

Annual Report – Year 6 Exploration Licence 10189

23rd July 2007 to 22nd July 2008 Northern Territory, Australia

Holder: Merlin Diamonds Pty Ltd

Operator: North Australian Diamonds Limited

Reporting Period: 23rd July 2007 to 22nd July 2008

Sheet Reference: Bauhinia Downs 1:250,000 (SE53-03)

Walhallow 1:250,000 (SE53-07)

Calvert Hills 1: 250,000 (SE53-08)

Due Date: 20th August 2008

Author: M S Kammermann

Date: August 2008

Report No: 08-032

Copies To: Dept. Primary Industries, Fisheries and Mines - NT

NADL

The contents of this Report remain the property of North Australian Diamonds Limited and may not be published in whole or in part, nor used in a company report without the written consent of the company

TABLE OF CONTENTS

LIST O	F FIGURESi
LIST O	F APPENDICES i
SUMMA	ARY1
1.0	INTRODUCTION2
2.0	LOCATION AND ACCESS2
3.0	TENURE2
4.0	GEOLOGY2
5.0	PREVIOUS EXPLORATION4
6.0	EXPLORATION COMPLETED DURING REPORTING PERIOD7
7.0	EXPENDITURE STATEMENT8
8.0	PROPOSED WORK PROGRAM8
9.0	REFERENCES9
LIST O	F TABLES
Table 1	Licence Details for EL10189
LIST (OF FIGURES
Figure 1	EL10189 Location Map
LIST (OF APPENDICES
Appendi	ix 1 Soil geochemical results
Appendi	ix 2 Ground magnetic survey results
Appendi	ix 3 Ground electromagnetic results
Appendi	ix 4 Loam sampling results
Appendi	ix 5 Jigsaw Geoscience Target Areas

SUMMARY

This annual report outlines exploration activities undertaken by North Australian Diamonds Limited on Exploration Licence 10189 between the 23^{rd} July 2007 and the 22^{nd} July 2008. This period represents year six of the licence.

Exploration Licence 10189 is situated on the Bauhinia Downs (SE53-03), Walhallow (SE53-07) and Calvert Hills (SE53-08) 1:250,000 mapsheets, and the Glyde, Lancewood and Surprise 1:100,000 topographic mapsheets in the Batten Region of the Northern Territory. It is located around 100 kilometres south of Borroloola and is accessed via existing unsealed tracks leading east from the Merlin Mine or north from Kiana Station.

Diamond exploration during the current reporting period included soil geochemical sampling, loam sampling, ground magnetic and ground electromagnetic surveying. The MAG03T anomaly was downgraded following the electromagnetic survey, however remains of interest due to the associated magnetic anomaly and diamonds recovered in loam samples and the kimberlitic chromites recovered in drainages emanating from the plateau that hosts the MAG03T anomaly.

On 18th September 2007 NADL granted Top End Uranium Limited (TEUL) the right of access to the land covered by the licence for the purpose of exploring for, mining and processing minerals other than diamonds. A desktop study completed by Jigsaw Geoscience in April 2008 identified four priority targets for potential uranium mineralization. The four targets identified by Jigsaw Geoscience as prospective for potential uranium mineralisation were field inspected by TEUL consulting geologist. The field activities were helicopter supported from Merlin Diamond Mine. A report from the consulting geologist on the findings of the investigation has not yet been received.

An Application for Exploration Licence Renewal was submitted to DPIFM. The licence renewal for a two year period was subsequently granted to Merlin Diamonds Pty Ltd on 31st July 2008.

A total of \$128,020 was expended against a covenant of \$160,000. A total cost of \$201,965 was attributed to the licence that includes \$73,945 rent.

1.0 INTRODUCTION

This annual report outlines exploration activities undertaken by North Australian Diamonds Limited (NADL) on Exploration Licence 10189 between the 23rd July 2007 and the 22nd July 2008. This period represents year six of the licence.

2.0 LOCATION AND ACCESS

Exploration Licence 10189 is situated on the Bauhinia Downs (SE53-03), Walhallow (SE53-07) and Calvert Hills (SE53-08) 1:250,000 mapsheets, and the Glyde, Lancewood and Surprise 1:100,000 topographic mapsheets in the Batten Region of the Northern Territory. It is located around 100 kilometres south of Borroloola and is accessed via existing unsealed tracks leading east from the Merlin Mine or north from Kiana Station. A tenement location map is provided as Figure 1.

3.0 TENURE

EL 10189 consists of 231 blocks, and was granted to Ashton Mining Limited (now a wholly owned subsidiary of Rio Tinto Limited) on 23rd July 2002 for six years. North Australian Diamonds Limited acquired a 100% interest in EL 10189 and has transferred the tenure to wholly owned subsidiary company 'Bulgurri Diamonds Pty Ltd'. Bulgurri Diamonds subsequently changed name in February 2006 to Merlin Diamonds Pty Ltd. Licence details for EL 10189 are outlined in Table 1 below.

Table 1: Licence details for EL10189.

Name	Status	Effective Date	Grant Date	Expiry Date	Blocks	Holder	Percentage
EL10189	Grant	23/07/02	23/07/02	22/07/08	231	Merlin Diamonds Pty Ltd	100

4.0 GEOLOGY

EL10189 is located over the northeast margin of the Neoproterozoic Georgina Basin overlying the south east of the Mesoproterozoic McArthur Basin. It lies not far to the north east of the Cretaceous Dunmarra Basin. Neoproterozoic Bukalara Sandstone of the Georgina Basin outcrops over most of the EL. A narrow horst block of Mesoproterozoic Tawallah Group and Roper Group traverses the northeast margin of the EL. Cenozoic sands overlie Neoproterozoic sediments in the south. The Merlin kimberlite field is

located immediately to the north of the EL.

The NNW-SSE trending Emu Fault Zone is a broad, major fault zone that passes though the west of the EL 10189. Georgina Basin sediments preserved from erosion extends northwards as a broad belt around the fault zone. Numerous faults that parallel to sub parallel the Emu Fault Zone traverse the central and eastern portions of the EL. These faults define the margins of the horst block along the northeast margin of the EL.

The NW-SE trending Calvert Fault, which intersects the Emu Fault Zone proximal to the Merlin kimberlite field, passes just to the north of the EL 10189. A number of major and minor faults paralleling to the Calvert Fault pass through EL. One can be interpreted to extend out towards the Abner Range kimberlitic sandstone breccia pipes.

Some of the major rivers in the region have strong NE-SW trending linear course suggestive of an underlying structural control. A set of regional gravity lineaments in the region also trend NE-SW.

