PROPOSED DRILLING PROGRAM

for the

IRON BLOW

BASE METAL DEPOSIT

WA Jettner November 2007

Contents

- 1. Executive Summary
- 2. Introduction
- 3. Location and Access
- 4. Tenure
- 5. Geology
- 6. Economic Geology
- 7. Previous Exploration
- 8. Proposed Exploration
- 9. Conclusions
- 10. References

List of Figures

- Fig. 1 Location Map
- Fig. 2 Tenement Map
- Fig. 3 Surface Plan
- Fig. 4 Long Sections
- Fig. 5 Regional Geology
- Fig. 6
- to Proposed Drill Sections 9850N to 10160N
- Fig. 18
- Gr. 1
- to Commodity Prices 2000-2006
- Gr. 5

1. Executive Summary

The Iron Blow base metal deposit represents the largest of the available base metal deposits in the Pine Creek Geosyncline. This combined with the nearby Mt Bonnie deposit represents a substantial start towards achieving a critical mass of tonnage to support a base metals mining operation in the Pine Creek Area.

The current high commodity prices for base metals (see attached graphs 1 to 5) indicate good potential profitability for the deposits.

The program proposed herein is designed to thoroughly evaluate the Iron Blow deposit and enable a 43-101 resource to be created. It is a costly program because the majority of the deposit lies between 200 and 300m below the surface and is associated with a pebble breccia, both of which will require diamond drilling to enable the deposit to be evaluated.

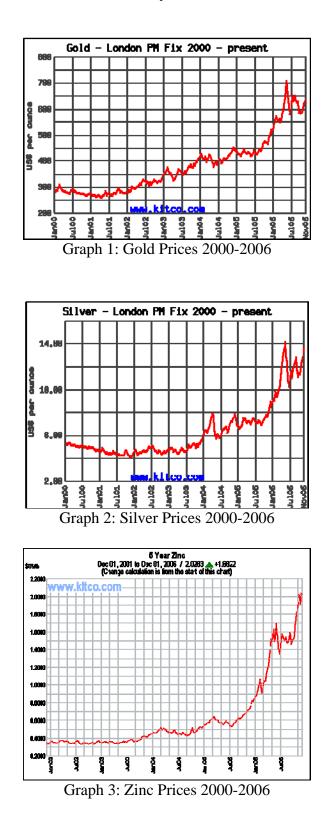
The cost of this drilling program (\$1.5M) can be spread over a period if required by staging the program over, say 12 months. With an initial program of doing the shallower (<150m deep) drilling with RC methods as rigs become available (total 1400m) before the current wet season. A second stage, deeper diamond drilling program would start in July next year and go through to the end of the 2007. Access to the site is good, however, most of the drilling will take place to the south of the Iron Blow hill, on a black soil plain. Drill platforms could be built relatively cheaply using the southern waste dump and other material and this would allow drilling throughout year.

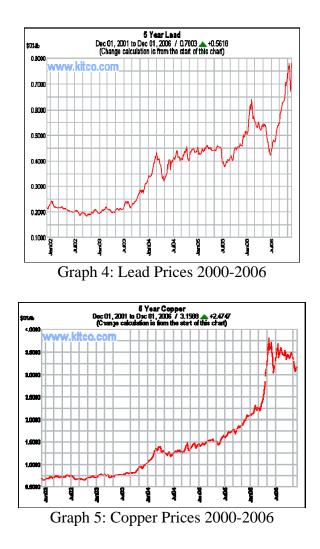
The resource figures given by Geopeko Ltd from their work in 1974 are:

@	6.8% Zn
	0.8% Pb
	0.4% Cu
	1.86g/t Au
	97.3g/t Ag

When converted to a gold equivalent at current prices:

942,000t @ 21g/t Au for: **638,500 ozs Au**


Alternatively, giving a dollar value: Gross metals value: **A\$ 558,124,638.00**


Current Commodities Prices at 14/11/06:

Au	A\$ 26,050/kg
Ag	A\$ 535.50/kg
Zn	A\$ 5771.36/t
Pb	A\$ 2221.86/t
Cu	A\$ 9133.15/t

942,000t

5 Year Commodity Prices 2000 – 2006

2. Introduction

The Iron Blow Base Metal deposit was first found during the 1870s as part of the 1872-73 gold rush. The outcropping gossan attracted little attention while prospecting was devoted to searching for gold-bearing quartz reefs. The outcropping gossan was revisited as a result of the discovery of the Broken Hill Line of Lode and the renewed interest in gossans that this boom created.

Between 1898 and 1906 Northern Territory Goldfields of Australia Ltd (a Bottomley Company) produced 13,700t of oxide and sulphide ore that was supposedly treated at the Yam Creek Smelter.

The Iron Blow deposit comprises two known steeply dipping conformable, polymetallic sulphide-silicate lodes.

