde sub-basin. c) Falcon gravity data (acquired by Armour Energy 2013) overlain with interpreted faults. (d) 3D model of 
the Glyde sub-basin showing location of wells, major faults and an interpolated surface for the base of the Barney Creek Formation. 
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Figure 5. Structural evolution of the 
southern McArthur Basin.

mechanism to drive metal rich fluids upward and into the 
host stratigraphy. 

Syn-depositional deformation associated with crustal 
shortening was first documented by Hinman (1995) at 
McArthur River where inversion of extensional structures 
and an influx of mass-flow breccias into the HYC sub-basin 
was interpreted. Folding and reverse faulting was recognised 

largely in close proximity to the Emu Fault Zone, but is also 
observed in other regions of the Batten Fault Zone (Hinman 
1995, Rogers 1996). The onlap of strata of the upper Barney 
Creek Formation onto stratigraphy that was reversely faulted 
and incised during inversion indicates that sedimentation of 
the Barney Creek Formation continued during the onset of 
deformation (Hinman 1995). Recent evidence for a diagenetic 
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origin of Zn-Pb-Ag mineralisation at McArthur River (Spinks 
et al 2018), which stratigraphically occurs in the lowermost 
Barney Creek Formation, suggests that mineralisation may 
have occurred tens to hundreds of meters below the sea floor. 
This means that fluid flow and mineralisation may have 
occurred at about the time the upper Barney Creek Formation 
was deposited (Kunzmann et al 2019), ie the proposed time of 
the onset of deformation at ca 1640 Ma. 

Conclusions

Geophysical interpretation and modelling results from 
this study have important implications for understanding 
Zn‑Pb-Ag mineralisation within the region. Modelling has 
recognised potential source rocks for metals in the form of 
anomalously thick sequences of mafic volcanics within the 
Tawallah Group. Modelling also identified potential fluid 
pathways in the form of sub-basin bounding faults that tap 
the basement and aquifers within the Tawallah Group. 

A new synthesis for the structural and tectonic evolution 
of the southern McArthur Basin was developed from the 
integration of modelling results into the geodynamic 
framework of northern Australia. Results of this work led 
to a correlation between a short-lived compressional event 
occurring towards the end of deposition  of the Barney Creek 
Formation and inversion on the Lawn Hill Platform. This 
event is thought to be driven either by deformation related 
to the accretion of the Warumpi province at ca 1640 Ma, 
or by broader scale tectonic instability due to a reversal in 
plate motion. This event may have provided the mechanism 
for pumping metal-bearing fluids up faults and leading to 
mineralisation within the basin. 
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