At the regional scale, the geology of EL 10189 is essentially the same as the area to the north that hosts the Merlin kimberlite field. Structures that traverse the Merlin kimberlite field traverse the EL. Within EL 10189, there is excellent potential for repetitions of the regional and local structural configurations that control the location of the Merlin kimberlites.

Regional gravity data shows that the Merlin kimberlite field and the Abner Range kimberlitic breccia pipes are located along either margin (gradient) of a regional north-south trending gravity ridge. The Merlin field is also located over a major NE-SW trending gravity lineament (gradient) that intersects the north-south trending gravity ridge. The regional gravity patterns associated with the Merlin kimberlite field are applicable to EL 10189 as well given the scale of the data. The gravity data is mainly mapping deep-seated Proterozoic basement domains and structure, however, the geological processes that influenced the gravity patterns also influenced the surface geology and geomorphology. It is noticeable that prominent NW-SE trending gravity lineaments broadly parallel the major fault-controlled drainage patterns in the region.

Regional magnetics data shows the Merlin kimberlite field to be located along the eastern

margin of the vast deep-seated magnetic high. The eastern margin of the magnetic high is terminated along the NNW-SSE trending Emu Fault Zone. A magnetic lineament associated with the Calvert Fault that intersects the Emu Fault Zone near the Merlin kimberlite field is also evident in the regional data. Traversing EL 10189 are a number of NNW-SSE trending magnetic lineaments that parallel the Emu Fault Zone. The patterns suggest potential for repetitions of the regional structural configuration evident for the Merlin kimberlite field.

Kimberlitic intrusions and diatremes in the McArthur Basin region are commonly located proximal to major geophysical domain contacts probably mapping major, deep-seated structures. EL 10189 contains much the same regional gravity and magnetic patterns and lineament trends that potentially represent favourable tectono-structural settings that control the locations of kimberlitic intrusions and diatreme breccia pipes in the McArthur Basin.

5.0 PREVIOUS EXPLORATION

5.1 Pre 2002

- In 2000, Ashton Mining collected a 50 ton bulk gravel sample that recovered 75 macrodiamonds and 142 chromites.
- In 2000, Ashton Mining completed an airborne magnetic/radiometric survey at 100m line spacing.
- In December 2000, Rio Tinto take-over of Ashton Mining.
- In 2001, RTE collected six 500kg gravel samples to follow up the 75 macrodiamond sample. No diamonds were recovered. 20 chromites at 75 macrodiamond sample and low numbers recovered elsewhere.
- RTE completed a Hummingbird electromagnetic survey, totaling 6,200 line kilometres at 100m line spacing and also reviewed year 2000 Ashton airborne magnetic data. Numerous anomalies including high priority target HUM07 were identified and followed up with loam and soil geochemical samples, and ground geophysics.

5.2 Year One – 2002 to 2003

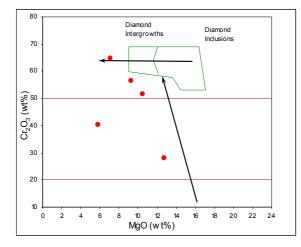
- Licence granted to Ashton Mining on 23rd July 2002.
- Rio Tinto decide to close Merlin Diamond Mine and commencement negotiations to divest surrounding exploration licences.
- No field work completed by RTE due to divestment of licence.

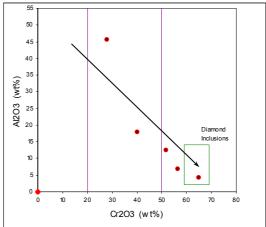
5.3 Year Two – 2003 to 2004

- Signing of 'Letter of Intent' with Rio Tinto Limited subsidiary Ashton Mining.
- Licence transferred to North Australian Diamonds Limited subsidiary Bulgurri Diamonds.
- Heritage clearance undertaken and Mine Management Plan approved.

5.4 Year Three – 2004 to 2005

- Four RC drill holes (TND-001 to TND-004) and two diamond drill holes (TND-005 and TND-006) were completed for a total of 628 metres to test geophysical anomaly HUM07. No kimberlite was intersected and the anomaly was interpreted to be a sinkhole infilled with Cretaceous sediments.
- Seven drill spoil samples (04-038-001 to 04-038-007) were collected for mineralogical analysis and seven samples (04-038-008 to 04-038-014) were collected for geochemical analysis.
- A morphological assessment of the alluvial diamonds recovered by Ashton Mining in 2000 was undertaken to determine whether the diamonds may be shedding from a primary or secondary source. The report concluded that 62% of the alluvial diamonds are considered to be from a primary source of which 43% have not undergone significant travel.
- Nineteen samples were collected that returned 4 chromites (05-018-002), 4 microdiamonds (05-018-016), 1 microdiamond (05-018-020), and 1 microdiamond (05-018-024).


- The four microdiamond sample (05-018-016) was collected over an airborne magnetic anomaly MAG03T (also referred to as GTINHEM06) that RTE had previously recovered 1 chromite in a loam sample.
- Eighty-four soil geochemical samples were collected and analysed that returned no high priority anomalies.


5.5 Year Four – 2005 to 2006

- Four sampling programs were undertaken.
- Four stream samples (05-040-001 to 05-040-004) collected that returned one chromite (05-040-003) and a nb-rutile (05-040-001).
- Three additional stream samples (05-050-001 to 05-050-003) collected that returned a total of five chromites.
- Seven loam samples (05-051-001 to 05-051-007) that returned three microdiamonds (05-051-001) from a check sample at historic sample 05-018-016 that returned four microdiamonds.
- Fifteen stream gravel samples (06-002-001 to 096-002 -015) were collected in tributaries draining a plateau that recovered one chromite (06-002-008) and one microdiamond (06-002-014).

5.6 Year Five – 2006 to 2007

• Mineral chemistry was obtained from recovered chromites that drain the plateau that is host to MAG03T. The figure below shows the mineral chemistry of one chromite collected in the Rio Tinto loam sample (6160780) over airborne magnetic anomaly MAG03T and of four chromites recovered in adjacent drainage samples (05050-002 and 05050-003). Two loam samples collected over this anomaly have also recovered a total of seven microdiamonds. The plot shows a mantle trend that could be indicative of a primary kimberlite source.

6.0 EXPLORATION COMPLETED DURING REPORTING PERIOD

6.1 Year Six - 2007 to 2008

- Soil geochemical traverse comprising eleven samples (07-005-001 to 07-005-011)
 and one fracture sample (07-005-012) was completed over anomaly MAG03T that
 identified anomalous geochemical response. Soil geochemical data and
 interpretation are included in Appendix 1.
- Ground magnetic survey completed over MAG03T that identified magnetic anomaly. Raw data and a survey image are included in Appendix 2.
- Ground electro-magnetic (EM34) survey completed over MAG03T that identified
 a small conductive anomaly associated with surficial sand cover. Raw data and a
 survey image are included in Appendix 3.
- Three loam samples (07-009-001 to 07-009-003) collected at MAG03T. Samples were processed and did not recover chromites or diamonds. Sample details are included in Appendix 4.
- Potential for uranium mineralization was assessed by internal staff and external consultants.
- On 18th September 2007 NADL granted Top End Uranium Limited (TEUL) the right of access to the land covered by the licence for the purpose of exploring for,

mining and processing minerals other than diamonds.

