MAGELLAN PETROLEUM (NT) PTY LIMITED

PALM VALLEY No. 10/10A

PETROPHYSICAL REPORT AND

WELL CORRELATION

. . .

DEPT OF MINES & ENERGY DO NOT REMOVE

1

M.D. Berry April, 1995

TABLE OF CONTENTS

1

Control and overside and oversi

Abstraction of the Second

förstandstadet att som en er som e

1.	INTRODUCTION 1
2.	LOG DATA BASE
	Depth Matching
3.	PETROPHYSICAL ANALYSIS
	3.1 TEMPERATURE 3
	3.2 CLAY/SHALE VOLUME
	3.3 POROSITY 4
	3.4 FORMATION RESISTIVITY
	3.5 FORMATION WATER SALINITY AND Rw
	3.6 WATER SATURATION
	3.7 SUMMARY OF RESULTS 6
4.	WELL CORRELATION 10
5.	REFERENCES

TABLES SUMMARY TABLE OF RESULTS **FIGURES** STABILIZED BOTTOM HOLE TEMPERATURE, PALM VALLEY NO. 10 STABILIZED BOTTOM HOLE TEMPERATURE, PALM VALLEY NO. 10A COMPARISON OF RESULTANT POROSITIES, PALM VALLEY NO. 10 COMPARISON OF RESULTANT POROSITIES, PALM VALLEY NO. 10A GR vs DT CROSS-PLOT, PALM VALLEY NO. 10 **APPENDICES** DEPTH SHIFT LISTINGS CGR LIMITS USED FOR VSHALE COMPUTATION NET PAY STATISTICS **ENCLOSURES** LOG INTERPRETATION PLOT, PALM VALLEY No. 10

2. LOG INTERPRETATION PLOT, PALM VALLEY No. 10A

3. STRATIGRAPHIC TABLE, PALM VALLEY FIELD

1.

1.

2.

3.

4.

5.

Α.

B.

C.

1.

4. STRUCTURAL CROSS-SECTION, PALM VALLEY FIELD

ii

1. INTRODUCTION

Palm Valley No. 10/10A was drilled from November 1994 to February 1995 without intersecting a commercial flow of gas, and was completed as an observation well.

The first hole, Palm Valley No. 10, reached a total depth of 2,143.9 m and achieved a hole deviation of 39.90 at an azimuth of N128.7°E. A maximum flow rate of 0.455 MMCFGD was recorded from the upper Pacoota P1 unit. The well was then sidetracked as Palm Valley No. 10A to a total depth of 2,343 m, achieving a maximum hole deviation of 60.1° at an azimuth of N218.9°E through the reservoir section. A maximum flow rate of 1.382 MMCFGD was recorded, again, from the upper Pacoota P1 unit. A minor influx of formation water was intersected while air mist drilling through the Pacoota P2 unit at a depth of 2,311 m.

Although a full suite of logs were recorded in both holes, no cores were taken to assist with reservoir description.

This report details the petrophysical analysis of Palm Valley No. 10 and 10A. The methodology follows that employed and described in the report entitled "Petrophysical Report and Well Correlation: A Review", M.D. Berry, 1993.

2. LOG DATA BASE

· . . ·

Palm Valley No. 10 and 10A added the following logs to the field data base:-

Palm Valley No. 10 **Bottom of Logged** Interval FMS-GR-AMS Run 1 1,453.0 1,452.5 AS-GR 1,451.0 DLL-MSFL-PI-GR-SP AS-GR-AMS 2,138.0 RUN 2 2,141.0 **FMS-GR-AMS** _ 2,141.0 LDL-CNL-NGS-AMS _ 2,122.0 DLL-MSFL-PI-GR-SP-AMS (20 LEVELS) WSS (WELL SEISMIC)

Palm Valley No. 10A

RUN 1

1	-	FMS-GR-AMS	2,338.0
	-	DLL-MSFL-GR-SP-AMS	2,334.0
	-	AS-GR-AMS	2,331.5
	-	LDL-CNL-NGT-AMS	2,337.5

In general the log quality was very good, and borehole conditions were excellent. The FMS image quality was affected in Palm Valley No. 10A, partly due to the 6" hole size and partly due to an inability to maintain a slip-free logging run.

Depth Matching

Both Palm Valley No. 10 and 10A required careful depth matching to ensure the integrity of the data base prior to analysis. In every case, each suite of logs was separately matched using the gamma-ray and the appropriate depth corrections were then applied to the remainder of the logs in each suite.

Firstly the Laterolog suite (Run 1) in Palm Valley No. 10 was matched to the array sonic suite (-.305 m at the top and + .152 m at the bottom). Then the array sonic suite from run 2 was matched to the array sonic suite from run 1 (-0.1 m).

The Laterolog suite (Run 2) was then carefully matched to the array sonic suite (Run 2), requiring 24 depth shift points (Appendix A). Finally, the nuclear suite (Run 2) was matched to the array sonic suite (Run 2) with a total of 45 separate corrections (Appendix A).

The final logs run in Palm Valley No. 10A were then depth matched with the intermediate log suite. The array sonic suite was found to be perfectly on depth. However the Laterolog suite required 70 separate depth shifts (Appendix A) to match the array sonic suite precisely. This was because of the high angle of hole deviation which resulted in fluctuating line tension (from the AMS). Similarly, the nuclear suite also required a total of 74 separate depth shifts (Appendix A).

Attention to such detail, ensuring that all logs matched perfectly, provided a sound data base from which a reliable petrophysical analysis could be carried out.

Data quality in all cases was extremely good. The exception to this was the Δt in Palm Valley No. 10A. The extremely high noise level in the Δt and Δt l made them unusable. A Δt compressional and shear was therefore backed out of the full waveform by the Schlumberger interpretation centre.

