

Geophysics and Drilling Collaborations **Proposal Cover Sheet**

Project title	Coppermine Creek Exploration
Applicant (Company Name)	Pacifico Minerals Ltd
Applicant ABN	43 107 159 713
Applicant postal address	PO Box Z5487, Perth WA 6842
Contact officer	Simon Noon
Contact phone number	08 6266 8642
Contact fax number	08 9421 1008
Contact email address	simon.noon@pacificominerals.com.au
Granted exploration licence number(s) where this proposal is to be undertaken	EL 26938
Proposed type of exploration program for funding (diamond drilling, gravity survey etc)	Diamond drilling
Brief summary of program (total number of metres to be drilled, number of gravity stations, total length of flight lines etc)	2 x 300m diamond drill holes, total 600m
Total direct costs for the program including GST	\$132,000
Amount of funding requested including GST	\$66,000
Proposed timeframes for commencement and completion of program	15 July – 15 September 2017
Names and positions of signatories to the funding contract	Simon Noon (Managing Director)
Signature of applicant	Clean
Date	21 April 2017
	·

2017

Geophysics and Drilling Collaborations Completion Report, EL26938 – Coppermine Creek

For

Northern Territory Government CORE Initiative

By Pacifico Minerals Ltd

November 2017

Level 10, 553 Hay Street PERTH WA 6000 PO Box Z5487, PERTH WA 6831 **ABN** 43 107 159 713 **T:** +61 8 6266 8642 **F:** +61 8 9421 1008 **Email:** <u>admin@pacificominerals.com.au</u> **Web:** <u>www.pacificominerals.com.au</u>

1:250,000: Mount Young (SD53-15)

Executive Summary

The objective of the diamond drilling program proposed in the Coppermine Creek prospect area was to test for stratiform copper mineralization of Mount Isa or Nifty style, within the McArthur Group sediment and carbonate sequence. Very strong indications had been obtained, during previous RC and diamond drilling, of a copper mineralized stratabound horizon associated with an evaporite bed within the Amelia Dolomite.

The program was successful, and even though the intersections obtained were not ore grade, the two diamond holes drilled, CCD09 and CCD10 confirmed the model of an extensive, relatively shallow, stratabound, copper mineralised zone at Coppermine Creek, within which there is high potential for the development of a copper orebody with economic parameters.

Table of Contents

Executive Summary	2
Table of Contents	3
Introduction	4
Regional Context	5
Previous Exploration	7
Exploration Concept	8
Details of the Collaborative Program	8
Results and Interpretation	9
Conclusion	13
Appendices	14

LIST OF FIGURES

Figure 1: Borroloola West Project Tenements and Location of Mariner Prospect, EL26938 Figure 2: Coppermine Creek Prospect – interpreted geological plan showing diamond hole c	
	6
Figure 3: Coppermine Creek Prospect Prospect Section through diamond hole CCD09 and CCD10	
Figure 4: Coppermine Creek Prospect Prospect – CCD09 Summary log and pXRF geochemistry	11
Figure 5: Coppermine Creek Prospect Prospect – CCD10 Summary log and pXRF geochemistry	12
Figure 6: Coppermine Creek Prospect Prospect – Schematic section showing exploration model	12

LIST OF TABLES

Table 1: Coppermine Creek – Drill Hole Collars (GDA94 Zone 53)	8
Table 2: Summary of diamond drill results, CCD09 and CCD10	9

LIST OF APPENDICES

Appendix 1 – CCD09 – Drill hole log, geology and mineralisation	14
Appendix 2 – CCD10 – Drill hole log, geology and mineralisation	15
Appendix 3 – CCD09 – Structural measurements	16
Appendix 4 – CCD10 – Structural measurements	17
Appendix 5 - Drill hole codes	18

Introduction

The project is centred about 650km southeast of Darwin in the 'Gulf Country' of the Northern Territory, Australia.

Access to the tenement is gained via the Nathan River Road north of Cape Crawford. The Coppermine Creek prospect area lies in EL26938 (figure 1), within the southern portion of the Limmen National Park. Access tracks were cleared previously in 2015 and 2016 by Pacifico for RC and diamond drill programs, and only limited additional access track clearing was required.

Site inspections were carried out with a Traditional Owner Timothy Lansen, representative of the Alawa People, over the areas of planned diamond drill sites and access tracks, and it was agreed that no sites of cultural significance were to be affected by the program.

The diamond drilling program was included in the Mine Management Plan for 2017 (MMP) submitted in the name of West Rock Resources Pty Ltd, wholly owned subsidiary of Pacifico Minerals Ltd.