- Desktop study completed by Jigsaw Geoscience in April 2008 identified four priority targets for potential uranium mineralization. These targets occur within outcropping McArthur Basin sediments and are suitable for initial surface exploration methods. Target summary and location plan are included in Appendix 5.
- The four targets identified by Jigsaw Geoscience as prospective for potential uranium mineralisation were field inspected by TEUL consulting geologist. The field activities were helicopter supported from Merlin Diamond Mine. A report from the consulting geologist on the findings of the investigation has not yet been received.
- An Application for Exploration Licence Renewal was submitted to DPIFM on 30th
 April 2008. The licence renewal for a two year period was subsequently granted
 to Merlin Diamonds Pty Ltd on 31st July 2008.

7.0 EXPENDITURE STATEMENT

The exploration expenditure attributed to EL10189 during the current reporting period is summarised below and included in attached expenditure statement.

A total of \$128,020 was expended against a covenant of \$160,000.

A total cost of \$201,965 was attributed to the licence that includes \$73,945 rent.

8.0 PROPOSED WORK PROGRAM

The proposed work program for the next reporting period is outlined below. Proposed exploration will focus on diamonds and uranium.

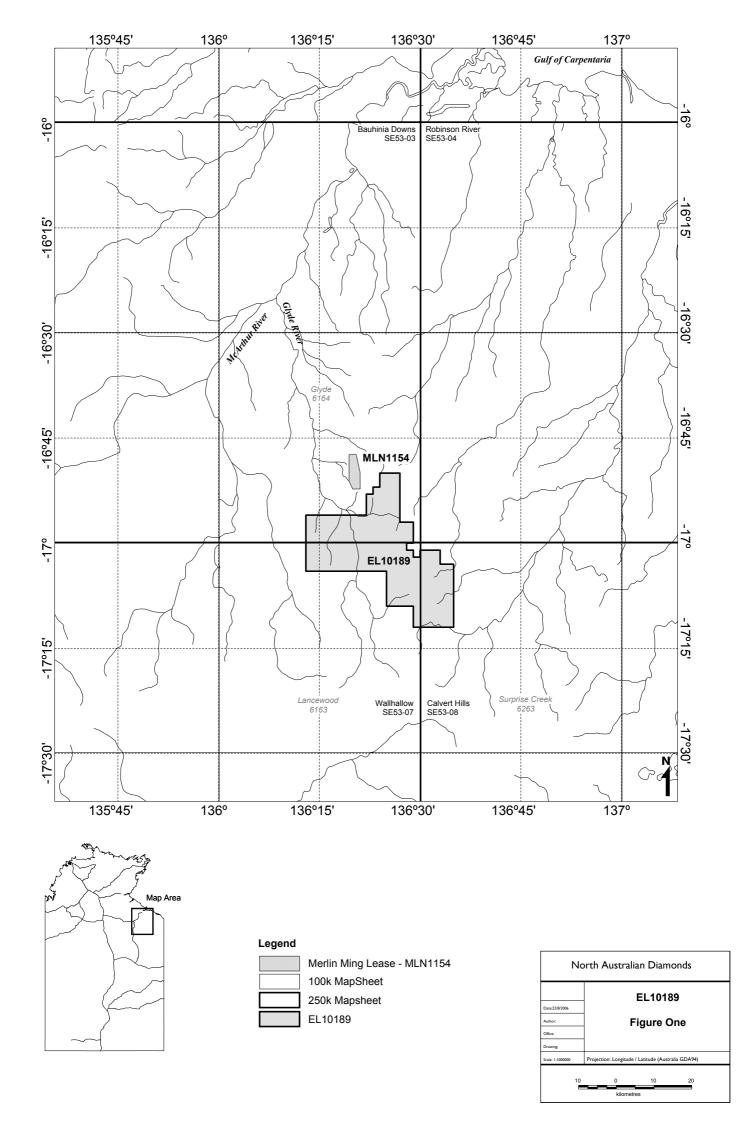
Activities for diamond exploration include drilling of geophysical anomaly MAG03T, bulk sampling of major drainages to narrow the source area for the diamonds recovered in previous bulk samples, and loam and stream sampling to define target areas for subsequent drill testing in Year 2.

Activities for uranium exploration may include additional field geological mapping, rock

chip sampling and spectrometer surveying along traverse lines over target areas identified by Jigsaw Geoscience and the TEUL consulting geologist. Drilling of any identified uranium anomalies would occur in Year 2 in conjunction with drilling of any identified diamond anomalies.

Rehabilitation of drill sites would occur in Year 2 prior to expiration of licence.

Proposed Budget


Access track construction		\$20,000
Bulk sample collection and proce	essing	\$100,000
Drilling		\$30,000
Loam and stream sampling		\$50,000
Field geological mapping, rock c	hip	
sampling, spectrometer surveying	g	\$20,000
То	tal	\$220,000

9.0 REFERENCES

Jigsaw Geoscience (2008). Targeting Review. McArthur South project, Northern Territory. Prepared by John Beeson. NADL Report Number 08-021.

Kammermann M.S. (2008). Application for Exploration Licence Renewal. Exploration Licence 10189. NADL Report Number 08-017. April 2008.

Kammermann M.S. (2007). Annual Report – Year 5. Exploration Licence 10189. 23rd July 2006 to 22nd July 2007. NADL Report Number 07-037. August 2007.

Soil Geochemical Results

"""Enzyme Leach Job #: Thursday Customer: Geologist: Customer's Job #:

Trace element values are in parts per billion. Negative values equal NOT DETECTED at that lower limit. Elements arranged by suite and by atomic mass.

Values = 999999 are greater than the working range of the instrument. S.Q. = That element is determined SEMIQUANTITATIVELY.