The Eastern (or Upper) Lode had an outcropping strike length of 80m long and a maximum thickness of 10m.

The Western (or Lower) Lode lies about 50m to the west of the Eastern Lode has a strike length of over 150m and a maximum thickness of 30m. It outcrops as a prominent gossan some 65m long and 1m wide, but with very low grades.

All mining done to date has been conducted on the Eastern Lode with the economic western lode only being found in the 1960s by the Mines Branch/United Uranium NL drilling program.

The drilling program done by Geopeko/BP Minerals in 1976 resulted in a resource (non-JORC compliant) of 92,000t @ 8.1% Zn, 0.4% Cu, 1.8% Pb, 186g/t Ag, 1.5g/t Au for the Eastern Lode and 850,000t @ 6.7% Zn, 0.4% Cu, 0.7% Pb, 87.3g/t Ag, 1.9g/t Au for the Western Lode.

It is this target that the current drilling proposal is aiming to expand on or at the very least firm up to a 43-101 Resource.

Previous Drilling

There was a diamond drill hole (Bore 1) drilled in 1906 which apparently did not penetrate the lode, (I suspect they drilled under the lode).

In 1912 there was another diamond drill hole (Bore 2) drilled under Government sponsorship which intersected a 23.5m interval of 4.94% Zn, 2.72g/t Au and 20g/t Ag. This intersection was in the Western Lode.

In 1963 the NTA Mines Branch under agreement with United Uranium NL drilled 6 holes into the deposit, (DDHs 1 to 6). Of these 6 holes: 3 intersected ore; DDH 1 hit the Eastern Lode: 6m @ 7.6%Zn, 1g/t Au and 30.8g/t Ag, DDH 2 hit the Western Lode: 12.4m @ 3.16% Zn, 1.06g/t Au and 24.8 g/t Ag, and DDH 5 hit the Western Lode: grades were very low) and the other 3 did not intersect the lodes: DDHs 3 and 4 were sighted on geophysical anomalies and did not intersect anything and DDH 6 was drilled under the Eastern Lode. This was the first indications of the true nature of the Western Lode.

In 1976, Geopeko drilled 12 diamond drill holes, (Q53-S/9 to Q53-S/19). The mineralized systems were intersected in 7 of the 12 holes.

In 1984 Mt Bonnie Mines drilled 5 diamond and 3 RC holes into Iron Blow. Four of the diamond hole intersected the ore zones, and 1 missed completely. There are no details for the 3 RC holes although PH 3 is mentioned as having ended in the Western Lode, (6m at unknown grade) thereby rendering Goulevitch's interpretation of a westerly strike change to the south invalid.

Since then there have been another 7 holes drilled into the deposit, probably by Zapopan NL in the early 1990s, (all from the west to the east targeting the Eastern Lode), there are no records of these holes.

3. Location and Access

The Iron Blow Mine is located at 131° 55' 04"E, 13° 51' 51"S in the Hayes Creek region of the Northern Territory, (see Fig 1. Location Map).

Access to the mine from Darwin is south via the Stuart Highway to the Grove Hill Rd Turn Off (165km), then via the Grove Hill Rd (13km) to the Princess Louise Deposit. From the Princess Louise it is 800m along the Iron Blow Access Road to the mine.

4. Tenure

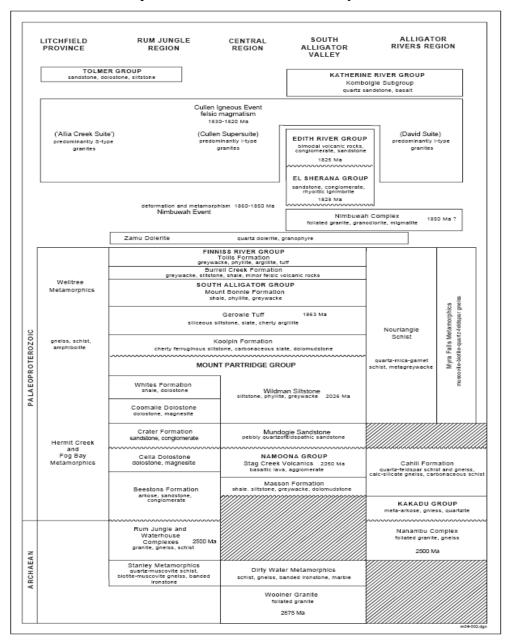
The Iron Blow Mine is located primarily within the Mineral leases MLN 214 and 341. The key lease MLN 214 was originally granted as ML 650B on the 6/1/1972 for a period of 21 years to EA Witte and K Jessop in equal shares. The lease was then subject to the following transfers:

5/3/1979	100% to Geopeko Ltd
2/6/1980	100% to Peko Wallsend Operations Ltd
14/4/1986	100% to Harlock Pty Ltd
12/8/1988	50% to Zapopan NL
6/7/1991	30% to Kumagai Gumi Co Ltd (from Harlock)
28/11/1991	50% to Zapopan NL (20% from Harlock, 30% from Kumagai
	Gumi Co Ltd
7/4/94	100% to Dominion Gold Operations
1996	100% to Territory Gold Fields
1999	50% to Buffalo Creek Mines

Additional infrastructure requirements would necessitated the use of the surrounding tenements, these are: MLN 343 and 349.