Agreement was made with Parks and Wildlife, within the Limmen National Park, to rehabilitate all access roads and drill sites according to the provisions of the MMP.

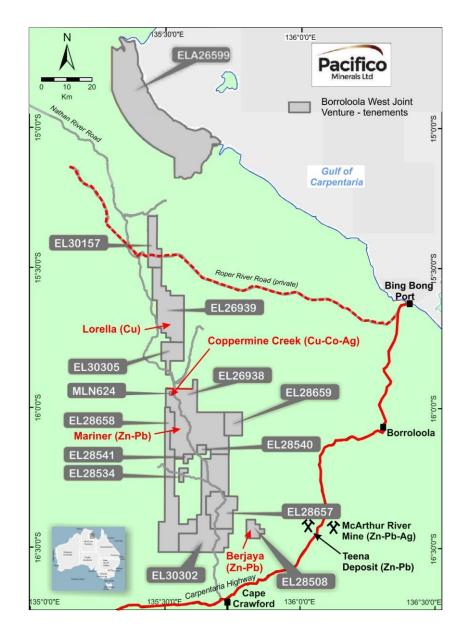


Figure 1: Borroloola West Project Tenements and location of Coppermine Creek prospect, within EL26938

Regional Context

The Coppermine Creek prospect lies in an area of McArthur Group sediments faulted against younger Roper Group sequence. In the prospect area the McArthur Group consists of Tooganinnie Formation dolomitic shale, siltstone, sandstone and dolomite, Tatoola Sandstone, Amelia Dolomite, Mallapunyah Formation hematitic sediments and carbonates and Tawallah Group coarse sandstone. The McArthur Group is faulted against the younger Roper Group sediments by the Coppermine Creek fault (reverse faulting indicated by drilling). The overlying Roper Group sediments consist of conglomerate, siltstone, and sandstone.

Outcropping and drill intersected copper mineralization (up to 50m thick) occurs along part of the Coppermine Creek Fault zone with a strike length of at least 800m.

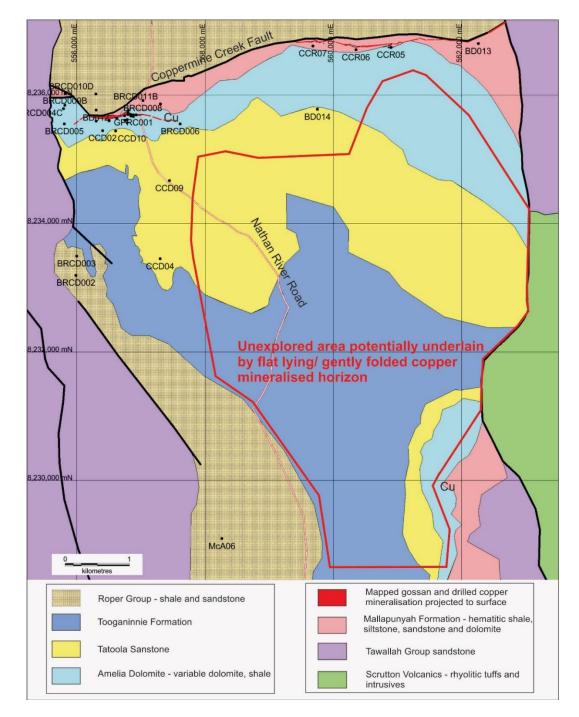


Figure 2: Geology and drilling, including location of diamond drill holes CCD09 and CCD10 at Coppermine Creek, also showing huge area potentially underlain by gently dipping mineralised horizon.

Previous Exploration

1960's, Carpentaria Exploration Company (Mount Isa Mines) drilled one diamond drill hole under the outcropping copper gossan at Coppermine Creek.

Early 1990's, Carrington Mines Ltd drilled 10 short RC holes in the eastern part of the mineralization at Coppermine.

1996/97 Broken Hill Proprietry Ltd. Some geophysics and drilled one diamond hole in the area of outcropping gossan.

2007 to 2011, Sandfire Resources NL. Drilled 7 holes, RC to about 100m, and then diamond drilling in the area of the Coppermine Creek Fault only.

2015 and 2016 Pacifico Minerals Ltd. Drilled 2 RC holes, one combined RC/ diamond hole and 2 diamond drill holes. All except 1 hole, drilled 1.3km south of the proposed holes, were drilled into the main east-west Coppermine Creek zone of intermittent gossan.