Enhanced P	ackage:	<u>Ox</u>	ridation Suite:										
Sample ID:	Coord. 1 C	oord. 2	S.Q. CI	Br	I	V	As	Se	Мо	Sb	Te	W	Re
07-005-01	638790	8120560	-1000	18	3	6.9	0.5	3	0.1	-0.01	0.5	-0.1	-0.005
07-005-02	638790	8120550	-1000	24	3	8.6	0.9	2	0.2	-0.01	2.4	-0.1	-0.005
07-005-03	638790	8120540	-1000	36	3	8.5	0.4	1	0.3	-0.01	1.7	-0.1	-0.005
07-005-04	638790	8120530	-1000	28	1	6.2	0.6	3	0.2	-0.01	1.5	-0.1	-0.005
07-005-05	638790	8120520	-1000	27	1	7	0.6	3	0.1	-0.01	1.6	-0.1	-0.005
07-005-06	638790	8120510	-1000	24	1	8.3	0.5	2	0.2	-0.01	0.6	-0.1	0.008
07-005-07	638790	8120500	-1000	24	7	8.1	0.6	2	0.1	-0.01	8.0	-0.1	-0.005
07-005-08	638790	8120490	-1000	68	2	40.1	0.9	2	11.2	-0.01	0.5	-0.1	-0.005
07-005-09	638790	8120480	-1000	37	3	41.6	8.0	2	7.5	-0.01	0.7	-0.1	0.007
07-005-10	638790	8120470	-1000	32	3	9.9	8.0	2	0.3	-0.01	1.2	-0.1	-0.005
07-005-11	638790	8120460	-1000	55	4	10	1	2	0.2	-0.01	0.5	-0.1	-0.005
07-005-012	•	soil traverse	-1000	21	1	16	0.7	2	0.2	0.16	-0.5	-0.1	-0.005
Blank			-1000	-1	-1	-0.1	-0.1	-1	-0.1	-0.01	-0.5	-0.1	-0.005
*Rep 07-000	5-0001		-1000	20	3	7.4	0.2	3	-0.1	-0.01	-0.5	-0.1	0.005
*Std ELS1			14500	207	7	77.8	5.4	7	5.6	0.04	1.1	-0.1	0.011
*Std ENZST)		73900	178	12	76.1	9.8	4	5.4	0.17	2.5	-0.1	0.009

"""Enzyme Le
Trace element
Values = 99999
Enhanced Pac

Enhanced Pac				Base	e Metals:					Base	e Metal - Chalo	cophile Associa	tion Indic
Sample ID:	Au	S.Q. Hg	Th	U	Co	Co*10	Ni	Cu	Zn	Pb	Ga	Ge	Ag
07-005-01	-0.005	-0.1	0.48	0.78	1	10	0.8	8.0	-5	0.9	-0.3	-0.05	-0.1
07-005-02	-0.005	-0.1	0.46	0.76	1.7	17	0.8	0.8	288	0.6	-0.3	-0.05	-0.1
07-005-03	-0.005	-0.1	0.62	0.86	1.3	13	24.2	19	-5	8.0	0.4	-0.05	-0.1
07-005-04	-0.005	-0.1	0.44	0.76	2.6	26	22.1	2.9	-5	8.0	2.1	0.07	-0.1
07-005-05	-0.005	-0.1	0.76	0.82	2	20	0.8	0.8	-5	0.5	-0.3	-0.05	-0.1
07-005-06	-0.005	-0.1	0.59	0.95	2	20	0.8	0.8	-5	8.0	0.8	0.13	-0.1
07-005-07	-0.005	-0.1	0.5	1.39	1.8	18	0.8	0.8	10	1	-0.3	0.16	-0.1
07-005-08	-0.005	-0.1	0.89	1.29	2.3	23	311	0.8	-5	0.9	1.1	0.15	-0.1
07-005-09	-0.005	-0.1	1.19	1.33	4.5	45	0.8	18.4	-5	1.2	-0.3	0.15	-0.1
07-005-10	-0.005	-0.1	0.47	1.59	1.7	17	8.6	0.8	-5	1.1	-0.3	0.06	-0.1
07-005-11	-0.005	-0.1	1.11	3.14	2.4	24	0.8	0.8	-5	1.7	-0.3	0.15	-0.1
07-005-012	-0.005	-0.1	0.31	0.71	1.7		33.7	-0.8	414	1.4	-0.3	0.05	-0.1
Blank	-0.005	-0.1	-0.01	-0.01	-0.2		-0.8	-0.8	-5	-0.1	-0.3	-0.05	-0.1
*Rep 07-0005-	-0.005	-0.1	0.5	0.77	1.3		-0.8	-0.8	-5	0.9	-0.3	-0.05	-0.1
*Std ELS1	0.021	-0.1	1.23	1.18	36.2		6.5	14.4	-5	3.8	0.8	0.06	-0.1
*Std ENZSTD	-0.005	0.3	1.32	0.44	72		40.9	14.3	1080	3.9	2.1	0.3	-0.1

"""Enzyme Le

Trace element

Values = 99999

07-005-11

Blank

07-005-012

*Std ELS1

*Rep 07-0005-

*Std ENZSTD

-0.1

3.4

-0.1

-0.1

-0.1

0.7

0.03

-0.01

-0.01

-0.01

0.05

0.01

-0.2

-0.2

-0.2

-0.2

0.2

-0.2

0.203

0.14

-0.005

0.037

0.438

0.594

2.5

1

-0.5

1.2

15.3

4.7

Enhanced Pacator	's:_				<u>Hig</u>	ıh-Field Streng	th Elements:						
Sample ID:	Cd	In	Sn	TI	Bi	S.Q. Ti	S.Q. Cr	Υ	Zr	Zr*10	Nb	Hf	Hf*100
07-005-01	-0.1	-0.01	-0.2	0.039	1.3	-10	-3	10.4	5.4	54	-0.1	0.15	15
07-005-02	-0.1	0.01	-0.2	0.135	2.5	18	21	11.1	4.9	49	-0.1	0.14	14
07-005-03	-0.1	0.02	-0.2	0.074	2.5	-10	-3	13.2	7.6	76	-0.1	0.2	20
07-005-04	-0.1	-0.01	-0.2	0.124	2.7	29	-3	11.9	5.9	59	-0.1	0.17	17
07-005-05	-0.1	-0.01	-0.2	0.271	2.6	18	-3	18.4	6.9	69	-0.1	0.2	20
07-005-06	-0.1	0.01	-0.2	0.134	1.8	10	-3	28.1	4.2	42	-0.1	0.13	13
07-005-07	-0.1	0.02	-0.2	0.317	1.9	18	13	24.9	5.9	59	-0.1	0.68	68
07-005-08	-0.1	0.03	-0.2	0.084	2	36	-3	11.7	14.7	147	-0.1	0.36	36
07-005-09	-0.1	0.02	-0.2	0.135	1.8	70	-3	11.5	12.2	122	-0.1	0.32	32
07-005-10	-0.1	-0.01	-0.2	0.068	1.5	-10	4	31.7	9.4	94	-0.1	0.16	16