The tenement to the west, MCN 5194, is owned by RM Biddlecombe and GBS has an agreement with the owner.

The tenements to the North, MCN3810, 3383 and 3384, are owned by CS Magie, no action is recommended at this time.


The current tenement situation is shown in Fig 2. Iron Blow Mine - Tenement Position.

5. Geology

The Pine Creek Geosyncline comprises 14,000m of mainly politic and psammitic Lower Proterozoic sediments

These rocks were intruded by mafic tholeiitic sills then folded and metamorphosed during the Nimbuwab Event.

The Iron Blow Deposit is located within the Mt Bonnie Formation of the South Alligator Group in the central Pine Creek Geosyncline

Correlation of Lithostratigraphic units across the Pine Creek Orogen (after Ferenczi and Sweet)

6. Economic Geology

The Iron Blow deposit was first mined in 1896 to supply copper ore to the Yam Creek Smelter. The ore was too low grade to be treated on its own and was blended with ore from Mt Ellison (20km to the north of the smelter). Tramways extended north to Mt Ellison and south to Iron Blow from the smelter. Evidence of these tramways can still be found today. The Yam Creek smelter ran from 1898 to 1906 and was located 2km to the north of the Iron Blow Mine. The current Grove Hill road runs across the smelter floor and old slag may be seen by the roadside. Various authors have given production statistics ranging from 13700t (Jensen, 1916) to 20,000t+ (various unpublished company reports).

The majority of this ore was probably removed from the 50m long open cut to the west of the main shaft. Underground ore was taken from above the 100ft level.

The only recent work done on the underground was the dewatering and surveying of the 100ft level in 1984 by Murray Millwood, who reestablished the Main shaft collar and cleaned out the shaft to 41m, (pers. com.). The 100ft south drive was surveyed and agrees with level plans in the authors possession.

Subsequent to this investigation the Mt Bonnie Gold Unit Trust (MBGUT) and its many and varied corporate identities conducted 2 mining campaigns with ore being treated for gold and silver recovery at the nearby Mt Bonnie Mill, which was then operating as a Merrill-Crowe plant.

Approximately 10,000t of gossan oxide ore grading 8g/t Au and 250g/t Ag was treated in 1985 and another campaign of 5,000t at similar grades was undertaken in 1986.

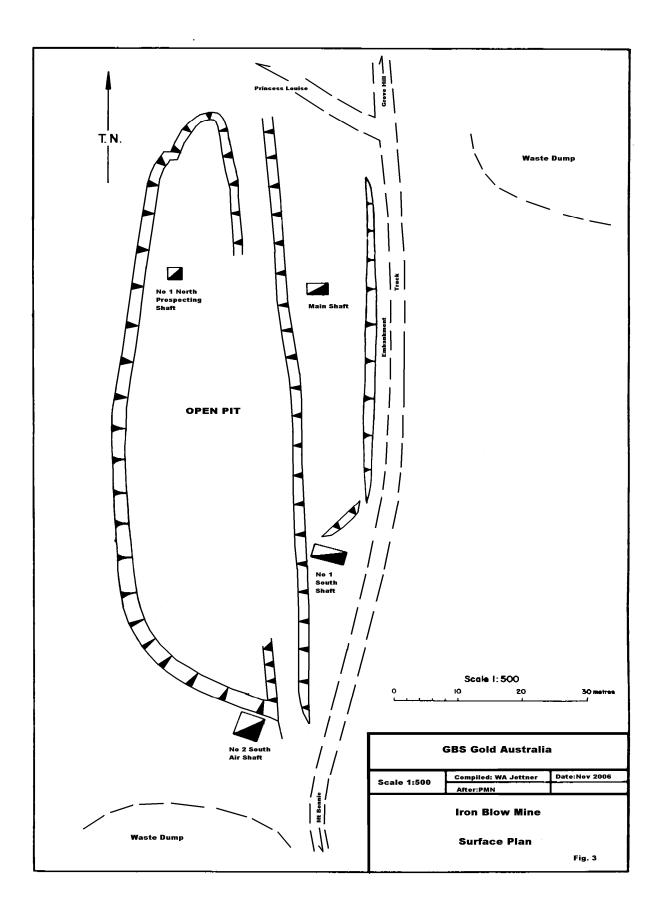
There have been no mining activities undertaken since this time.