Historical information is contained in the following NTGS archived reports: CR19630004 – CEC (MIM) 1963 CR19940348 – Carrington Mines 1993 CR19970157 – BHP 1996

Exploration Concept

The drilling targets target were for a major deposit of 50Mt of >3%Cu (+Co, Ag). It is considered that the thickness and continuity of the copper mineralised intersections obtained to date strongly indicate the potential for a major deposit in the area south of the Coppermine Creek Fault, within gently dipping underlying Amelia Dolomite, and at relatively shallow depths (<400m). This is supported by the widespread brecciation, intense fracturing, dolomitisation and quartz – dolomite veining, with associated copper mineralisation, that is mapped at surface and drilled.

The copper-cobalt-silver mineralisation at Coppermine is essentially stratabound, spatially associated with an evaporite horizon which is a dolomitised and quartz-dolomite veined bed of ex-gypsum crystals (figure 3) that is folded and brought to surface outcrop by the east-west Coppermine Creek thrust fault.

The average intersection length of all the holes drilled by Pacifico and previous explorers is 26m, and the length weighted average intersected grade from the 12 drill holes is 0.5% Cu and 0.016% Co (limits of mineralisation). The outcrop length of the mineralisation is about 800m (figure 2). If the zone extends south, dipping gently from the copper mineralised outcrop close to the Coppermine Creek Fault, there is potential for a very large volume of low grade stratabound Mount Isa/ Nifty style copper mineralisation, within which it is likely that there are significant tonnages of much higher copper (and cobalt, silver) grades.

The idea was to step back south from the previous drilling concentrated around the Coppermine Creek Fault and diamond drill test this broader zone.

Details of the Collaborative Program

Drill Hole ID	Prospect	Туре	Easting	Northing	Elevation	Total depth	Dip	Azimuth
CCD09	Coppermine	DD	557443	8234668	99	252.5	-80	225
CCD10	Coppermine	DD	556602	8235441	87	300.6	-80	000

Table 1: Coppermine Creek – Drill Hole Collars (GDA94 Zone 53)

The collar positions were surveyed using a handheld GPS accurate to about 4m.

The drill program was contracted to Mitchell Services who used a Sandvik 1200 truck mounted diamond drill rig. Drilling of CCD09 and CCD10 was conducted from the 11th August to the 22nd August 2017, working double shifts. Drill hole collar specifications are listed in Table 1. CCD09 was drilled HQ3 to 35.4m and then NQ2 to the end of the hole at 252.5m. CCD10 was drilled HQ3 to 20.4m and then NQ2 to the end of the hole at 300.6m.

Single shot directional surveys were carried out every 30m on the diamond drilling to maintain control on the hole. An ACT Mk2 NQ core orientation tool was used on every diamond drill core run (< or 3m). Successful readings and marks were made on about 80% of the runs.

The core was logged for rock types (Appendix 1), structure and mineralization.

Using the orientation marks the core was orientated where possible. Structural measurements of bedding, veining and fault breccias were measured (true dip and dip direction using a 'rocket launcher') where the features were unambiguous.

A single pXRF reading was taken on the core every 1m (results are plotted on figure 4). More detailed readings were taken if veining or mineralisation was observed, and those readings averaged.

The portable XRF instrument used was an Innov-X Systems Delta DP 2000. Calibration was carried out using the Innov-X Systems Standard 316 before commencing readings sessions. Because of the very small sampling window and possible interference errors inherent with the instrument, the values are regarded as qualitative. There is a constant routine monitoring for gross errors with the instrument, which should be apparent when comparisons can be made on sending core or rock chips to a laboratory for more representative and accurate analyses.

Selected intervals showing significant amounts of visible sulphides and/or with significant pXRF copper, lead or zinc geochemistry, were halved with a core saw and delivered to ALS in Mount Isa for preparation. Pulps were then sent to ALS Townsville for ICP-MS multi-element analysis. The following preparation and analytical procedures were carried out at ALS:

Preparation

CRU-31 fine crushing, 70% to <2mm PUL-32 pulverise 1000g to 85% < 75um

Analytical Procedures

ME-MS41 Ultratrace Aqua Regia ICP-MS:

