ERL125, MCN984, MLAN25075, MLN 1157, MLN 1158, MLN1159, MLN 1161

Mount Fitch

Annual Report

For the Year ended 22 August 2008
CONTENTS

Introduction Page 3
Tenement Details Page 3
Access Page 4
Geological Setting Page 4
Previous Exploration Page 6
Work Completed Page 9
Plans for Next Year Page 11
Expenditure Report Page 12

Figure 1 Location Map Page 13
Figure 2 Mt Fitch Oxide & Geology Page 14
Figure 3 Mt Fitch Oxide & Sulphide Relationship Page 15

Appendix 1 Assays
Appendix 2 Drill Logs
Appendix 3 Collars & Surveys
Appendix 4 Maps
Appendix 5 Logging Codes
INTRODUCTION

During the reporting period several campaigns of reverse circulation percussion (RC) and limited diamond drilling (DDH) were undertaken at both the Area55 and Mount Fitch Zone prospects to further delineate the oxide resource and to explore for adjacent sulphide mineralisation and oxide extensions. These efforts proved successful in expanding the known resource.

Work completed on the Area 55 Project consisted of 33 RC holes totalling 2738m, including 3 DDH holes consisting 255.45m. At the time of reporting mineralisation remains open to the north and resources definition drilling continues.

Work completed on the Mt Fitch Zone consisted of 77 RC holes totalling 4471m. Resource definition drilling continues in addition to 3 planned twinned diamond holes for metallurgical studies.

TENEMENT DETAILS

ERL 125 was initially granted to Cameco Australia Pty. Ltd. on 23 August 1993 for five years. The ERL, known as Mount Fitch was joint-ventured with Billiton Australia Gold Pty. Ltd. (later Acacia Resources Limited) on 4 August 1993. On 8 September 1993 ERL 125 was transferred from Cameco Australia Pty. Ltd. to Compass Resources NL. Acacia Resources managed the Joint Venture until Compass resumed management on 16 June 1997. Until mid 2006, Compass Resources held 90% equity and managed the tenement, with Guardian Resources NL having 10% equity. Compass Resources NL now has 100% equity in the tenement.

In 2003 ERL 125 was renewed for a further period of 5 years, to 22 August 2008.

MCN 984, was originally held by Donald Hanna Mount-Burton. Compass Resources signed an Option Agreement over this tenement with the Public Trustee of the Northern Territory on the 24th April 1992. The claim was renewed for a further ten years on 17 November 2005.
In 2006 the tenement was purchased and transferred to Compass Resources NL (90%) and Guardian Resources Pty Ltd (10%). On acquisition of Guardian by Compass the tenement is now 100% owned by Compass Resources NL (now Compass Resources Limited).

ACCESS

The central portion of ERL 125 is 10 km north-west of Batchelor, and 65 km south of Darwin (Figure 1). MCN 984 occurs in the northern portion of the tenement covering the Mt. Fitch uranium deposit and part of the Mt. Fitch copper prospect.

Access from Darwin is via the Stuart Highway, and local sealed roads to Batchelor and then Rum Jungle, and thence by unsealed roads along the abandoned North Australia Railway. Access within the tenement is good, with a number of four wheel drive tracks remaining from previous exploration in the area. Access is also possible during the dry season by travelling south along the old railway line from the Darwin River Dam area.

GEOLOGICAL SETTING

(Summarized from the 1:100,000 Interpreted Geology Special of the Rum Jungle Mineral Field and the Simplified 1:250,000 maps published by Geoscience Australia and Northern Territory Geological Survey).

The Rum Jungle Mineral Field is located on the western limb of the intracratonic-basin forming Pine Creek Geosyncline. The Paleoproterozoic sedimentary rocks of the Rum Jungle Mineral Field flank two ovoid-shaped, north-south aligned inliers of the granitoid Achaean Rum Jungle Complex which in turn host several sub-10 square km rafts of basement Stanley Metamorphics. The two inliers cover approximately 200 square kilometres. The Manton Group, or more often Mount Partridge Group (MPG) unconformably overlay the Rum Jungle Complex and are in turn unconformably overlain by the South Alligator Group and Finness River Group.

The Rum Jungle Mineral Field is structurally complex having undergone no less than three ductile and five brittle deformation events by the end of the Proterozoic. Structurally the area is dominated by the north-east bounding Giants Reef Fault that...
separates the Rum Jungle Complex inliers. The structure is interpreted as a post-Early Proterozoic expression of the Western Fault Zone which extends over 200 kilometres and is part of the laterally extensive faults of the Halls Creek and Fitzmaurice Mobile Zones (Ahmad et al., 1993). Movement along the fault and associated splays and secondary faults is predominantly episodic dextral strike-slip with lesser dip-slip movement.