65

60

-10

-10

86

115

12

56

-3

-3

6

193

22.3

6.48

-0.05

10.3

8.73

0.96

13.4

2.4

-0.1

5.4

6.2

1.2

134

-0.1

-0.1

-0.1

-0.1

-0.1

-0.1

0.31

0.05

-0.01

0.18

0.15

0.1

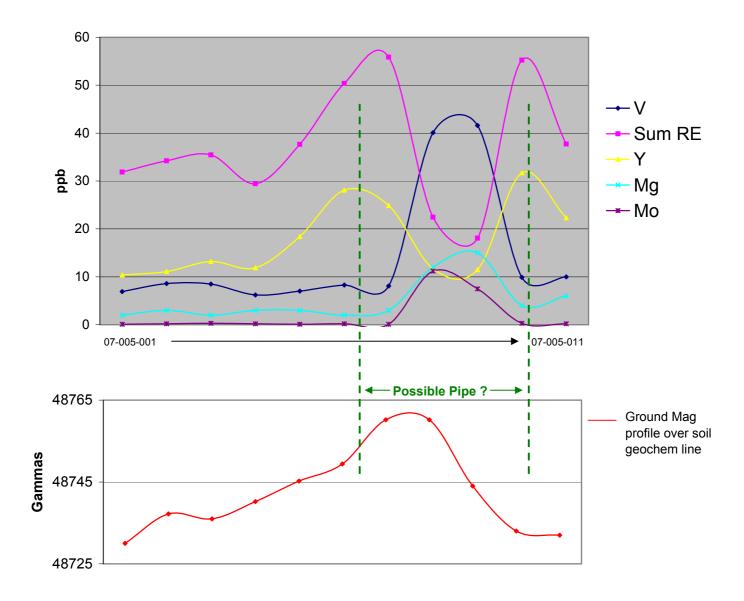
31

Trace element
Values = 9999

Enhanced Pac	Rare	e Earth Elemei	nts:										
Sample ID:	Та	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm
07-005-01	-0.02	4.43	11.7	1.43	6.11	1.46	0.34	1.81	0.27	1.45	0.34	1.17	0.13
07-005-02	0.11	3.9	11.9	1.52	7.45	1.69	0.42	1.87	0.33	1.95	0.41	1.24	0.18
07-005-03	-0.02	3.88	11.5	1.58	7.89	1.89	0.47	2.03	0.31	2.06	0.45	1.4	0.19
07-005-04	0.02	3.34	9.88	1.29	6.13	1.31	0.34	1.84	0.3	1.86	0.4	1.3	0.17
07-005-05	-0.02	3.72	11.7	2.45	7.53	1.6	0.46	2.33	0.43	2.61	0.57	1.88	0.3
07-005-06	-0.02	6.09	16.4	2.03	9.09	2.23	0.61	3.2	0.54	3.45	0.85	2.74	0.38
07-005-07	-0.02	6.27	20.4	2.47	10	2.66	0.69	3.29	0.56	3.29	0.83	2.54	0.33
07-005-08	-0.02	2.46	7.16	0.97	4.26	1.27	0.33	1.47	0.25	1.57	0.39	1.14	0.13
07-005-09	-0.02	1.97	5.84	0.72	3.17	0.86	0.28	1.16	0.24	1.44	0.31	1.05	0.1
07-005-10	-0.02	6.2	18.2	2.32	10.4	2.57	0.69	3.47	0.65	3.96	0.95	2.82	0.33
07-005-11	-0.02	3.76	11.5	1.61	6.85	1.72	0.5	2.7	0.45	3.18	0.75	2.31	0.26
07-005-012	-0.02	1.79	4.97	0.72	3.92	0.77	0.23	0.88	0.13	0.86	0.22	0.61	0.08
Blank	-0.02	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01
*Rep 07-0005-	-0.02	4.23	11.9	1.37	5.96	1.34	0.36	1.73	0.24	1.39	0.31	1.07	0.14
*Std ELS1	0.07	9.86	14.9	3.04	13.8	2.63	0.63	2.32	0.31	1.77	0.33	0.9	0.11
*Std ENZSTD	0.06	0.77	1.7	0.21	0.91	0.15	0.05	0.1	0.02	0.11	0.01	0.11	-0.01

"""Enzyme Le
Trace element
Values = 9999!
Enhanced Pac
Sample ID: Yb Lu Sum RE S.Q. Li

Enhanced Pac			Lit	hophile Element	s:								
Sample ID:	Yb	Lu	Sum RE	S.Q. Li	Be	S.Q. Sc	Mn	Rb	Sr	Cs	Cs*100	Ва	Ba/Eu
07-005-01	1.07	0.16	31.87	39.5	0.4	-10	59.7	58	51.5	0.29	29	111	326.4705882
07-005-02	1.18	0.16	34.2	53.9	0.4	-10	62.7	63.5	64.5	0.35	35	115	273.8095238
07-005-03	1.54	0.24	35.43	40	1	-10	177	69.1	89.4	0.33	33	152	323.4042553
07-005-04	1.14	0.12	29.42	118	0.4	-10	98.4	73	69.7	0.29	29	159	467.6470588
07-005-05	1.82	0.25	37.65	72.1	1.1	-10	55.8	82.2	61.4	0.49	49	238	517.3913043
07-005-06	2.34	0.43	50.38	128	1.3	10	69.6	73.7	23	0.44	44	135	221.3114754
07-005-07	2.16	0.37	55.86	47.1	1.2	-10	31.7	89.4	22.1	0.61	61	255	369.5652174
07-005-08	0.95	0.1	22.45	11.7	0.4	-10	118	43.8	29.7	0.5	50	91.5	277.2727273
07-005-09	0.88	0.04	18.06	4.8	0.9	-10	131	52.6	39.9	0.46	46	279	996.4285714
07-005-10	2.31	0.34	55.21	59.8	2	-10	51	66	92.2	0.29	29	303	439.1304348
07-005-11	1.87	0.26	37.72	17.4	1.8	-10	201	56.9	111	0.46	46	414	828
07-005-012	0.84	0.05	16.07	21.2	1.1	-10	39.5	84.5	16.1	0.37	37	335	
Blank	-0.01	-0.01		-0.5	-0.1	-10	-0.4	-0.1	-0.1	-0.01		-0.5	
*Rep 07-0005-	0.95	0.16		42.7	0.5	-10	64.6	60.3	53	0.29		111	
*Std ELS1	0.73	0.1		18	0.9	-10	4250	78.1	163	0.38		516	
*Std ENZSTD	0.11	-0.01		13.3	0.9	-10	3800	43.1	178	0.21		106	