Elements, units (detection limit): Ag ppm (0.01), Al pct (0.01), As ppm (1), Au ppm (0.02), B ppm (10), Ba ppm (10), Be ppm (0.1), Bi ppm (0.1), Ca pct (0.1), Cd ppm (0.01), Ce ppm (0.1), Co ppm (1), Cr ppm (1), Cs ppm (0.05), Cu ppm (1), Fe pct (0.1), Ga ppm (0.05), Ge ppm (0.05), Hf ppm (0.02), Hg ppm (0.01), In ppm (0.005), K pct (0.01), La ppm (0.2), Li ppm (0.1), Mg pct (0.1), Mn ppm (5), Mo ppm (0.05), Mn ppm (5), Mo ppm (0.05), Na pct (0.01), Nb ppm (0.05), Ni ppm (0.05), P ppm (10), Pb ppm (0.2), Rb ppm (0.1), Re ppm (0.001), S pct (0.01), Sb ppm (0.05), Sc ppm (0.1), Se ppm (0.2), Sn ppm (0.2), Sr ppm (0.2), Ta ppm (0.01), Te ppm (0.01), Th ppm (0.2), Ti pct (0.02), U ppm (0.05), V ppm (1), W ppm (0.05), Zn ppm (2), Zr ppm (0.5). ME-OG46 Ore grade elements – Aqua Regia ICP AES Cu-OG46 Ore grade Cu, Aqua Regia Pb- OG46 Ore grade Pb, Aqua Regia

For QA/QC apart from lab standards inserted for internal monitoring, a certified standard OREAS928 was inserted as every 10th sample. Analyses values of this standard were within an acceptable range.

The following intervals of half-core were selected for analyses:

CCD09 53m to 63m, and 121m to 138m CCD10 174m to 242m

The intervals selected to be sampled were based on observations of mineralization and the pXRF readings. Sample length was 1m of saw-halved core.

Results and Interpretation

Two holes were drilled at Coppermine Creek, CCD09 and CCD10, and both intersected visible copper mineralisation over significant widths (Figures 4 and 5).

CCD09 intersected approximately 13m of visible disseminated copper mineralisation (chalcopyrite) from 123m depth. The hole was drilled 1.4km south of the Coppermine Creek Fault and confirms Pacifico's mineralisation model, developed from previous exploration drilling and ground EM survey conductivity profiles, that the copper mineralisation is stratabound, gently dipping and that there are large areas where the depths of this layer are at only 100m to 250m depth.

CCD10 intersected a broad zone of approximately 48m of visible disseminated copper mineralisation from 170m.

		0.1%C	u cut off		
<u>Hole</u>	From	То	Length	%	
<u>No</u>	(m)	(m)	(m)	Cu	
CCD09	55	58	3	0.4	Includes 1m @ 0.7% Cu from 55m
	132	135	3	0.2	
CCD10	174	192	18	0.2	Includes 2m @ 0.4% Cu from 190m
	237	240	3	0.2	

All the copper mineralisation is hosted by the Amelia Dolomite which consists typically of finely bedded dolomite with carbonaceous laminae. It is concentrated within the evaporite rich (now dolomitised) part of the sequence, consisting of ex-anhydrite nodules and masses of ex-gypsum crystals, now dolomitised, and often with zones of abundant carbonaceous laminae or crenulated carbonaceous algal mats. The copper mineralisation is present as chalcopyrite and minor bornite which forms disseminations, blebs and lenses throughout the mineralised zones.