Base metal mineralization within the Rum Jungle Mineral Field is interpreted as initially strataform with the mineralization occurring during diagenesis; i.e., post-sedimentation and pre-lithification (Ahmad et al., 1996). The Browns deposit is the largest of these. Remobilization of sulfides has resulted in some structurally hosted economic mineralization such as Woodcutters. Uranium mineralisation is interpreted as structurally controlled and younger than the base metal mineralisation.

The Mount Fitch tenement ERL 125 straddles the early Paleoproterozoic MPG. This group hosts the regionally polymetallic-prospective contact between the pyritic argillites of the Whites Formation and the underlying Coomalie Dolostone. A quartz sandstone unit has been mapped within the Whites Formation between Mount Fitch and the Dolerite Ridge Prospect. The rudaceous to arenaceous Crater Formation forms the basal unit of the group.

Within the tenement The MPG tends to dip moderately south-west to the north of the Dolerite Ridge Prospect. The orientation of the MPG is more complex in the vicinity of the Area55 prospect with isoclinal upright folding of the Nimbuwah Event and dextral faulting associated with north-east trending splays of the Giants’ Reef Fault.

Sills of Paleoproterozoic Zamu Dolerite intrude the Whites Formation between Mount Fitch and the Dolerite Ridge prospect. The western extremity of the tenement is mapped as undifferentiated formations of the Middle Proterozoic South Alligator Group, which is partially overlain by Cainozoic sediments.
PREVIOUS EXPLORATION

(The following description of exploration is, in most part summarised from the ERL125 2007 Annual Report)

Mount Fitch Zone

Note: In 2008 a decision was made to bring all the Mount Fitch prospects under the single prospect name of Mount Fitch Zone (MFZ). This allows the MFZ to be analysed as a single entity as the mineralization is generally connected. Following is a summary of work completed within the Mount Fitch zone.

Copper was initially discovered in 1913 by E. T. Tamblyn, a Mine Manager from Pine Creek, resulting in the sinking of the small Tamblyn Shaft located within MCN 984 (Boots, 1990). In 1950 workers for the Bureau of Mineral Resources (BMR) discovered secondary uranium mineralisation nearby. Mapping and radiometric surveys soon followed together with the sinking of two shallow shafts and the drilling of 3 shallow core holes. In 1952 low level airborne scintillometer surveys identified several anomalies. Territory Enterprises Pty. Ltd. (TEP) drilled 4 core holes and numerous rotary, churn and wagon holes in 1953 and commenced a major costeaning programme resulting in the identification of a copper anomaly extending along the Whites Formation – Coomalie Dolomite contact.

In 1954 a low level airborne scintillometer survey confirmed the radiometric anomalies however it was not until 1958 that a follow-up geochemical survey outlined a large copper anomaly near BMR No. 2 shaft (Haldane and Debnam, 1958) with analogous zonation to the Browns –Rum Jungle mineralization. During the late 1950s and the 1960s many core, rotary and auger holes were drilled predominantly testing for uranium mineralisation. A major structural study of the area was also conducted by Williams of TEP.

In 1969 TEP conducted a major drill campaign to evaluate the Mt. Fitch uranium-copper prospect. These evaluations lead to the trial mining of 920 tonnes of dolomite ore and 5 tonnes of shale ore. A resource of 3.5 million tonnes at 0.042% U₃O₈ (and 290,000 tonnes at 0.6% copper) was calculated for this prospect.
During the 1980’s Uranerz and CEGBEA conducted several exploration programmes focused on uranium discovery. Their work concentrated on the Mt. Fitch copper-uranium prospect, where a total of twenty-two drill holes were completed (12 by Uranerz and 10 by CEGBEA). Re-sampling of the core by Acacia Resources returned encouraging base metal values.

Two reverse circulation precussion (RCP) drill holes were completed at the Mt. Fitch South prospect in late 2001; these intersected very encouraging base metal values.

EM surveying was proposed for 2003 but was not undertaken as modelling of ground EM data suggested that the power of the airborne system was insufficient. Two RCP holes were completed at the Mt Fitch South prospect in 2003, both intersecting significant base metal mineralisation. In late 2004, a series of 8 inclined RCP holes was completed at the Mount Fitch Copper prospect. These holes were drilled to acquire oxide copper-cobalt-nickel material for metallurgical test work. In early 2005, five lines of Sirotem EM surveying were completed at the Mount Fitch South prospect in an attempt to more fully define the conductivity character of the area.