3. PETROPHYSICAL ANALYSIS

3.1 TEMPERATURE

Stabilized bottom hole temperatures were derived for both Palm Valley No. 10 (Figure 1) and 10A (Figure 2) of 70.50°C and 73.7°C respectively. The higher temperature in Palm Valley No. 10A was a result of a sudden rise in temperature on the final logging run. These provide temperature gradients of 2.226°C/100m and 2.172°C/100m respectively which compares favourably with previous estimates.

3.2 CLAY/SHALE VOLUME

Shale volume (VSHALE) was computed in Palm Valley No. 10 and 10A from the corrected gamma-ray and using the Clavier method as outlined below:-

 $VSH_{(LIN)} = (GR - GR_{CLEAN})/(GR_{SHALE} - GR_{CLEAN})$ BASE = 3.38 - ([VSH_{(LIN)} + 0.7]²) $VSH_{(CLAVIER)} = 1.7 - (BASE)^{.5}$

where

 GR_{CLEAN} = Refer to Table 5 and 6 GR_{SHALE} = Refer to Table 5 and 6

The resultant values were subsequently corrected to core VSHALE using the following (previously derived) equation:-

 $VSH_{(LOG)} = 1.359 (VSH_{(CORE)}) - 0.01$

The "clean" and "shale" limits used for VSHALE computation in Palm Valley No. 10 and 10A appear in Appendix B.

3.3 POROSITY

As with the "Petrophysical Report and Well Correlation: A Review, 1993", a series of porosity computations were attempted with Palm Valley No. 10 and 10A. A comparison of these resultant porosities is shown in Figure 3 (Palm Valley No. 10) and Figure 4 (Palm Valley No. 10A). However, the effective porosity was eventually derived primarily from the shale corrected density porosity supplemented with shale corrected sonic porosity in areas of bad hole.

The shale corrected density porosity was obtained from the neutron-density crossplot which outputs both shale corrected neutron and density logs:-

$ ho_{ m SC}$		ρ + VSH x ($\rho_{\rm M}$ - $\rho_{\rm SH}$)		
$\phi_{\text{den(SC)}}$		$(ho_{\rm M}$ - $ ho_{ m SC})/(ho_{\rm M}$ - $ ho_{ m f})$		
where				
$ ho_{ m M}$	=	2.67 gm/cc	(Based on field derived valve, ref; 1990 update)	
$ ho_{ m f}$	=	1.14 gm/cc	(Based on a Formation water salinity of 189,000 ppm)	
$ ho_{ m SH}$	_	2.5 gm/cc		

The shale corrected sonic porosity was obtained from the Hunt-Raymer equation, where:-

$\Delta t_{\rm SC}$	= $\Delta t - VSH \times (\Delta t_m - \Delta t_{SH})$
$\varnothing_{\rm SON(SC)}$	$= (\Delta t_{\rm SC} - \Delta t_{\rm m})/(\Delta t_{\rm f} - \Delta t_{\rm m})$
where	
Δt_m	= 57 μ s/ft (Based on field derived valve, Ref: 1990 update)
Δt_{f}	$= 189 \ \mu s/ft$
Δt_{SH}	$=$ 80 μ s/ft
VSH	= Clavier Shale Volume (previously described)

Note: The Hunt-Raymer equation uses:- Δt_{SH} , Δt_{MSH} (Shale transit time, no water, no ϕ) and k (compaction correction factor, 0.8 used).

Values of Δt_{SH} (80) and Δt_{MSH} (70) were chosen by examination of the data and GR vs DT cross plot (Figure 5).

Finally, the density and sonic porosities were corrected to core porosity at overburden conditions using the following relationships:-

 $\phi_{\text{DEN(SC)}} = 2.455 (\phi_{\text{CORE(OB)}}) - 0.059$ $\phi_{\text{SON(SC)}} = 1.492 (\phi_{\text{CORE(OB)}}) - 0.041$

Any zones of bad data were edited accordingly and the resultant effective porosity (PHIE) was considered very satisfactory.

3.4 FORMATION RESISTIVITY

Formation resistivity (R_t) was derived from the deep reading Laterolog tool after being corrected for borehole conditions and invasion. Resultant R_t values are shown graphically in Enclosures 1 and 2.

3.5 FORMATION WATER SALINITY AND Rw

Following previous interpretations, a formation water salinity of 189,000 ppm has been used, based on the analysis of produced water. Calculated equivalent formation water resistivities (R_w 's) are as follows:-

<u>Well</u>	<u>Temp °C</u>	@	<u>Depth (m)</u>	<u>Rw</u>
PV-10	64.51		1,875	0.0241
PV-10A	66.20		2,000	0.0236

3.6 WATER SATURATION

The Indonesian equation was used for water saturation estimation:

$$S_w = [VSH^{.5(2-VSH)}/(R_{SH}/R_t)^{.5} + (R_t/R_o)^{.5}]^{(-2/n)}$$

where

R _o	$= a R_w/\phi^m$
R _{SH}	= 15 ohm-m (in most cases)
\mathbf{V}_{SH}	= Shale volume from Clavier method
R _t	= Formation resistivity
а	= 1
n	= 2
m	= 2.21 (Average measured value from core analysis)

3.7 SUMMARY OF RESULTS

A set of coloured log interpretations for Palm Valley No. 10 and 10A appear in Enclosures 1 and 2. This includes the final computed VSHALE, formation resistivity (R_t), water saturation (S_w), effective porosity (PHIE) and bulk volume water (BVW). Shading on the bulk volume water curve is from 0.025 (for coarse grained sands) and 0.05 (very fine grained sands). This is meant as a guide only as most of the sandstones of the lower Stairway and Pacoota Formations at Palm Valley are very fine grained and exhibit extensive cementation and recrystallization.

Also included as Enclosure 4 is a structural cross-section of the field with gramma-ray and water saturation curves plotted. This gives some visual representation of the vertical and lateral extent of the computed hydrocarbon saturation in the field.