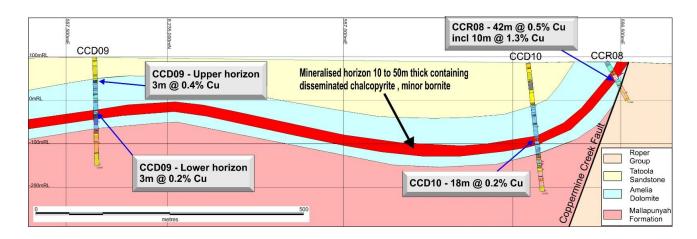


Figure 3: Section through diamond holes CCD09 and CCD10 at Coppermine Creek

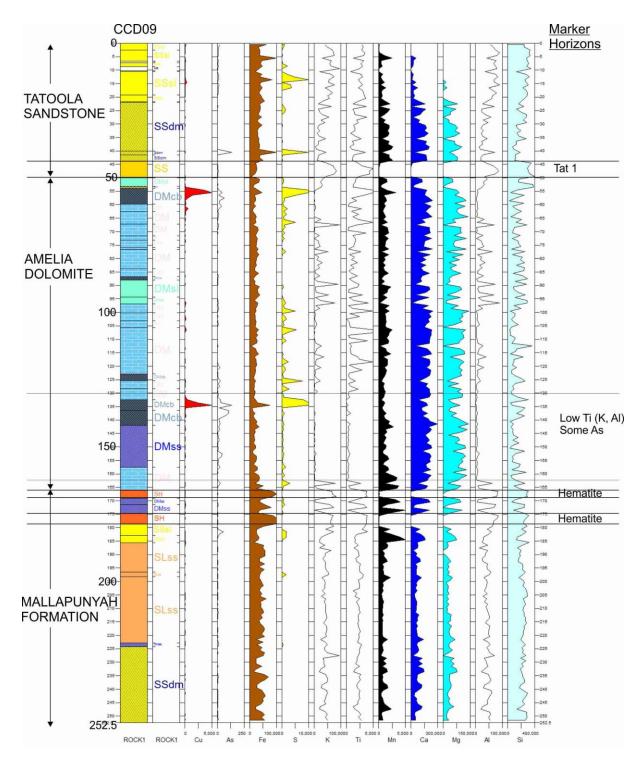
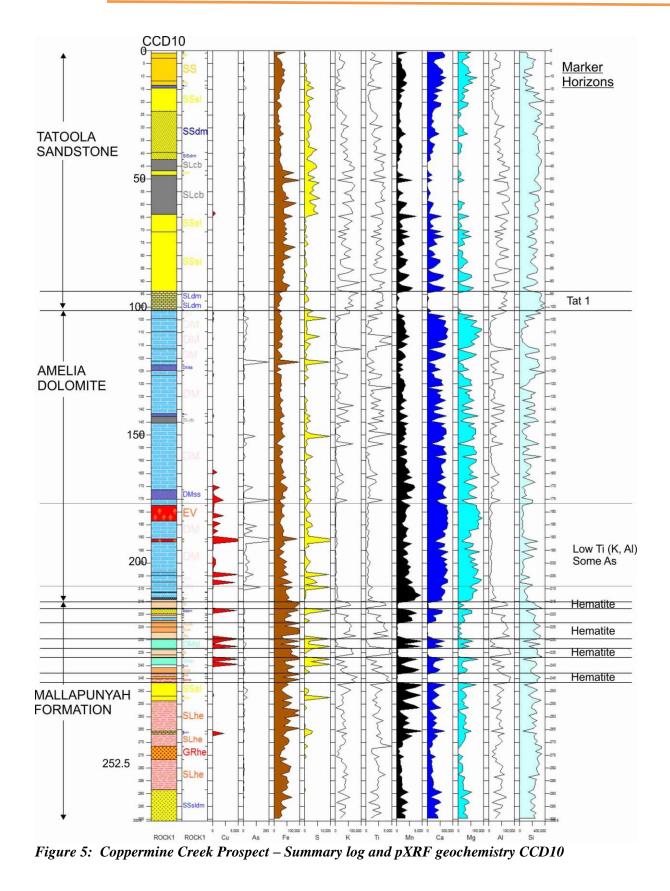



Figure 4: Coppermine Creek Prospect – Summary log and pXRF geochemistry CCD09

Conclusion

The current drilling program has confirmed that the main control of copper mineralisation is stratigraphic, and that copper mineralisation is not confined to the area of the Coppermine Creek Fault. There is major potential in the undrilled extension towards the south and east (30km2) of the copper mineralisation (Figure 2) for copper mineralisation at depths less than 400m. Targets for large economic concentrations of copper mineralisation could be defined adjacent to major north-south or north-westerly trending faults that run through the area (Figure 6).

It is planned to carry out detailed mapping and rock chip geochemistry over the prospective area to define these structures that could be a potential focus for significant copper mineralisation.

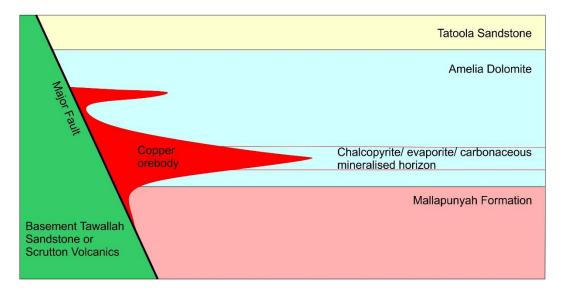


Figure 6: Schematic section showing geological exploration model for copper mineralisation