From 2005 to the beginning of this reporting period several major drilling campaigns have been conducted; drill statistics are summarised below:

<table>
<thead>
<tr>
<th>Year</th>
<th>Mt Fitch Copper</th>
<th>Mt Fitch Uranium</th>
<th>Mt Fitch South</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>24 RC</td>
<td>2 RC</td>
<td>18 RC</td>
</tr>
<tr>
<td>2006</td>
<td>69 RC</td>
<td>44 RC</td>
<td>6 RC and 3 DDH</td>
</tr>
<tr>
<td>2007</td>
<td>24 RC</td>
<td>24 RC, 2 DDH (for metallurgy)</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>117 RC</td>
<td>70 RC, 2 DDH</td>
<td>24 RC, 3 DDH</td>
</tr>
</tbody>
</table>

During 2006-2007 all drilling was by the Adelaide-based drill contractors Underdale Drillers Pty Ltd. RCP drilling was undertaken using Investigator Mk10 drilling rigs with 900/350 onboard air. A booster compressor was used to provide dryer samples where possible (ERL125 2007 Annual Report)

Drilling at the Mount Fitch prospects is difficult as a result of the combination of a high water table and very broken, porous ground within the oxidized rock. Sample return is
often compromised within the oxide material resulting in underweight, and often wet to liquid samples.

When dry, samples were split, otherwise samples for assay where taken from the bulk bags by hand. Samples were assayed by ALS Chemex using the following technique:

* Samples were pulverised to 85% passing 75 microns or better.
* A four acid “near-total” digest was used followed by ICP-AES (OG62) analysis for Cu, Pb, Zn, Co, Ni, Ag, Mn, Fe, S, Mg, Ca, and U.
* Samples with higher uranium values (>150ppm U) were re-analysed by XRF for U and Ti.
* Radioactivity was measured for each sample with a GR 110 scintillometer or a SPP2 scintillometer on site.

All of the hole-collars were surveyed using a DGPS instrument. The majority of the holes were probed for radioactivity with an Auslog slimline natural gamma probe within the drill rods.

Due to the backlog of samples awaiting analysis at Australian assay laboratories during 2007, assay results were only reported in the 207 Annual Report for drill holes 07MF01 to 07MF08 and 07MF16 to 07MF21.

This drilling since 2005 along the Mt Fitch South, Copper and Uranium prospects was to fill gaps within the drill database over a strike of approximately 1000m and to quantify the extent of known low grade copper-cobalt-nickel mineralisation in the lateritised oxide zone overlying the Coomalie Dolomite.

Blueys Magnesite Prospect

In 1998/1999 follow-up drilling consisting of 8 RC holes at Blueys Magnesite Prospect (located between Browns and Mt. Burton), was undertaken. This prospect is located at or near the stratigraphic top of the Coomalie Dolomite. In late 2001, six RC drill holes were completed at this prospect to establish extensions to the high quality magnesite previously located. These were located to the east of the previous holes and failed to locate any magnesite.
WORK COMPLETED THIS YEAR

Mount Fitch Zone

Compass has embarked on a complete review of the geology and controls on mineralisation within the MFZ. This program is currently work in progress and has consisted of re-interpretation of dill logs utilising lithogeochemistry together with re-logging of previous RC drill chips. A 3D model of the MFZ has been produced focusing on the oxide relationship to adjacent sulphide mineralisation (Figure 2 & 3). A genetic model for lateritised oxide mineralization is being developed for use as an exploration tool for the district.

During 2007-2008 drilling was conducted by the Adelaide-based drill contractors Underdale Drillers Pty Ltd. RC drilling was undertaken using Investigator Mk10 drilling rigs with 900/350 onboard air.

Drilling at the Mount Fitch prospects is difficult as a result of the combination of a high water table and very broken, porous ground within the oxidized rock. Sample return is often compromised within the oxide material resulting in underweight, and often wet to liquid samples.

When dry, samples were split, otherwise samples for assay where taken from the bulk bags by hand. Samples were assayed by ALS Chemex using the following technique:

* Samples were pulverised to 85% passing 75 microns or better.
* A four acid “near-total” digest was used followed by ICP-AES (OG62) analysis for Cu, Pb, Zn, Co, Ni, Ag, Mn, Fe, S, Mg, Ca, and U.
* Samples with higher uranium values (>150ppm U) were re-analysed by XRF for U and Ti.
* Radioactivity was measured for each sample with a GR 110 scintillometer or a SPP2 scintillometer on site.