A summary of the net pay statistics including average effective porosity, average water saturation and net pay is shown in Table 1. A full set of net pay statistics appears in Appendix C. Net pay statistics are computed from the log data using a water saturation cutoff of 55%, in order to be consistent with the previous Petrophysical Report. Net pay figures are also based on true vertical depth as both Palm Valley 10 and 10A were deviated holes.

TABLE 1

Pacoota P1 unit

Pacoota P2 unit

SUMMARY TABLE OF RESULTS

Palm Valley No. 10

Formation	Effective	Water	Net
	Porosity	Saturation	Pay
	Average, %	Average, %	m
lower Stairway	4.45	44.48	5.5857
Pacoota P1 unit	4.57	45.18	2.3704
Pacoota P2 unit	3.72	47.72	0.2404
	Palm Valley No. 10	A	
lower Stairway	3.97	42.71	4.9542

NET PAY TOTALS (m)

4.73

3.60

	Palm Valley 10	Palm Valley 10A
lower Stairway	5.5857	4.9542
Pacoota P1 Unit	2.3704	1.8859
Pacoota P2 Unit	0.2404	0.2137
Total Net Pay	8.1965	7.0538

Notes:- - Cutoff: Water saturation = 55%.

Palm Valley No. 10 only penetrated approximately 79% of the P2 unit.

42.57

42.56

1.8859

0.2137

Palm Valley No. 10A only penetrated approximately 81% of the P2 unit.

Results are as follows:-

- Palm Valley No. 10
 - Average porosity of 4.45% in the lower Stairway with 5.6 m of pay averaging 55.5% hydrocarbon saturation.
 - Average porosity of 4.57% in the P1 unit with 2.4 m of pay averaging 54.8% hydrocarbon saturation.
 - The very low calculated net pay (0.24 m) in the P2 unit is a function of the partial penetration only of the unit; Similar to Palm Valley No. 9.
- Palm Valley No. 10A
 - Average porosity of 3.97% in the lower Stairway with 5.0 m of pay averaging 57.3% hydrocarbon saturation.
 - Average porosity of 4.73% of the P1 unit with 1.9 m of net pay averaging 57.4% hydrocarbon saturation.
 - Similarly, a partial penetration of the P2 unit resulted in a very low net pay (0.21 m).

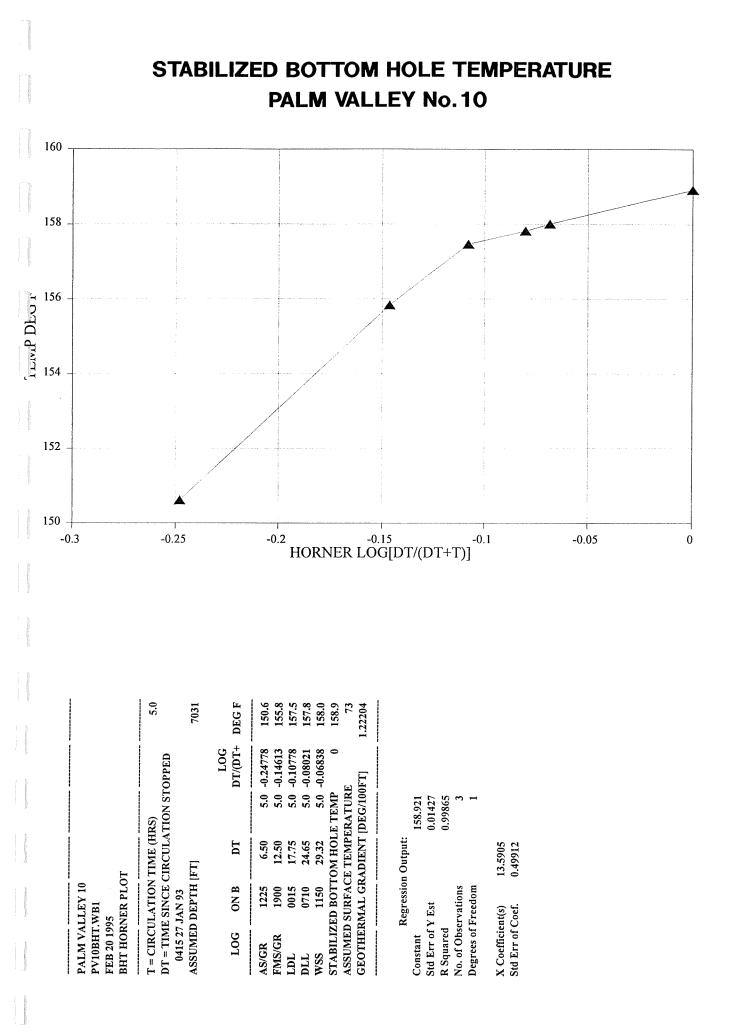
• <u>General Comments</u>

- Palm Valley No. 10A displays only slightly reduced reservoir matrix quality from Palm Valley No. 10. Both are very close as expected.
- The computed net pay for the P2 unit is not representative as the unit was only partially penetrated in both wells.
- Hydrocarbon saturation in the matrix above (57% at 2,303 m) and below (42% at 2,313 m) the depth at 2,311 m where a minor formation water influx was reported, suggests that the formation water was entering the borehole from minor fractures (seen on the FMS) and not the low porosity matrix.

Very low porosity water saturated matrix occurs at various points in both wells which is not associated with water entry, further supporting the belief that water requires fractures for movement within the reservoir. Calculated net pay in the region of Palm Valley No. 10/10A suggests that reservoir matrix quality may slightly decrease away from the central (crestal) region of the field.

Overall, the methodology employed in this report has been consistent with previous petrophysical evaluation and the results are considered accurate.

4. WELL CORRELATION


As part of this report, the fan-fold stratigraphic table of the field has been updated with the measured depth, true vertical depth, elevation (from TVD) and true stratigraphic thicknesses calculated for Palm Valley No. 10 and 10A (Enclosure 3).