Appendix 1 – CCD09 – Drill hole log, geology and mineralisa	<u>tion</u>

			Bedding 80deg to CA	satura sa ajawa af ajanifi anut farult	Fracture, no signs of significant fault 6	Some shale interpeds		ex-anhydrite nodules?	HQ to 35.4m, then NQ	Fault, 90deg to CA		zones completely dolomitised with py ds	Marker Bed. Very turbulent looking, irregular cross		band with bladed ex-xls	sections are very carbonaceous. Grey fine grained								Beds of sedimentary breccia, signs of in-situ brecciation too				cpy assoc with ci		Occasional bands of ex-xls elongated blades	Algal mat layers, v carbonaceous	Bands with elongated ex-?xls			Algal mat layers, v carbonaceous								Up to grit size in places		Coarse cubic transparent crystal filled vughs	
			ä	Ů		ň		с×	Ĭ	Fa		ZO	Ÿ											ä				G		ŏ	Ā	B			¥.								J		ö	1
															0.01	0.10 ds Im fr CP CC	0.01 ds	0.01 ds										0.01 ds		0.01 ds	0.05 ds Im	0.01 ds	0.01 ds	dd sb UC.U	sp In.u	SD 200	SD 1000								0.01 ds	
						E			ds	s	s	s	ds					_									0								_	<u>0</u>			s		s	ls fr				
					100	m In:n			0.01 d	0.10 ds	0.01 ds	0.01 ds	0.02 d					0.01 fr								1	0.0								001	10.0			0.01 ds		0.03 ds	0.10 ds fr				
																				5.00										0:50			c c	9 .00	000	00.0								0.20		0.10
																				M										MQ			i	M	2	M							DM AK	DM AK (DMAK
Ж	ŏ		ŏ	2					Ξ	ç	ΗE	CLDM		DM	MO	ΔM						DM														D NO	HF C	!		HE CL		DM	Щ	DM	Щ	!
										Ŀ				WF		Ψ		L		Ľ		WF BX					WF			WF			Ļ	±	14/1							WF				WF
BR	GN		BR	00	£ 2	20	ž	≿	õ	GY	RD	GYGN	GY	G≺		G≺	G≺	G	≻	≿	GY	G√	GY	≿ :	GY	67	5	GY	GY	GY	G≺	G√	G≺	G۲	24	CVCN	BB	G ک	GYGN	BR	GY	GYGN	BR	GY GN	BR	e۲
	хьћь С		xb fb E	<u> </u>			xb mb s' GY	mb sw GY	xb mb s' RD	m	mb sw F	mb sw (xb fb (fb ci			X	e	lm fb ci GY	. <u>n</u>			lm ci	ci sx	. e	Im ci sx GY		·			0	st			8					fs	sw	mb	mb	mb sx (e de
SSsI	SSsI	NR	SSsI	¥ s	22	555I	SSSI	SSdm	SSdm	SL	SSdm	SSdm	SS	DMsI	DMsh	DMcb	M	M	MQ	M	MO	MO	MO	MO	DMcb	DMSI	DM	DM	MQ	MO	DMcb	MQ	MO S	DMcb	UMCD	DM	SH	DMss	DMss	SH	SSsI	SSsI	SLss	SLss	SLss	DMss
2.6 TS	6.6 TS		8.7 TS	10.2 IS	0.110	61 Z F0	21./ IS	21.9 TS	40 TS	40.1 TS	41.5 TS	43.8 TS	50 TS	53.1 AD	54 AD	59.8 AD	62.5 AD	67.2 AD	71.55 AD	73.1 AD	5.8 AD	76.6 AD	83.8 AD	86.7 AD	88 AD	94.3 AD	100.1 AD	103.2 AD	105.65 AD	122.9 AD	125.4 AD	128.3 AD	132.5 AD	136.4 AD	142 AU		169.1 MF	171.4 MF	174.7 MF	178.6 MF	183 MF	185.6 MF	196.5 MF	198.3 MF	222.8 MF	224.3 MF
	2.6		7.2					21.7 2			40.1 4	41.5 4	43.8										76.6	~		75 0 880 890			103.2 105.						130.4						178.6 1	183 18	185.6 196			222.8 224
CCD09	CCD09	CCD09	CCD09	CCDUB	200	60000	CCD09	CCD09	CCD09	CCD09	CCD09	CCD09	CCD09	CCD09	600	CCD09	CCD09	CCD09	CCD09	CCD09	CCD09	CCD09	CCD09	CCD09	CCD09	CCDUG	CCD09	CCD09						CCD09	n n n n n n n n n n n n n n n n n n n	00000	CCD09				CCD09	CCD09	CCD09	CCD09		CCD09