With the current metal prices being at all-time highs the economics of this deposit look very favorable, and demand will probably allow the ready sale of a bulk concentrate, thereby enhancing the economics further.

7. Previous Exploration

As stated earlier, previous exploration of this deposit has been done by diamond drilling and actual mining. Mining consisted of 5 shafts, the deepest to 215ft, dug in the latter part of the 19th and early 20th centuries. An open cut operation some 40m long resulted in the removal of the ironstone outcrop that gave the mine its name. The Eastern Lode is exposed in a shaft (No.2 South) 21m to the south of this original open cut. The No.1 North Shaft was sunk on this lode to the north. The No 1 North Prospecting shaft was sunk on the dip of the Lode and to an unknown depth below the water level.

These operations gave plans of the workings on the 100ft level (84mRL) and the 200ft level (53mRL). Broad grades have been quoted for the ore that was mined from here, these are included below.


Sample	Zn %	Pb %	Cu %	Au g/t	Ag g/t
General Manager (1905)	6.0	5.0	0.5	7.8	373
100ft Level (1912/14)	NA	NA	1.2	7.5	684
Dump Samples (1934)	14.3	4.5	0.24	9.3	476
Geopeko (1976) East L	8.1	1.8	0.4	1.5	186
West L	6.7	0.7	0.4	1.9	87.3
MBGUT (1985)	NA	NA	NA	8.0	250

Geopeko Ltd with BP Minerals, as part of the Margaret Joint Venture, carried out a detailed appraisal of the base metal deposits and potential of the Grove Hill/ Margaret Syncline area. They drilled some 11 holes into the Iron Blow deposit, outlining a resource of 980,000t of ore grading 6.8% Zn, 0.9% Pb 117g/t Ag and 2.1g/t Au. This resource is of an unstated provenance and so is non-JORC compliant and must be treated with caution.

In 1984 Harlock Pty Ltd (owned by the principals of the Mt Bonnie Gold Unit Trust) secured the rights to mine the deposit to 40m depth from the owners. They drilled 5 diamond holes and 3 RC holes into the deposit. The results are available for the diamond holes but no details of the RC holes are to be found other than anecdotal comments.

They also commissioned Murray Millwood to re-establish and re-open the Main Shaft. This was achieved to 41m where operations were suspended due to increasing costs, (it cost \$100,000 to get to 41m). The 100ft level was surveyed and presumably mapped and sampled but little to no data survives to this day.

The deposit then went through a series of ownership changes finally culminating in the current ownership by GBS Gold Australia. During this period there were 7 RC drill holes drilled into the Eastern Lode from the west, presumably by Zapopan NL. There is no data available for these holes.

	IRON BLOW MINE												
	Historical Drill Holes												
Date	Hole Id	Easting	Northing	RL	Depth	Az	Dip	Туре	Hole-path	Company			
1906	BORE 1	9979.03	10109.33	112	135.57	270	-70	DDH	curved	Govt			
1912	BORE 2	9964.68	10097.73	115	142.6	273	-65	DDH	curved	Govt			
1963	DDH 1	10009.86	10131.9	112.6	132.4	270	-49	DDH	curved	BMR			
1963	DDH 2	9999.78	10088.57	111.65	157.91	270	-55	DDH	curved	BMR			
1963	DDH 3	9957.96	10031.79	110.69	91.6	270	-60	DDH	curved	BMR			
1963	DDH 4	9955.52	10199.7	114.52	76.34	270	-60	DDH	curved	BMR			
1963	DDH 5	9892.93	10099.56	115.72	70.69	270	-70	DDH	curved	BMR			
1963	DDH 6	10009.86	10131.93	112.6	183.39	270	-59	DDH	curved	BMR			
1976	Q53-S/9	10000	10000	110	238.5	267	-70	DDH	curved	Geopeko			
1976	Q53-S/10	10180	9925	110	501.15	270	-70	DDH	curved	Geopeko			
1976	Q53-S/11	10020	9925	110	296.33	267	-60	DDH	curved	Geopeko			
1976	Q53-S/12	10042	9925	110	340.63	270	-70	DDH	curved	Geopeko			
1976	Q53-S/120	10042	9926	110	381.83	270	-70	DDH	curved	Geopeko			
1976	Q53-S/13	10045.25	9850.02	109.7	329.83	267	-70	DDH	curved	Geopeko			
1976	Q53-S/14	10006	9850	110	250.53	267	-70	DDH	curved	Geopeko			
1976	Q53-S/15	10095.25	9850	109.5	420.58	267	-75	DDH	curved	Geopeko			
1976	Q53-S/16	9962	10000	110	171.14	267	-70	DDH	curved	Geopeko			
1976	Q53-S/17	9962.2	10001	110	229.05	267	-70	DDH	curved	Geopeko			
1976	Q53-S/18	10040	10125	107	272	267	-75	DDH	curved	Geopeko			
1976	Q53-S/19	10085	10000	109.5	370.18	267	-75	DDH	curved	Geopeko			
1984	Q53-S/20	9957	10120	113	120.5	270	-64	DDH	curved	Mt Bonnie			
1984	Q53-S/21	9968.007	10119.283	112.008	111.3	292	-66	DDH	curved	Mt Bonnie			
1984	Q53-S/22	9956.592	10084.064	110.141	67	272	-57	DDH	curved	Mt Bonnie			