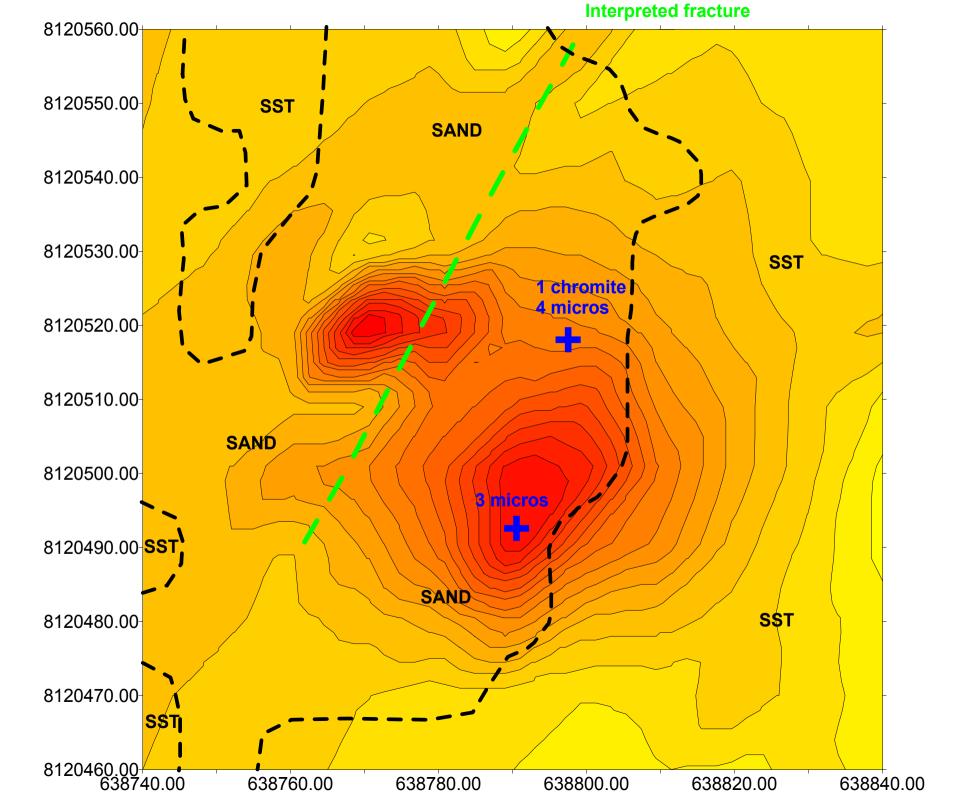

"""Enzyme Le

Trace element

Values = 99999

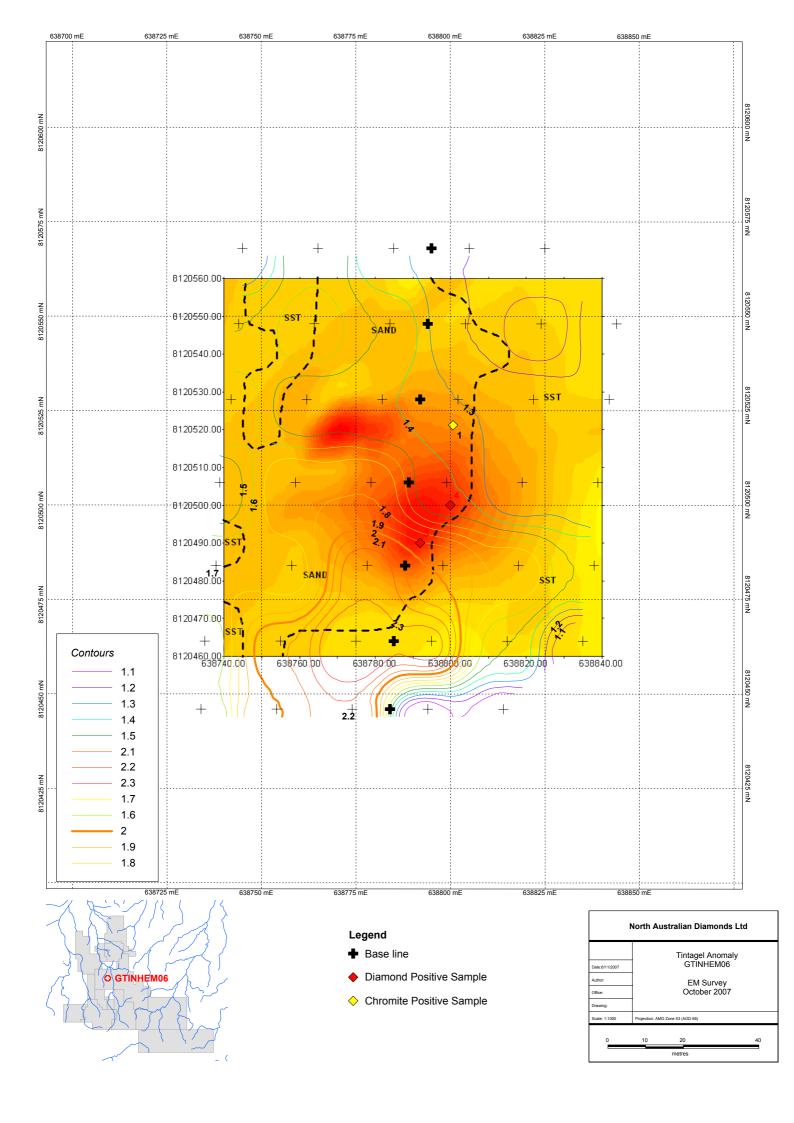
Enhanced Pac P.G.E	.s:			<u>Majo</u>	rs and Sulfur (<u>ppm):</u>						
Sample ID:	Ru	Pd	Os	Pt	Na	Mg	Al	Al*4	K	Ca	Fe	S
07-005-01	-0.5	-0.5	-0.5	-0.5	-5	2	5	20	-5	10.6	-1	-10
07-005-02	-0.5	-0.5	-0.5	-0.5	-5	3	4.2	16.8	7	20.5	-1	-10
07-005-03	-0.5	-0.5	-0.5	-0.5	-5	2	3.5	14	-5	83.7	-1	-10
07-005-04	-0.5	-0.5	-0.5	-0.5	-5	3	3.4	13.6	-5	46.6	-1	-10
07-005-05	-0.5	-0.5	-0.5	-0.5	-5	3	3.5	14	-5	43.5	-1	-10
07-005-06	-0.5	-0.5	-0.5	-0.5	-5	2	3.6	14.4	-5	62	-1	-10
07-005-07	-0.5	-0.5	-0.5	-0.5	-5	3	3.4	13.6	8	12.6	-1	-10
07-005-08	-0.5	-0.5	-0.5	-0.5	-5	12	5.2	20.8	-5	-0.5	-1	-10
07-005-09	-0.5	-0.5	-0.5	-0.5	-5	15	4.7	18.8	-5	21.1	-1	-10
07-005-10	-0.5	-0.5	-0.5	-0.5	-5	4	3.4	13.6	-5	38	-1	-10
07-005-11	-0.5	-0.5	-0.5	-0.5	8	6	3.3	13.2	-5	152	1	-10
07-005-012	-0.5	-0.5	-0.5	-0.5	-5	4	1.7	6.8	-5	107	-1	-10
Blank	-0.5	-0.5	-0.5	-0.5	-5	-2	-0.5		-5	-0.5	-1	-10
*Rep 07-0005-	-0.5	-0.5	-0.5	-0.5	-5	-2	5.5		-5	10.9	-1	-10
*Std ELS1	-0.5	-0.5	-0.5	-0.5	10	30	2.9		-5	322	2	22
*Std ENZSTD	-0.5	-0.5	-0.5	-0.5	97	17	1.6		92	505	-1	27