											sandstone								lel to core													sub parallel toCA																				ite nodules						
Ss frags in clayey sand	Leached, patches of slicrete				HQ to 20.4, then NQ	amphita alona fooduraa	graphine anoug macanes	S0 45den to CA	some sandv interheds		?alteration of weakly pyritic sandstone								Veine and hreecia cuh-narallel to core							Abundant ex-ovosum xls						Thin breccia zones, DM mx, sub parallel toCA		natches HF alteration	shearing low angle to CA								Some SLhe frags									some dolomitised ex-anhydrite nodules						
															0.10 ds								0.02 ds	0.01 ds	0.02 ds	0.05 ds	0.30 ds	1.00 ds		0.50 ds		0.10 ds	0.UZ 05	0.10 ds		0.10 ds	0.50 ds							0.10 ds		-	sb 06.0								0.02 ds			
		0.02 ds			-	SD 07.0	0 10 de	60.0	0.50 ds	5000				0.50 ds			20.00 ds					1.00 ds			0.01 fr													1.00 ds			0.50 ds				2.00 ds								3.00 ds					
	000	2.00 3.00 fr	1.00					0.50						0.50			1	15.00	3.00	0000										10.00		20.00	10.00	5.00	2020	10.00	5.00		1.00	001	00'1			20.00	60	5.00		100	2.00	~~~7			1.00		1.00			
	2	M	MO		DMC			M	5		뽀		С	MO		MO	2	N Z		5										MQ		MO	20		5	MQ	MQ		MO		Σ			MQ	i	M		MC	M	Ş			DM AK		MO			
5 3	No.	ŏ	ŏ		Ŧ													M								MO						Ļ	Ë			뽀			ರ ಸ	5	0	15	С		-	HEDM		MO	ŝ				DM		MO			
	Ļ	WF				Ľ	_										Ľ	±.	ЦМ											MF		MFBX	YO	FBX	F SR	Ŀ	WF	MF	BX SR		MF	<u>ц</u>	SR BX	ш	SR													
BR	LIVY LIVY	5.5		sx GY		5 2	5 2		5 2	mb sw GYGN			GYGN			ei WH		20	25	5 2		,							GY		5	2 S				Q2	GY			202	sw GN	GN					5	MS			lu BB	-				8		
> <		SS mb	s fibrig	DMss fb:			Juli Usx	SSsl fh			SSsl mb								DMSS fb SX DM Im					DMss m	M	EV			DM fb	DM		DM		DMch B			DM mb				SI ss mh		L fb	DMsI fb			DMsI Im				SHhe Im				Ldm		GRhe mb	
S	2	s	s	TS	s	n p	2 4	2 22	2 ST	TS S	TS	TS	TS	AD	ΡD	P	Q S	Ą			AD	P	AD	AD	P	P	AD	P	AD	AD	P	Q S			P	AD	AD	MF	220.4 S																			
																																							219.85																			
CCD10		ccD10	ccD10	CCD10	ccD10			ccD10	CCD10	CCD10	CCD10	CCD10	CCD10	CCD10	CCD10	ccD10	CCD10	ccD10			CCD10	CCD10	CCD10	CCD10	ccD10	CCD10	CCD10	CCD10	CCD10	CCD10	CCD10	CCD10			ccD10	ccD10	CCD10	CCD10	CCD10			ccD10	CCD10	CCD10	CCD10	ccD10	CCD10		CCD10	CCD10	ccD10	CCD10	CCD10	CCD10	CCD10	ccD10	ccD10	

Appendix 2 – CCD10 – Drill hole log, geology and mineralisation

Appendix 3 – Structural measurements CCD09

то	BED DIP	BED AZ
12.6	20	250
14.8	20	350
15.6	20	350
21.6	7	295
27.6	7	280
33.6	15	270
35.4	30	0
44.8	5	250
47.8	10	250
50.9	30	250
57.1	25	250
68.2	10	250
71.3	10	15
74.4	10	295
77.5	10	250
80.6	20	250
83.7	10	250
86.8	20	250
89.8	20	250
93	20	250
96	15	250
99.1	30	250
117.1	10	295
120.1	15	250
123.2	20	250
129.5	10	250
132.5	10	250
134.9	30	250
135.5	10	250
141.5	15	250
149.1	15	280
150.5	15	280
156.5	10	270
162.5	10	290
171.3	30	270
174.4	10	250
180.5	15	250
183.5	10	250
219.5	15	250
222.5	15	250
228.5	15	270
234.5	10	250
237.5	5	250