	Historical Drill Holes													
Date	Hole Id	Easting	Northing	RL	Depth	Az	Dip	Туре	Hole-path	Company				
1984	Q53-S/23	9960.37	10109.909	111.799	70	269	-63	DDH	curved	Mt Bonnie				
1984	Q53-S/24	9956.45	10102.874	111.62	62.5	265	-59	DDH	curved	Mt Bonnie				
1985	PH1	9894	10123	121 (est)	50	270	-60	RC	curved	Mt Bonnie				
1985	PH2	9901	10057	111 (est)	43	270	-60	RC	curved	Mt Bonnie				
1985	PH3	9896	10007	110 (est)	40	270	-60	RC	curved	Mt Bonnie				
?	1				?	90	?	RC	curved	Zapopan				
?	2				?	90	?	RC	curved	Zapopan				
?	3				?	90	?	RC	curved	Zapopan				
?	4				?	90	?	RC	curved	Zapopan				
?	5				?	90	?	RC	curved	Zapopan				
?	6				?	90	?	RC	curved	Zapopan				
?	7				?	90	?	RC	curved	Zapopan				

8. Proposed Exploration

The drilling program contained in this proposal is designed to quantify the Eastern and Western Lodes of the Iron Blow Mine to Canadian National Instrument No 43-101 standards to allow the release of an Iron Blow Resource Report to the public.

Previous drilling by Geopeko in 1976 was done on +/- 75m sectional spacing and demonstrated that the orebody plunged to the south and not to the north as was historically thought.

Additional work is required to tighten up the drill section spacing to +/-25m and to accurately define the outer extents of the lodes.

The proposed drill program of 43 holes is entirely of HQ size diamond drilling due to the depth of the holes. There are a number of options that can be applied to lower the overall cost of the operation, these are explored below:

	DDH	125m RC/DDH tail	Comb RC/DDH
Pad Preparation	50,000	50,000	50,000
Drilling (9000m)	9000m DDH	4400m RC/4600m DDH	5000m RC/4000m DDH
Drilling	1.35M	1.02M	0.98M
Core Storage (trays)	33,300	21,000	20,000
Geol. Supervision (150 days)	90,000	90,000	90,000
Field Support (150 days)	47,000	47,000	47,000
Vehicles (1 Toyota)	9,000	9,000	9,000
Core Cutting (30 days)	8,000	8,000	8,000
Assays (1500 @ \$30)	45,000	45,000	45,000
Geol. Modelling (30 days)	20,000	20,000	20,000
Resource Stmt (Fleur)	30,000	30,000	30,000
TOTAL	\$1.69M	\$1.35M	\$1.31M

<u>DDH</u>

With HQ diamond drilling only, we would have 9000m of diamond drilling at an average cost of \$150.00/m.

125mRC/DDH Tail

With 125m RC precollars and the remainder diamond tails, we would have 4400m of RC drilling at an average cost of \$75.00/m and 4600m of diamond drilling at an average cost of \$150.00/m

Comb RC/DDH

With a combination of RC drilling (to 150m), and diamond tails we would have 5000m of RC drilling at an average cost of \$75.00/m and 4000m of diamond drilling at an average cost of \$150.00/m.

Drilling south of 10080N would require extensive pad building if operations are to be carried out before July. To the north of this work could be done during the wet season if sites are prepared prior to the wet.

At a drill rate of 30m for diamond drilling per shift we would expect to take at least 300 shifts (150 days) to complete the program.

9. Conclusions

From an evaluation of the data and a personal knowledge of the deposit, I recommend that the drill program proposed herein be accepted and actioned accordingly. I recommend that a sum of A\$1.5M be allocated by the board for this drilling program. This is to fund the 125mRC/DDH tail program but allowing for a significant number of precollars not getting to full depth.

When evaluating a drilling proposal two operational factors stand out, they are: "the size of the prize" and the risk associated with achieving that goal.

The Prize

Geopeko

The "size of the prize" in this case can be broadly based on the resource that Geopeko calculated:

I consider this resource to be non-JORC compliant.