Year Six soil geochemical traverse over anomaly MAG03T



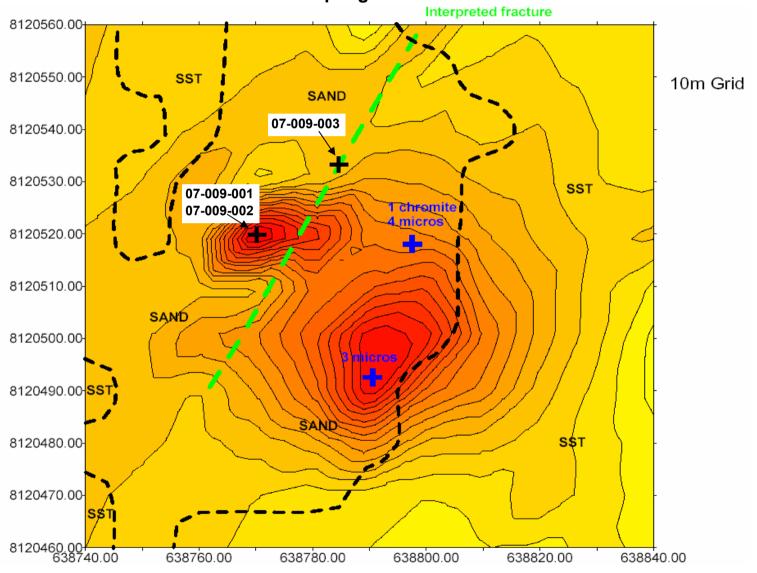
Ground Magnetic Survey Results

Mag03T/Tin0		-	-			
Location E	asting	Northing N	Magnetic (Geology	Line	
1	638740	8120560	48737 9	Sand		1
2	638740		48736.2	Sand		
3	638740	8120540	48735.6	Sand		
4	638740	8120530	48734.8	Sand		
5	638740	8120520	48736.2	Sand		
6	638740	8120510	48737.2 \$	Sand		
7	638740	8120500	48736.8	Sand		
8	638740	8120490	48737.8	SST		
9	638740	8120480	48736.2	Sand		
10	638740	8120470	48736.4	SST		
11	638740	8120460	48736 \$	SST		
12	638750	8120460	48735.6	Sand		2
13	638750	8120470	48735.4	Sand		
14	638750	8120480	48736.4	Sand		
15	638750		48737 \$	Sand		
16	638750					
17	638750			Sand		
18	638750	8120520	48736.8	SST		
19	638750	8120530	48736 9	SST		
20	638750	8120540	48735.4	Sand		
21	638750	8120550	48734.4 9	SST		
22	638750	8120560	48734.4	SST		
23	638760	8120560	48734.6	SST		3
24	638760	8120550	48734.2 9	SST		
25	638760	8120540	48736.2 \$	SST		
26	638760	8120530	48740 9	Sand		
27	638760	8120520	48738.8	Sand		
28	638760	8120510	48737 9	Sand		
29	638760	8120500	48741.8	Sand		
30	638760	8120490	48735.8	Sand		
31	638760	8120480	48735.4	Sand		
32	638760	8120470	48734.8			
33	638760	8120460	48734.2 \$			
34	638770	8120460	48733.8	SST		4
35	638770	8120470	48734 \$	Sand		
36	638770	8120480	48736.6	Sand		
37	638770	8120490	48740.2	Sand		
38	638770	8120500	48744 \$			
39	638770	8120510	48737 \$			
40	638770	8120520	48764.8			
41	638770	8120530	48733 \$			
42	638770	8120540	48737.2 \$			
43	638770	8120550	48736 5			
44	638770	8120560	48735 9			
45	638780	8120560	48735.2			5
46	638780	8120550	48737 9			
47	638780	8120540	48736.8			
48	638780	8120530	48736.2			
49	638780	8120520	48756 9			
50	638780	8120510	48746.2			
51	638780	8120500	48749.4			
52	638780	8120490	48746.6			
53	638780	8120480	48738.8	Sand		


54	638780	8120470	48732.6 Sand	
55	638780	8120460	48733.2 SST	
56	638790	8120460	48732 SST	6
57	638790	8120470	48733 SST	
58	638790	8120480	48744 Sand	
59	638790	8120490	48760.2 Sand	
60	638790	8120500	48760.2 Sand	
61	638790	8120510	48749.4 Sand	
62	638790	8120520	48745.2 Sand	
63	638790	8120530	48740.2 Sand	
64	638790	8120540	48736 Sand	
65	638790	8120550	48737.2 Sand	
66	638790	8120560	48730 Sand	
67	638800	8120560	48738.4 SST	7
68	638800	8120550	48733.4 Sand	
69	638800	8120540	48736.6 Sand	
70	638800	8120530	48739.6 Sand	
71	638800	8120520	48744 Sand	
72	638800	8120510	48751.8 Sand	
73	638800	8120500	48757.4 Sand	
74	638800	8120490	48747.2 SST	
75	638800	8120480	48737.4 SST	
76	638800	8120470	48732 SST	
77	638800	8120460	48731.2 SST	
78	638810	8120460	48732 SST	8
79	638810	8120470	48732.4 SST	
80	638810	8120480	48736.8 SST	
81	638810	8120490	48743.2 SST	
82	638810	8120500	48745.8 SST	
83	638810	8120510	48742.8 SST	
84 95	638810	8120520	48740.2 SST	
85 86	638810	8120530	48737.6 SST	
86 87	638810	8120540 8120550	48735.2 Sand 48735.2 SST	
88	638810 638810	8120560	48731.6 SST	
89	638820	8120560	48733.8 SST	9
90	638820	8120550	48734.4 SST	9
91	638820	8120540	48736.2 SST	
92	638820	8120530	48736.6 SST	
93	638820	8120520	48737.4 SST	
94	638820	8120510	48739.2 SST	
95	638820	8120500	48739.2 SST	
96	638820	8120490	48737 Sand	
97	638820	8120480	48735.2 SST	
98	638820	8120470	48735.8 SST	
99	638820	8120460	48731.6 SST	
100	638830	8120460	48732.4 SST	10
101	638830	8120470	48732.8 SST	
102	638830	8120480	48733 SST	
103	638830	8120490	48733.4 SST	
104	638830	8120500	48734.6 SST	
105	638830	8120510	48734.8 SST	
106	638830	8120520	48735.5 SST	
107	638830	8120530	48734 SST	
108	638830	8120540	48734 SST	