Also a new structural cross-section has been generated for the field (Enclosure 4). Each well is displayed at true vertical elevation in order to ensure that the data represented is at a true structural position in the field.

5. **REFERENCES**

Palm Valley Field Petrophysical Report and Well Correlation: A Review, M.D. Berry, July 1993.

FIGURES

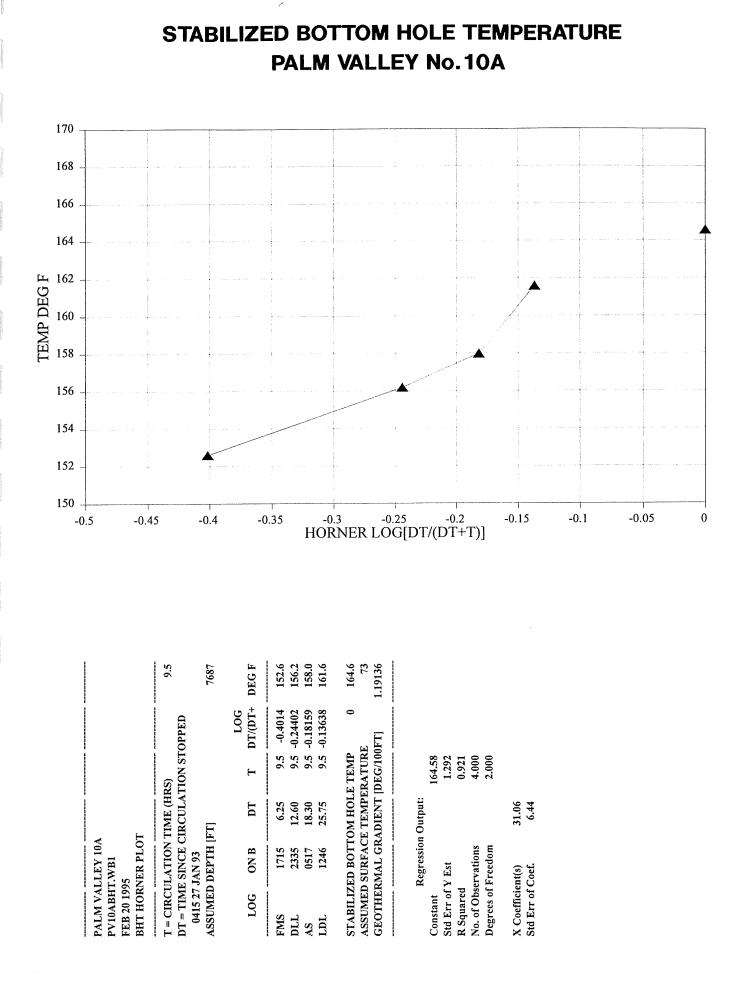


FIGURE 2

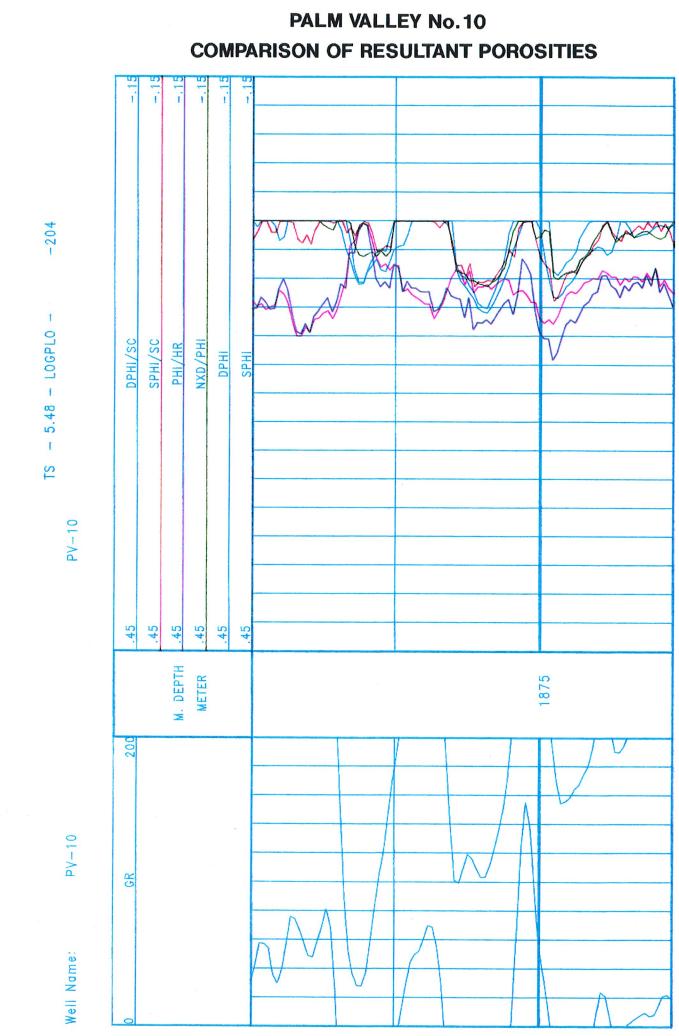
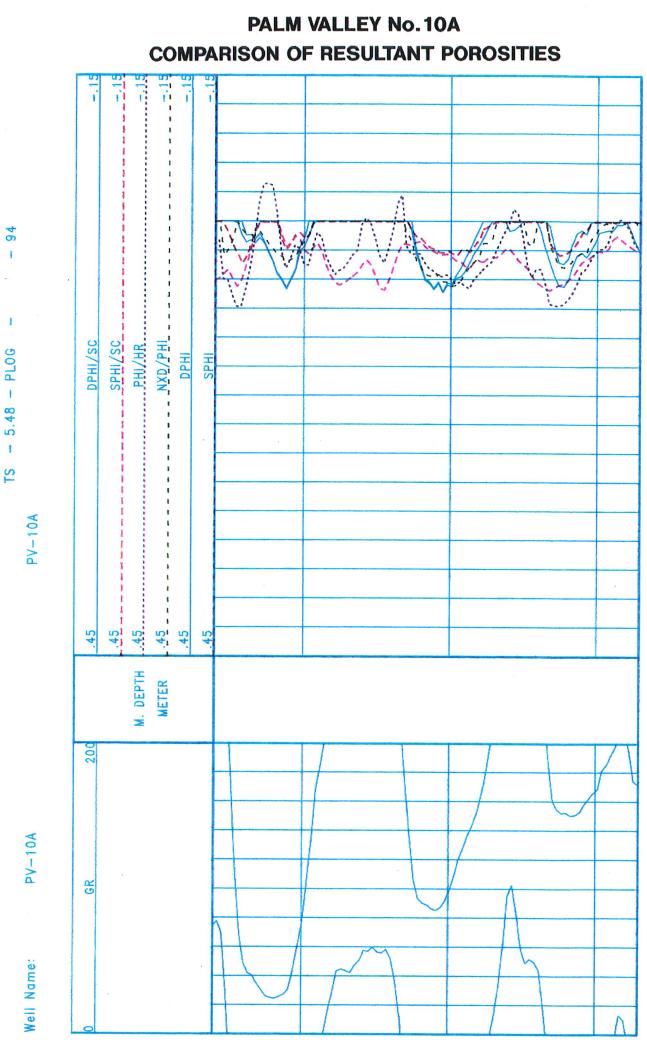
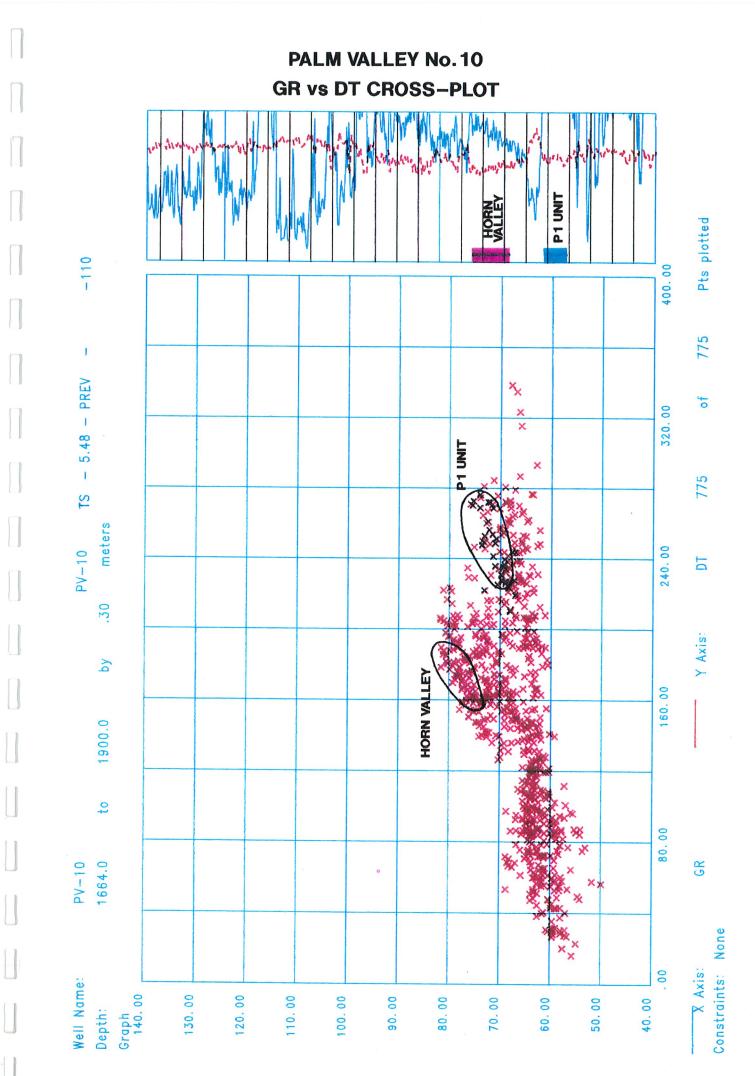




FIGURE 3

FIGURE 4

APPENDIX A

Logplot - Depth Shift Modification Screen					
	Total number of shifts: 24				
	Reference Depth Shift Depth Relative Shift				
1	1427.683	1427.988	305		
2	1472.946	1472.946	.000		
3	1530.706	1531.010	305		
4	1641.653	1641.653	.000		
5	1657.807	1657.960	152		
6	1701.546	1701.851	305		
7	1761.592	1761.744	152		
8	1844.345	1844.192	.152		
9	1864.004	1864.004	.000		
10	1891.894	1892.046	152		
11	1958.797	1958.950	152		
12	1970.075	1970.380	305		
13	1987.448	1987.753	305		
14	2002.536	2002.993	457		
15	2010.613	2010.918	305		
16	2023.110	2023.262	152		
17	2040.636	2040.788	152		
18	2043.227	2043.227	.000		
19	2050.542	2050.542	.000		
20	2095.805	2096.110	305		
21	2104.034	2104.187	152		
22	2111.655	2111.807	152		
23	2113.331	2113.636	305		
24	2115.007	2115.617	610		