Eastern Lode 92,000t @ 8.1% Zn, 0.4% Cu, 1.8% Pb, 186g/t Ag, 1.5g/t Au Western Lode 850,000t @ 6.7% Zn, 0.4% Cu, 0.7% Pb, 87.3g/t Ag, 1.9g/t Au

For a potential global resource of 942,000t @ 6.8% Zn

0.8% Pb 0.4% Cu 1.86 g/t Au 97.3 g/t Ag

Converting the above into a gold equivalent based on metals pricing at 14/11/06 we get:

Eastern Lode 92,000t @ 26g/t Au equivalent containing 77,500 oz Au equivalent

Western lode 850,000T @ 20g/t Au equivalent containing 561,000 oz Au equivalent

For a potential global resource of 942,000t @ 21g/t Au equivalent Containing **638,500ozs of gold equivalent**

Alternatively, giving a dollar value: Gross metals value: A\$ 558,124,638.00

GBS Gold

From the author's investigations to date:

The volumes of the modelled lodes are: Eastern Lode: 70,000BCM at an SG of 3.00 = 210,000tWestern Lode: 363,000 BCM at an SG of 3.00 = 1,090,000t

Due to the distances between the drill sections block modeling the deposit is currently meaningless, but I will quote the grades stated by Geopeko Ltd.

Risk Analysis

From the previous Geopeko drilling, there is a very good, to excellent chance that further drilling will prove up a resource at least equal to that postulated by Geopeko. It is my opinion that this figure may well be substantially exceeded.

There is potentially another lode intersected in drill hole No. Q53-S/10 below all of the currently known lodes. The Geopeko drilling has proven the plunge of the lodes to the south and generally bracketed them, the GBS drilling is primarily designed to close up the spacing and infill the edges. Further extensions outwards may be warranted but will depend on the drilling results obtained in this program.

The majority of the tonnage is hosted in the postulated subsidiary parasitic syncline. Further work may well show the ore to be a pod plunging to the south.

Perhaps the greatest area of risk is in the complex metallurgy of the deposit. Earlier workers have been discouraged by the following:

- 1. Need for fine grinding: The advent of the ISAmill or the Tower mill has made fine grinding an economic option.
- Sulphides such as Marcasite: Which readily oxidize when exposed to the atmosphere. The development of the flotation collector reagent AM2, which is specifically designed for oxidized and partially oxidized minerals.
- 3. High levels of arsenic in the sulphides: CSIRO research has identified several windows in the flotation process for the selective removal of arsenic systems from the flotation stream.
- 4. High levels of mercury in the sulphides:
- 5. Difficulty in making a number of differential floatation concentrates. In previous trials in the 1980s recoveries of 86.4% for silver, 82.1% for lead, 90.8% for zinc and 45.8% for gold from flotation have been recorded. This indicates that there is considerable scope for optimizing recoveries and recovery methods to aid treatment of this deposit.

The above problems have mostly been solved by advances in process design and reagent development in the last 10 years.

The current demand for base metals may make the sale of a mixed bulk concentrate a viable alternative in the current market. But this is a matter for future study.

	<u>P</u> 1	roposed	Drill	holes	<u>S</u>			Wes Lo		Eas Lo		0
Hole No	Northing	Easting	RL	Az	Dip	Depth	RC	From	То	From	То	- Comments
			4.0.0			0.50		100				Updip extension of
IBDH01	9900	10011	103	270	-60	250	150	193	208			Western Lode
												Projection of Western
IBDH02	9900	10061	103	270	-60	300	150	234	248			Lode on section
												Projection of Western
IBDH03	9900	10111	103	270	-60	300	150	274	283			Lode on section
												Updip extension of
IBDH04	9925	9916	120	270	-60	200	100	121	139			Western Lode
												Updip extension of
IBDH05	9925	9966	118	270	-60	225	100	161	178			Western Lode
												Updip extension of
IBDH06	9950	9960	103	270	-60	175	100	109	120			Western Lode
												Projection of Western
IBDH07	9950	10010	103	270	-60	250	150	176	197			Lode on section
												Projection of Western
IBDH08	9950	10060	103	270	-60	275	150	211	241			Lode on section
												Projection of Western
IBDH09	9950	10110	103	270	-60	325	150	265	277			Lode on section
												Projection of Western
IBDH10	9975	9964	103	270	-60	150	100	112	123			Lode on section
												Projection of Western
IBDH11	9975	10014	103	270	-60	250	150	173	193			Lode on section
												Projection of Western
IBDH12	9975	10064	103	270	-60	275	150	213	240			Lode on section
												Projection of Western
IBDH13	9975	10114	103	270	-60	300	150	267	280			Lode on section