109	638830	8120550	48733.2 SST	
110	638830	8120560	48732.8 SST	
111	638840	8120560	48733.8 SST	11
112	638840	8120550	48732.6 SST	
113	638840	8120540	48733 SST	
114	638840	8120530	48733.6 SST	
115	638840	8120520	48736.4 SST	
116	638840	8120510	48731.6 SST	
117	638840	8120500	48729.4 SST	
118	638840	8120490	48729.4 SST	
119	638840	8120480	48730.8 SST	
120	638840	8120470	48731.2 SST	
121	638840	8120460	48731.6 SST	

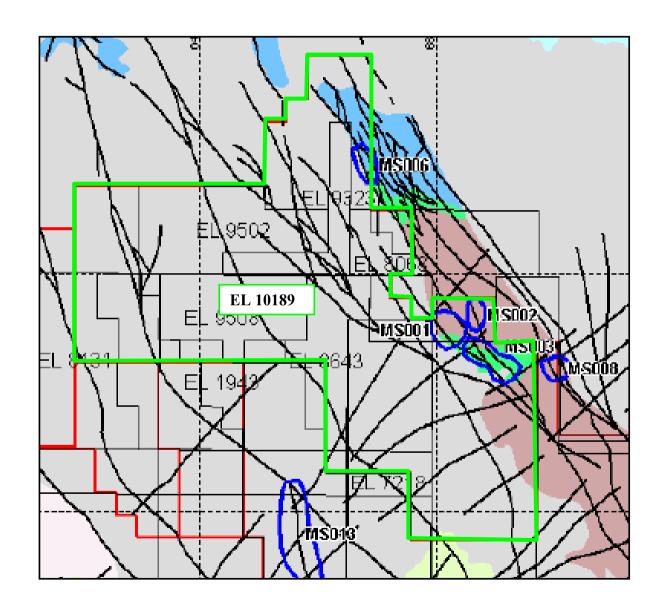
Ground Electromagnetic Survey Results


r 	_	_		
Line	Row	Easting	Northing	Reading
1	1	638745	8120568	1.2
1	2	638765	8120568	1.6
1	3	638785	8120568	1.3
1	4	638805	8120568	1.2
1	5	638825	8120568	1.2
2	1	638744	8120548	1.5
2	2	638764	8120548	1.7
2	3	638784	8120548	1.5
2	4	638804	8120548	1.2
2	5	638824	8120548	1.0
2	6	638844	8120548	1.3
3	1	638742	8120528	1.7
3	2	638762	8120528	1.4
3	3	638782	8120528	1.4
3	4	638802	8120528	1.3
3	5	638822	8120528	1.3
3	6	638842	8120528	1.2
4	1	638739	8120506	1.4
4	2	638759	8120506	1.8
4	3	638779	8120506	1.8
4	4	638799	8120506	1.4
4	5	638819	8120506	1.2
4	6	638839	8120506	1.2
5	1	638738	8120484	1.7
5	2	638758	8120484	1.6
5	3	638778	8120484	2.3
5	4	638798	8120484	2.0
5	5	638818	8120484	1.8
5	6	638838	8120484	1.5
6	1	638735	8120464	1.5
6	2	638755	8120464	2.1
6	3	638775	8120464	2.5
6	4	638795	8120464	2.4
6	5	638815	8120464	1.5
6	6	638835	8120464	1.0
7	1	638734	8120446	1.5
7	2	638754	8120446	2.0
7	3	638774	8120446	2.2
7	4	638794	8120446	1.0
7	5	638814		1.0

Loam Sampling Results

Sample Number	Northing AGD66, 53K	Easting AGD66, 53K	Sample Type	Sieved	Sample Size	Diamond	Chromite
07-009-001	8120520	638770	Loam	1.0mm	4 bags	Negative	Negative
07-009-002	8120532	638785	Loam	1.0mm	1 bag	Negative	Negative
07-009-003	8120520	638770	Loam	1.0mm	1 bag	Negative	Negative

Year 6 Loam Sampling over MAG03T


Jigsaw Geoscience Target Areas

Target areas on EL10189 include MS001, MS002, MS003 and MS006

Table 1. Target areas defined on the McArthur South project tenements.

			Structural_Complexity	K_Illite_Alt	Th_AP_Min	U_anom	Host_Sequence	Unconformity	Priority	Comments
MS001			Fault Intersections	Yes	Yes	No	KRG, Tawallah Group	Yes	One	
MS002			Fault Duplex	Yes	Yes	No	KRG, Tawallah Group	Yes	Two	
MS003			Fault Intersections	Yes	Yes	No	Mafic Volcanics (McArthur Group)	Yes	One	
MS004			Fault Intersections	No	Yes	No		No	Three	Deep cover
MS005			,	No	Yes	No	Bukalara Sandstone	Nο	Three	Deep cover
MS006			Thrust fault	Unknown	Unknown	Unknown	Masterton Sandstone	Yes	Two	Upper sequences
			Fault Duplex	No	Yes	No	Bukalara Sandstone	Yes	Three	
MS008				No	Yes	No	KRG, Tawallah Group	Yes	Two	
MS009				No	No	Yes	Lower Tawallah Gp	Yes	Two	Neoprot cover
				No	No	Yes	Lower Tawallah Gp	Yes	Two	Mesozoic cover
MS011			Fault Intersections	Yes	No	No	Lower Tawallah Gp	Yes	One	Mesozoic cover
MS012				No	No	No	Lower Tawallah Gp	Yes	One	Mesozoic cover
MS013				No	No	Yes	Lower Tawallah Gp	Yes	One	Neoprot cover
MS014	657,000	8,083,000	Fault Intersections	No	Yes	Yes	Lower Tawallah Gp	Yes	Two	Mesozoic cover

Source: Jigsaw Geoscience (2008). Jigsaw Geoscience Pty Ltd - Targeting Review: McArthur South project, Northern Territory. Confidential report to Top End Uranium Limited. April 2008.

Potential U Targets

MS001 MS002 MS003 MS006

Source:

Jigsaw Geoscience (2008)