Ultra-high definition trace element mapping provides new clues on the origin of the McArthur River (HYC) sediment-hosted Zn-Pb deposit.

Sam Spinks1, Mark Pearce1, Chris Ryan1, Gareth Moorhead1, Robin Kirkham1, Heather Sheldon1, Marcus Kunzmann1, 2, Weihua Liu1, Teagan Blaikie1, 2, Peter Schaubs1, William DA Rickard3

1CSIRO Mineral Resources, \\ 2Northern Territory Geological Survey \\ 3John De Laeter Centre, Curtin University
HYC Sediment-hosted Zn-Pb Deposit

The Genetic Debate!

<table>
<thead>
<tr>
<th>Observation</th>
<th>Syndepositional Model</th>
<th>Diagenetic-epigenetic model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminated ore textures</td>
<td>Consistent with deposition from water column</td>
<td>Can be produced by replacement of sedimentary (carbonate) layering</td>
</tr>
<tr>
<td>Timing of sphalerite and galena mineralization</td>
<td>Not consistent</td>
<td>Deposition of base metal sulfides after latest diagenetic pyrite indicate diagenetic-epigenetic model</td>
</tr>
<tr>
<td>Lithogeochemical haloes (Tl)</td>
<td>Enrichment of Tl up to 200 m above ore zone could result from low-T fluid after main-stage mineralization</td>
<td>Enrichment of Tl up to 200 m above ore zone indicate fluid flow well after deposition of ore-hosting sediments low-T fluid after main-stage mineralization</td>
</tr>
</tbody>
</table>

After Huston et al. 2006; Econ. Geol.
Current understanding is based on interpretations from old technologies, usually from thin sections.

‘carbonate replacement during the oreforming process might seem a reasonable textural interpretation. Although, the ore-hosting Pyritic Shale Member in the HYC deposit contains abundant carbonate.’

Sangster, 2018; Min. Dep.
The point has been made by Leach et al. (2010) that sulfide layering, by itself, is not sufficient proof of exhalative ore. By the same token, however, sulfide mimicking of synsedimentary textures is not proof of replacement processes.

...Although replacement is frequently mentioned to be responsible for sulfide layering, the replaced mineral phase is seldom identified.’

Sangster, 2018; Min. Dep.

The debate is going in circles.
A quantitative approach is needed....across different scales
21st Century Technology: New Maia Mapper for ultra-high definition drill core & slab-scale XFM Mapping

Exploits new developments
- Excillum high flux, liquid metal micro-focus source
- Maia Detector (used on the Australian Synchrotron)
- New X-ray lenses for higher energies >20 keV
- ‘Mimic’ Synchrotron conditions in the lab, on drill core scale samples
Part 1: Ore Textures and ‘Carbonate Replacement’
Laminated ore (central HYC). Carbonate partially replaced.
HYC Slumped laminated pyritic ore lens
Manganese alteration along rims of carbonate at replacement interface
Laminated ore, central HYC. Carbonate almost fully replaced
Unmineralized laminated dolomitic BCF
Part 2: Thallium Lithogeochemistry
Geochemistry of thallium (Tl)

- Highly incompatible trace element, often associated with K-bearing phases because it occurs primarily in the form of Tl\(^+\), which is similar in size to the large monovalent cations K\(^+\), Rb\(^+\) and Cs\(^+\).
- Tl also exhibits chalcophile behaviour in sulfide melts and hydrothermal fluids.
- Behavior in mineral systems is poorly understood.
Issues with mapping thallium (with XRF Methods)

Pyritic-sphaleritic shale with >350 ppm Tl

Ti peaks overlap with S and Pb
HYC Slumped laminated pyritic ore lens
Late (but still pre-ore) pyrite zonation with anomalous Tl
Quantitative Focussed Ion Beam Time of Flight Secondary Ion Mass Spectrometry (FIB TOF SIMs)

Gallium ions and Xenon ion plasma beam
Part 3: Ore Fluid Modelling
For those allergic to phase diagrams:

- Ore fluids were initially oxidized very acidic.
- Reduction permitted Tl-pyrite precipitation.
- Acid carbonate dissolution allowed sphalerite to precipitate after pyrite

![Phase Diagrams](image)
The simplified version

• Acid carbonate dissolution creates environment favourable for sphalerite precipitation, a ‘pH buffer’.

• Not strictly direct carbonate replacement, sphalerite precipitates at site of carbonate dissolution.
Summary 1

• Zn mineralization occurs as ‘replacement’ of carbonate. Maia Mapping of large scale samples can identify remnant carbonate in laminated ore.

• Thallium enrichment is associated with late pyrite overgrowths, paragenetically before base metal sulfide mineralization.

• Implications for exploration for SHMS deposits using Tl.
Summary 2

• Acidic, oxidized ore fluids precipitated Tl-pyrite.
• Carbonate dissolution created chemical conditions favourable for sphalerite precipitation.
• Evidence for epigenetic origin of mineralization (syn-late diagenesis at least).
• Quantitatively challenges the paradigm of exhalative deposit models. Time to abandon the term ‘sedex’?
Thank you

Sam Spinks

Senior Research Geoscientist
t +61 8 6436 8590
e sam.spinks@csiro.au
w people.csiro.au/S/S/Sam-Spinks
tw @Presambrian