DEPTH SHIFT POINTS LLD SUITE TO AS SUITE PALM VALLEY NO. 10, RUN 2

	Logplot - Depth Shift Modification Screen				
	Total number of shifts: 45				
	Reference Depth Shift Depth Relative Shift				
1	1423.264	1423.111	.152		
2	1427.683	1427.683	.000		
3	1431.798	1432.255	457		
4	1445.666	1445.971	305		
5	1459.992	1460.297	305		
6	1472.946	1472.946	.000		
7	1513.332	1513.332	.000		
8	1526.743	1527.048	305		
9	1530.553	1530.858	305		
10	1537.411	1538.021	610		
11	1556.004	1556.614	610		
12	1566.215	1566.672	457		
13	1582.369	1582.826	457		
14	1608.277	1608.430	152		
15	1680.058	1680.210	152		
16	1686.458	1686.763	305		
17	1738.579	1738.884	305		
18	1743.304	1743.456	152		
19	1760.830	1760.982	152		
20	1844.497	1844.345	152		
21	1864.004	1864.004	.000		
22	1873.453	1873.453	.000		
23	1874.520	1874.672	152		
24	1876.196	1876.349	152		
25	1880.159	1880.616	457		
26	1891.894	1892.351	457		
27	1892.960	1893.265	305		
28	1914.906	1915.058	152		

• • • • •

DEPTH SHIFT POINTS LDL SUITE TO AS SUITE PALM VALLEY NO. 10, RUN 2

29	1926.488	1926.488	.000
30	1932.737	1932.889	152
31	1943.862	1943.862	.000
32	1953.006	1953.006	.000
33	1956.664	1956.968	305
34	1961.388	1961.540	152
35	1978.304	1978.457	152
36	1981.048	1981.352	305
37	2008.632	2008.937	305
38	2022.196	2022.348	152
39	2046.580	2046.732	152
40	2110.588	2110.740	152
41	2111.655	2111.655	.000
42	2114.245	2114.398	153
43	2116.379	2116.379	.000
44	2127.809	2127.809	.000
45	2128.266	2128.418	152

and the second second second

giftigadinadadadificiónes.

paliti Mitalolizati inter

Sec. - A contract of the second

prificationales.

allowed and a second

an franzense Stability

addraacaanbeletheataangg

Allocation of the second second

Logplot - Depth Shift Modification Screen				
Total number of shifts: 70				
	Reference Depth	Shift Depth	Relative Shift	
1	1431.950	1432.560	610	
2	1446.276	1446.886	610	
3	1468.679	1469.288	610	
4	1485.748	1486.357	610	
5	1529.486	1529.944	457	
6	1571.244	1571.701	457	
7	1586.941	1586.941	.000	
8	1593.494	1593.647	152	
9	1595.018	1595.018	.000	
10	1597.304	1597.457	152	
11	1626.108	1626.260	152	
12	1634.795	1634.490	.305	
13	1638.148	1637.843	.305	
14	1641.500	1641.500	.000	
15	1643.329	1643.024	.305	
16	1644.396	1644.244	.152	
17	1666.189	1666.037	.152	
18	1674.266	1674.266	.000	
19	1681.124	1680.972	.152	
20	1708.861	1708.709	.152	
21	1723.187	1723.187	.000	
22	1732.331	1732.331	.000	
23	1739.798	1739.646	.152	
24	1750.162	1750.009	.152	
25	1753.362	1753.514	152	
26	1757.324	1757.324	.000	
27	1761.744	1761.896	152	
28	1762.811	1762.658	.152	

DEPTH SHIFT POINTS LLD SUITE TO AS SUITE PALM VALLEY NO. 10A, RUN 2

29	1816.760	1816.608	.152
30	1949.348	1949.196	.152
31	1998.116	1997.964	.152
32	2000.402	2000.402	.000
33	2033.168	2033.168	.000
34	2035.150	2035.302	152
35	2045.360	2045.513	152
36	2056.181	2056.181	.000
37	2090.776	2090.776	.000
38	2092.757	2092.909	152
39	2100.986	2101.139	153
40	2105.406	2105.406	.000
41	2117.141	2117.141	.000
42	2124.304	2124.304	.000
43	2125.980	2126.132	152
44	2129.638	2129.790	152
45	2132.533	2132.533	.000
46	2138.782	2138.782	.000
47	2144.725	2144.878	152
48	2147.621	2147.773	152
49	2184.959	2185.111	153
50	2186.026	2186.330	305
51	2193.341	2193.645	305
52	2193.950	2194.103	152
53	2201.570	2201.723	153
54	2202.790	2202.790	.000
55	2215.134	2215.134	.000
56	2216.201	2216.353	152
57	2221.382	2221.382	.000
58	2243.176	2243.176	.000
59	2247.748	2247.595	.152
60	2282.190	2282.190	.000

y - 1664 Jawy Statistics Har

geformanistic authors

groundstangenachtlichten.

and and a second second

anan a manan da ka

and second second second

and an annual second se

And Antonio Antony

Drawson Construction

61	2285.695	2285.543	.153
62	2290.420	2290.115	.305
63	2293.315	2293.010	.305
64	2295.144	2294.992	.152
65	2303.069	2302.916	.152
66	2306.269	2306.269	.000
67	2309.165	2309.165	.000
68	2313.889	2314.042	153
69	2316.328	2316.328	.000
70	2318.004	2318.156	152

Ċ

pinnapianiana ka^{tana}ba

processing and a second second

Alling and Annalysis and Annal

Glad sagatal nandeweise,

and an or the

artesta ana performante ag

add<u>araydy</u> (rafaldaradollik) .

adhidaidilleannacha

and and the second s

Logplot - Depth Shift Modification Screen				
	Total nun	nber of shifts: 74	4	
	Reference Depth	Shift Depth	Relative Shift	
1	1445.209	1445.362	152	
2	1469.288	1469.441	152	
3	1567.434	1567.586	152	
4	1568.806	1568.806	.000	
5	1571.396	1571.549	152	
6	1575.968	1575.968	.000	
7	1584.198	1584.046	.152	
8	1588.313	1588.313	.000	
9	1623.517	1623.365	.152	
10	1626.108	1625.956	.152	
11	1632.052	1631.594	.457	
12	1637.233	1636.776	.457	
13	1640.586	1640.434	.152	
14	1672.895	1672.742	.152	
15	1674.114	1674.114	.000	
16	1678.381	1678.381	.000	
17	1680.515	1680.362	.152	
18	1735.074	1734.922	.152	
19	1743.608	1743.304	.305	
20	1750.162	1749.857	.305	
21	1753.362	1753.210	.152	
22	1757.324	1757.020	.305	
23	1758.544	1758.391	.152	
24	1760.982	1760.830	.152	
25	1762.811	1762.506	.305	
26	1806.854	1806.550	.305	
27	1809.445	1808.988	.457	
28	1812.493	1812.188	.305	