	<u>Pı</u>	roposed	Drill	Hole	<u>s</u>			Wes Lo		Eas Lo		
Hole No	Northing	Easting	RL	Az	Dip	Depth	RC	From	То	From	То	Comments
IBDH14	10000	9923	111	270	-60	100	100	69	79			Updip extension of Western Lode
IBDH15	10000	10057	109	270	-70	300	150	237	255			Projection of Western Lode on
IBDH16	10020	9938	112	270	-60	100	100	77	84			Projection of Western Lode on section
IBDH17	10020	9963	112	270	-60	150	50	106	121	80	84	Projection of both lodes on section
IBDH18	10020	9988	112	270	-60	175	100	138	155	114	121	Projection of both lodes on section
IBDH19	10020	10013	112	270	-60	200	100	169	184	153	155	Projection of both lodes on section
IBDH20	10020	10038	112	270	-60	250	150	193	211			Projection of Western Lode on section
IBDH21	10020	10063	112	270	-60	250	150	218	235			Projection of Western Lode on section
IBDH22	10050	9935	107	270	-60	125	125	68	77	32	36	Updip extension of both lodes
IBDH23	10050	9960	107	270	-60	150	150	100	116	72	74	Projection of both lodes on section
IBDH24	10050	9986	107	270	-60	175	50	133	149	102	110	Projection of both lodes on section
IBDH25	10050	10010	107	270	-60	200	100	167	178	144	146	Projection of both lodes on section