Appendix 4 – Structural measurements CCD10

то	BED DIP	BED AZ	STRESS DIP	STRESS AZ	VEIN DIP	VEIN AZ	COMMENTS
12.6	30	140					
22.4	20	130					
24.6	10	90					
30.6	10	200					
36.6	30	280					
87.6	5	120					
90.6	10	90					
93.6	5	0					
99.6	5	180					
102.6	10	80					
105.6	5	225					
108.6	10	260					
111.6	20	250					
114.6	10	290					
120.6	10	160					
174.6	20	270					
180.6	15	270					
183.6	5	260					
186.6	5	250					
192.6	30	290					
195.6	30	290					
198.6	30	290					
201.6	25	260					
213.6			50	260	50	260	DM vein and fault breccia
219.5	30	270					
222.6	50	205	65	30			Thin fault breccia
224.4	15	170					

Appendix 5 - Drill hole codes

	Rocks		Colours		Sedimentary Descrips		Stress/brecciation textures	
AV	Alluvium					BX	Brecciated	
CV	Colluvium	RD	Red	lm	Laminated			
DM	Dolomite	OR	Orange	@	Stromatolitic	IF	Intensely fractured, shattered	
DMsh	Dolomite - shaley	РК	Pink			MF	Moderately fractured	
DMsl	Dolomite - silty	BR	Brown	fb	Finely Bedded	WF	, Weakly fractured	
	· ·						· ·	
DMcbsl	Dolomite - silty and carbonaceous	GN	Green	mb	Medium bedding	SR	Sheared	
DMcb	Dolomite - carbonaceous	GYGN	Grey-green	ma	Massive			
Dmhe	Dolomite - hematitic	GY	Grey	sx	Sedimentary Breccia			
DMslhe	Dolomite - silty and hematitic	ВК	Black	sw	Soft sediment wavy bedding		Minerals	
EV	Dolomite after gypsum/ anhydrite	YE	Yellow	xb	Cross bedding	РҮ	pyrite	
GM	conglomerate	WН	White	st	Stylolitic	СР	chalcopyrite	
GR	Grit	CR	Cream	00	Oolitic	LI	limonite	
SS	Sandstone		Veins	ci	Carbonaceous shale laminae	BT	bornite	
SSsl	Sandstone - silty	QZ	quartz	fs	Fissile (shale breaking along bedding)	MC	malachite	
SSdm	Sandstone - dolomitic	сс	calcite	fg	fine grained	GO	goethite	
SSdmhe	Sandstone - dolomitic and	DM	dolomite	mg	medium grained	GP	graphite	
	hematitic				-			
SSmi	Sandstone - sericitic	CL	chlorite	cg	coarse grained	RH	rhodochrosite	
SL	Siltstone	<u>O</u> >	<u>kidation</u>			MN	manganese oxides	
SLdm	Siltstone - dolomitic	SK	Saprock		Minerals Form	BA	barite	
Sldmhe	Siltstone - dolomitic & hematitic	ох	Oxidised	ds	Disseminated	AK	ankerite	
SLcb	Siltstone - carbonaceous	UNOX	Primary	pd	Pods	сс	chalcocite	
SLdmcb	Siltstone - carbonaceous and dolomitic	Alt	teration	xl	Euhedral crystals	GL	galena	
SSslcb	Sandstone - silty and carbonaceous	CL	chloritic	bb	blebs	CS	cerussite	
SLhe	Siltstone - hematitic	SI	silicification	Im	laminae	GS	gypsum	
SLgc	Siltstone - glauconitic	сс	carbonate	fr	along fractures	SP	sphalerite	
SLmi	Siltstone - sericitic	DM	dolomite	vl	veinlets	SD	siderite	
SH	Shale	FE	ferruginous	bn	bands	FE	iron oxides	
SHdm	Shale - dolomitic	СН	cherty	511	Formation	VU	vughy	
SHcb	Shale - carbonaceous	СҮ	clay	RG	Roper Group			
SHhe	Shale - hematitic			HS	Hot Springs Formation			
SX	Sedimentary Breccia			CF	Caranbarini Formation			
SXss	Sed breccia with ss frags			RD	Reward Dolomite			
WKdm	Wacke - dolomitic			BC	Barney Creek Formation			
GW	Greywacke			MD	Mara Dolomite			
СН	chert			TF	Tooganinnie Formation			
VN	Vein			TS	Tatoola Sandstone			
BX	Breccia	1		AD	Amelia Dolomite			
BXdm	Breccia - dolomite frags			υм	Upper Mallapunyah F			
BXsl	Breccia - siltstone frags			LM	Lower Mallapunyah F			
NR	No recovery							
LM	Limestone	I						