All of the hole-collars were surveyed using a DGPS instrument.
Drilling completed within the Mt Fitch Zone consisted of 77 RC holes totalling 4471m. Resource definition drilling continues in addition to 3 planned twinned diamond holes for metallurgical studies.

Area 55

Compass has embarked on a complete review of the geology and controls on mineralisation at Area 55. This program is currently work in progress and has consisted of re-interpretation of dill logs utilising lithogeochemistry together with re-logging of previous RC drill chips & diamond holes. A new 3D model and updated resource of Area55 is currently being produced.

During 2007-2008 drilling was conducted by the Adelaide-based drill contractors Underdale Drillers Pty Ltd. RC drilling was undertaken using Investigator Mk10 drilling rigs with 900/350 onboard air.

Drilling at the Area 55 is difficult as a result of the combination of a high water table and very broken, porous ground within the oxidized rock. Sample return is often compromised within the oxide material resulting in underweight, and often wet to liquid samples.

When dry, samples were split, otherwise samples for assay where taken from the bulk bags by hand. Samples were assayed by ALS Chemex using the following technique:

* Samples were pulverised to 85% passing 75 microns or better.
* A four acid “near-total” digest was used followed by ICP-AES (OG62) analysis for Cu, Pb, Zn, Co, Ni, Ag, Mn, Fe, S, Mg, Ca, and U.
* Samples with higher uranium values (>150ppm U) were re-analysed by XRF for U and Ti.
* Radioactivity was measured for each sample with a GR 110 scintillometer or a SPP2 scintillometer on site.

All of the hole-collars were surveyed using a DGPS instrument.
Drilling completed on the Area 55 Project consisted of 33 RC holes totalling 2738m, including 3 DDH holes consisting 255.45m. At the time of reporting mineralisation remains open to the north and resources definition drilling continues.

PLANS FOR NEXT YEAR

A large amount of drilling data has been gathered for both project areas this season. A complete review of all data will occur over the wet season with the plan to extend known mineralisation and explore prospective targets along strike.

Both the Area 55 and Mt Fitch Oxide projects are currently undergoing feasibility studies which include archaeological, hydrogeological, metallurgical and geotechnical works.

Continued drilling, geological mapping, reviewing of historical logging, generating 3D models and resource definition work will continue to support the feasibility studies.

Expenditure proposed for this work program will exceed $1.5m
EXPENDITURE REPORT

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries & Wages</td>
<td>$352,090.25</td>
</tr>
<tr>
<td>Contractors</td>
<td>$9,679.78</td>
</tr>
<tr>
<td>Field Costs</td>
<td>$23,181.01</td>
</tr>
<tr>
<td>Consultants</td>
<td>$76,740.66</td>
</tr>
<tr>
<td>Drilling</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>$423,537.64</td>
</tr>
<tr>
<td>RC Consumables</td>
<td>$36,162.61</td>
</tr>
<tr>
<td>Diamond</td>
<td>$240,929.32</td>
</tr>
<tr>
<td>Diamond Consumables</td>
<td>$38,240.74</td>
</tr>
<tr>
<td>Compass Consumables</td>
<td>$73,660.47</td>
</tr>
<tr>
<td>Assay</td>
<td>$119,430.29</td>
</tr>
<tr>
<td>Travel & Accommodation</td>
<td>$96,333.20</td>
</tr>
<tr>
<td>Vehicle Expenses</td>
<td>$25,352.20</td>
</tr>
<tr>
<td>Tenement Fees</td>
<td>$31,972.73</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>$9,678.00</td>
</tr>
<tr>
<td>Recruitment</td>
<td>$8,354.44</td>
</tr>
<tr>
<td>Freight</td>
<td>$3,593.08</td>
</tr>
<tr>
<td>OH & S</td>
<td>$2,162.20</td>
</tr>
<tr>
<td>Equipment Hire</td>
<td>$1,256.99</td>
</tr>
<tr>
<td>Utilities</td>
<td>$1,118.21</td>
</tr>
<tr>
<td>Other</td>
<td>$37.32</td>
</tr>
<tr>
<td>Total expenditure</td>
<td>$1,573,511.14</td>
</tr>
</tbody>
</table>
Figure 1. Tenement Locations
Mt Finch Cu Oxide Resource
Oblique view - looking north

OXIDE RESOURCE

Whites Shales

Coomalie Dolomite

Crater Formation

Figure 2. Mt Fitch Oxide Resource and geological relationship
Figure 3. Mt Fitch oxide resource and relationship to sulphide mineralisation (South, Mid-North & North in red).