DEPTH SHIFT POINTS LDL SUITE TO AS SUITE PALM VALLEY NO. 10A, RUN 2

29	1946.758	1946.605	.152
30	1949.348	1949.044	.305
31	1996.440	1996.135	.305
32	2000.555	2000.402	.152
33	2020.062	2019.910	.152
34	2035.150	2035.150	.000
35	2041.398	2041.398	.000
36	2042.922	2042.770	.152
37	2048.866	2048.866	.000
38	2067.306	2067.306	.000
39	2074.926	2074.774	.152
40	2114.398	2114.245	.153
41	2120.646	2120.494	.152
42	2124.151	2123.846	.305
43	2125.980	2126.132	152
44	2134.514	2134.362	.152
45	2138.934	2138.934	.000
46	2171.700	2171.700	.000
47	2173.834	2173.681	.153
48	2177.339	2177.339	.000
49	2209.952	2209.952	.000
50	2215.134	2214.982	.152
51	2216.201	2216.201	.000
52	2221.535	2221.382	.153
53	2224.735	2224.583	.152
54	2225.650	2225.650	.000
55	2228.545	2228.393	.152
56	2237.080	2237.080	.000
57	2240.585	2240.432	.152
58	2247.900	2247.595	.305
59	2282.190	2281.885	.305
60	2285.695	2285.543	.153

probable delanary 2500000.

provide the second second second

gif Pelengangahah Stratas Constraints on per

Analysis and the state of the s

gypt/scarge_adamatics.com

saaliyagoogaaaseed biy

sissificaradoosalisiining

and the second s

- -----

Meridian Contractor

vidiode aux constrainted page

61	2290.267	2289.962	.305
62	2293.163	2293.010	.152
63	2297.430	2297.278	.152
64	2299.716	2299.259	.457
65	2300.173	2300.021	.153
66	2303.069	2302.764	.305
67	2308.403	2308.098	.305
68	2310.689	2310.536	.152
69	2316.328	2316.175	.152
70	2318.614	2318.614	.000
71	2324.557	2324.557	.000
72	2325.472	2325.167	.305
73	2325.776	2325.319	.457
74	2325.929	2325.776	.152

jadatunjajappersölötte

an a the annual sector of the sector of the

and a second second

eritika andara kataka kata

APPENDIX B

PALM VALLEY NO. 10 CORRECTED GAMMA-RAY LIMITS USED FOR VSHALE COMPUTATION

Depth Interval (m)		Gamma-Ra	ay Range
From	То	Clean	Shale
1439.0	1468.0	37	150
1468.0	1571.0	43	230
1571.0	1664.0	50	240
1664.0	1715.0	45	168
1715.0	1724.0	50	270
1724.0	1742.0	15	155
1742.0	1761.0	35	231
1761.0	1847.0	43	240
1847.0	1871.0	21	294
1871.0	1943.0	82	280
1943.0	1948.0	27	260
1948.0	2004.0	70	285
2004.0	2022.0	51	233
2022.0	2049.7	35	208
2049.7	2095.0	73	280
2095.0	2100.0	73	326
2100.0	2130.6	50	238

PALM VALLEY NO. 10A CORRECTED GAMMA-RAY LIMITS USED FOR VSHALE COMPUTATION

Depth Interval (m)		Gamma-Ra	ay Range
From	То	Clean	Shale
1439.0	1468.0	30	160
1468.0	1500.0	60	254
1500.0	1676.0	52	243
1676.0	1746.0	36	169
1746.0	1759.0	70	266
1759.0	1770.0	20	216
1770.0	1785.0	6	216
1785.0	1798.0	28	216
1798.0	1816.0	47	216
1816.0	1950.0	35	225
1950.0	1978.0	36	260
1978.0	1988.5	11	254
1988.5	1993.0	83	294
1993.0	2025.0	71	254
2025.0	2089.0	92	254
2089.0	2097.0	56	247
2097.0	2145.0	61	220
2145.0	2192.0	70	281
2192.0	2235.0	40	220
2235.0	2290.0	70	300
2290.0	2310.0	61	220
2310.0	2321.0	82	223
2321.0	2326.7	45	220

APPENDIX C

Well Name: PV-10 lower Stairway

Depth: 1664.3 to 1761.2 by .15 meters

Minimum allowed thickness of netpay unit: .0000

Vertical reference channel: TVD

Date: 23 APR 95

Curve Type (# - Name)	Cutoff value(s)	Method
Sw (32 - SW)	.5500	LE
Porosity (60 - PHIE)	.0000	GE

SUMMATION STATISTICS

1

TOP INTERVAL			(M)	1653.2252
TOP INTERVAL	-	MD	(M)	1664.3605
BASE INTERVAL			(M)	1742.6702
BASE INTERVAL		MD	(M)	1761.1344
GROSS THICKNESS			(M)	89.5973
GROSS THICKNESS	-	MD	(M)	96.9263
NET PAY THK			(M)	5.5857
NET PAY THK	-	MD	(M)	6.0958
NET/GROSS RATIO				.0623
PAY ARITH AVG Sw				.4448
PAY HC THK			(M)	.1366
PAY HC THK	-	MD	(M)	.1491
PAY ARITH AVG POROSITY				.0445
PAY POROSITY THK			(M)	.2486
PAY POROSITY THK	-	MD	(M)	.2712

PV-10

Well Name: PV-10	Pl Unit				PV-10
Depth: 1847.2 t	.o 205	1.0 by	.15 meters	S	
Minimum allowed thick	ness of	netpay u	nit:	.0000	
Vertical reference ch	annel:	TVD		Date: 2	23 APR 9
Curve Type (# - Name)		Cutoff	value(s)	Me	ethod
Sw (32 - SW Porosity (60 - PHIE)		5500 0000		LE GE
SUMMATION STATISTICS					
TOP INTERVAL TOP INTERVAL BASE INTERVAL BASE INTERVAL		<pre>(M) 1819 (M) 1847 (M) 1996 (M) 2050</pre>	.2405 .5237		

(M)

(M)

(M)

(M)

- MD (M)

- MD (M)

- MD (M)

- MD (M)

177.1331

203.9111

2.3704

2.7433

.0134

.4518

.0598

.0690

.0457 .1085

.1254

1

GROSS THICKNESS GROSS THICKNESS

NET/GROSS RATIO

PAY ARITH AVG Sw

PAY POROSITY THK PAY POROSITY THK

PAY ARITH AVG POROSITY

.

NET PAY THK

NET PAY THK

PAY HC THK

PAY HC THK

Well Name: PV-10 P2 Unit

Depth: 2051.0 to 2143.9 by .15 meters

Minimum allowed thickness of netpay unit: .0000

Vertical reference channel: TVD

Date: 23 APR 95

1

Curve Type (# - Name)	Cutoff value(s)	Method
Sw (32 - SW)	.5500	LE
Porosity (60 - PHIE)	.0000	GE

SUMMATION STATISTICS

TOP INTERVAL		(M)	1996.5237
	– MD	(M)	2050.9993
	MD	(M)	2070.8000
BASE INTERVAL			
BASE INTERVAL	- MD	(M)	2143.9631
GROSS THICKNESS		(M)	74.4287
GROSS THICKNESS	- MD	(M)	93.1162
NET PAY THK		(M)	.2404
NET PAY THK	- MD	(M)	.3049
NET/GROSS RATIO			.0032
PAY ARITH AVG Sw			.4772
PAY HC THK		(M)	.0047
PAY HC THK	- MD	(M)	.0059
PAY ARITH AVG POROSITY			.0372
PAY POROSITY THK		(M)	. 0090
INI LONODITI IMA	- MD	(M)	0114
PAY POROSITY THK	- MD	(11)	.0114

PV-10

Well Name: PV-10A lower Stairway PV-10A Depth: 1676.5 to 1816.0 by .15 meters Minimum allowed thickness of netpay unit: .0000 Date: 23 APR 95 Vertical reference channel: TVD

 Curve Type (# - Name)
 Cutoff value(s)

 Sw (32 - SW)
 .5500

 Porosity (60 - PHIE)
 .0000

 Method _ _ _ _ LE GE SUMMATION STATISTICS _____ 1652.2097 (M) TOP INTERVAL – MD (M) 1676.5524 TOP INTERVAL (M) - MD (M) 1738.1152 BASE INTERVAL BASE INTERVAL 1815.9984 86.0579 139.5984 GROSS THICKNESS (M) GROSS THICKNESS - MD (M) 4.9542 8.3820 NET PAY THK NET PAY THK (M) – MD (M) .0576 NET/GROSS RATIO .4271 PAY ARITH AVG Sw (M) .1113 .1886

.0397 .1969 .3330

- MD (M)

PAY ARITH AVG POROSITY PAY POROSITY THK (M) PAY POROSITY THK - MD (M)

PAY HC THK

PAY HC THK

Well Name: PV-10A P1 Unit PV-10A Depth: 1950.0 to 2235.0 by .15 meters Minimum allowed thickness of netpay unit: .0000 Date: 23 APR 95 Vertical reference channel: TVD

 Curve Type (# - Name)
 Cutoff value(s)

 Sw (32 - SW)
 .5500

 Porosity (60 - PHIE)
 .0000

 Method _ _ _ _ LEGE SUMMATION STATISTICS _____ (M) 1807.0747 TOP INTERVAL - MD (M) 1949.9580 (M) 1978.2468 - MD (M) 2234.9460 (M) 171.3245 TOP INTERVAL BASE INTERVAL BASE INTERVAL 171.3245285.1404 - MD (M) (M) GROSS THICKNESS GROSS THICKNESS 1.8859 NET PAY THK - MD (M)3.3528 NET PAY THK .0110 NET/GROSS RATIO

(M)

- MD (M) (M)

PAY POROSITY THK - MD (M) .1586

.4257

.0511 .0911

.0473

PAY ARITH AVG Sw

PAY HC THK PAY HC THK PAY ARITH AVG POROSITY Well Name: PV-10A P2 Unit PV-10A Depth: 2235.0 to 2343.0 by .15 meters Minimum allowed thickness of netpay unit: .0000 Date: 23 APR 95 Vertical reference channel: TVD Cutoff value(s) Method Curve Type (# - Name) ______ _ _ _ _ _____ Sw (32-SW) Porosity (60-PHIE) .5500 .0000 LE GΕ SUMMATION STATISTICS _____ 1978.2468 (M) TOP INTERVAL 2234.9460 - MD (M) TOP INTERVAL 2052.8564 - MD (M) BASE INTERVAL 2342.9976 BASE INTERVAL GROSS THICKNESS(M)74.7620GROSS THICKNESS- MD(M)108.2039NET PAY THK(M).2137 74.7620 NET PAY THK NET PAY THK .3049 – MD (M) .0029 NET/GROSS RATIO .4256 PAY ARITH AVG Sw .0044 (M) PAY HC THK .0063 – MD (M)

PAY HC THK

PAY ARITH AVG POROSITY.0360PAY POROSITY THK(M)PAY POROSITY THK- MD (M).0110