Hole Comments No Northing Easting RL Az Dip Depth RC From To From To		<u>Pr</u>	oposed	Drill	Hole	<u>s</u>				Western Lode		stern ode	
IBDH26 10035 107 270 -60 225 100 193 202 Projection of Western Lode on section IBDH27 10075 9957 108 270 -60 125 125 93 100 56 62 on section IBDH28 10075 10066 106 270 -60 225 100 164 169 116 128 both lodes IBDH28 10075 10006 106 270 -60 225 100 100186 191 147 159 both lodes IBDH30 10100 9981 112 270 -60 175 50 124 132 83 93 on section IBDH30 10100 9981 112 270 -60 200 100 158 167 118 129 both lodes IBDH31 10100 10031 112 270 -60 225 100 192 201 152	Hole												Comments
IBDH26 10050 10035 107 270 -60 225 100 193 202 Lode on section IBDH27 10075 9957 108 270 -60 125 125 93 100 56 62 on section IBDH28 10075 10006 106 270 -60 200 100 164 169 116 128 both lodes IBDH28 10075 10006 106 270 -60 200 100 164 169 116 128 both lodes IBDH29 10075 10031 106 270 -60 225 100 100186 191 147 159 both lodes IBDH30 10100 9981 112 270 -60 175 50 124 132 83 93 on section IBDH31 10100 10006 112 270 -60 200 100 158 167 118	No	Northing	Easting	RL	Az	Dip	Depth	RC	From	То	From	То	
IBDH27 10075 9957 108 270 -60 125 125 93 100 56 62 Projection of both lode on section IBDH28 10075 10006 106 270 -60 200 100 164 169 116 128 Downdip extension of both lodes IBDH29 10075 10031 106 270 -60 225 100 100186 191 147 159 Downdip extension of both lodes IBDH30 10100 9981 112 270 -60 175 50 124 132 83 93 on section IBDH30 10100 9981 112 270 -60 200 100 158 167 118 129 Downdip extension of both lodes IBDH31 10100 10031 112 270 -60 225 100 192 201 152 164 both lodes IBDH32 10100 10031 112 270													Projection of Western
IBDH27 10075 9957 108 270 -60 125 125 93 100 56 62 on section IBDH28 10075 10006 106 270 -60 200 100 164 169 116 128 both lodes IBDH29 10075 10031 106 270 -60 225 100 100186 191 147 159 both lodes IBDH30 10100 9981 112 270 -60 175 50 124 132 83 93 on section IBDH30 10100 9981 112 270 -60 175 50 124 132 83 93 on section IBDH31 10100 10006 112 270 -60 200 100 158 167 118 129 both lodes IBDH32 10100 10031 112 270 -60 225 100 192	IBDH26	10050	10035	107	270	-60	225	100	193	202			
IBDH28 10075 10006 106 270 -60 200 100 164 169 116 128 Downdip extension of both lodes IBDH29 10075 10031 106 270 -60 225 100 100186 191 147 159 both lodes IBDH30 10100 9981 112 270 -60 175 50 124 132 83 93 on section IBDH30 10100 9981 112 270 -60 175 50 124 132 83 93 on section IBDH31 10100 10006 112 270 -60 200 100 158 167 118 129 both lodes IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 both lodes IBDH33 10125 9946 115 270 -60 125 125 <													-
IBDH28 10075 10006 106 270 -60 200 100 164 169 116 128 both lodes IBDH29 10075 10031 106 270 -60 225 100 100186 191 147 159 both lodes IBDH30 10100 9981 112 270 -60 175 50 124 132 83 93 on section IBDH30 10100 9981 112 270 -60 175 50 124 132 83 93 on section IBDH31 10100 10006 112 270 -60 200 100 158 167 118 129 both lodes IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 both lodes IBDH33 10125 9946 115 270 -60 125 125 68 <t< td=""><td>IBDH27</td><td>10075</td><td>9957</td><td>108</td><td>270</td><td>-60</td><td>125</td><td>125</td><td>93</td><td>100</td><td>56</td><td>62</td><td></td></t<>	IBDH27	10075	9957	108	270	-60	125	125	93	100	56	62	
IBDH29 10075 10031 106 270 -60 225 100 100186 191 147 159 Downdip extension of both lodes IBDH30 10100 9981 112 270 -60 175 50 124 132 83 93 on section IBDH31 10100 10006 112 270 -60 200 100 158 167 118 129 both lodes IBDH31 10100 10006 112 270 -60 225 100 192 201 152 164 both lodes IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 both lodes IBDH33 10125 9946 115 270 -60 125 125 68 83 36 46 extn of western lode IBDH34 10125 10024 111 270 -60 200 100													
IBDH29 10075 10031 106 270 -60 225 100 100186 191 147 159 both lodes IBDH30 10100 9981 112 270 -60 175 50 124 132 83 93 on section IBDH31 10100 10006 112 270 -60 200 100 158 167 118 129 both lodes IBDH31 10100 10006 112 270 -60 200 100 158 167 118 129 both lodes IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 both lodes IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 both lodes IBDH33 10125 9946 115 270 -60 125 125 68	IBDH28	10075	10006	106	270	-60	200	100	164	169	116	128	
IBDH30 10100 9981 112 270 -60 175 50 124 132 83 93 Projection of both lode on section IBDH31 10100 10006 112 270 -60 200 100 158 167 118 129 Downdip extension of both lodes IBDH31 10100 10031 112 270 -60 225 100 192 201 152 164 Downdip extension of both lodes IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 both lodes IBDH33 10125 9946 115 270 -60 125 125 68 83 36 46 extn of western lode IBDH33 10125 9946 115 270 -60 200 100 175 185 138 144 both lodes IBDH34 10125 10024 111 270 -60		10075		100				4.0.0				4 = 0	
IBDH30 10100 9981 112 270 -60 175 50 124 132 83 93 on section IBDH31 10100 10006 112 270 -60 200 100 158 167 118 129 both lodes IBDH31 10100 10031 112 270 -60 225 100 192 201 152 164 both lodes IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 both lodes IBDH33 10125 9946 115 270 -60 125 125 68 83 36 46 extn of western lode IBDH33 10125 9946 115 270 -60 125 125 68 83 36 46 extn of western lode IBDH34 10125 10024 111 270 -60 200 100 175 <td>IBDH29</td> <td>10075</td> <td>10031</td> <td>106</td> <td>270</td> <td>-60</td> <td>225</td> <td>100</td> <td>100186</td> <td>191</td> <td>147</td> <td>159</td> <td></td>	IBDH29	10075	10031	106	270	-60	225	100	100186	191	147	159	
IBDH31 10100 10006 112 270 -60 200 100 158 167 118 129 Downdip extension of both lodes IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 Downdip extension of both lodes IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 both lodes IBDH33 10125 9946 115 270 -60 125 125 68 83 36 46 extn of western lode IBDH34 10125 10024 111 270 -60 200 100 175 185 138 144 both lodes		40400			070					400			
IBDH31 10100 10006 112 270 -60 200 100 158 167 118 129 both lodes IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 Downdip extension of both lodes IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 both lodes IBDH33 10125 9946 115 270 -60 125 125 68 83 36 46 extn of western lode IBDH34 10125 10024 111 270 -60 200 100 175 185 138 144 both lodes	IBDH30	10100	9981	112	270	-60	1/5	50	124	132	83	93	
IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 Downdip extension of both lodes IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 Downdip extension of both lodes IBDH33 10125 9946 115 270 -60 125 125 68 83 36 46 extn of western lode IBDH34 10125 10024 111 270 -60 200 100 175 185 138 144 both lodes IBDH34 10125 10024 111 270 -60 200 100 175 185 138 144 both lodes		40400	40000	110	070	~~~	000	100	450	407	110	400	
IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 both lodes IBDH32 10100 10031 112 270 -60 225 100 192 201 152 164 both lodes IBDH33 10125 9946 115 270 -60 125 125 68 83 36 46 extn of western lode IBDH33 10125 9946 115 270 -60 125 125 68 83 36 46 extn of western lode IBDH34 10125 10024 111 270 -60 200 100 175 185 138 144 both lodes IBDH34 10125 10024 111 270 -60 200 100 175 185 138 144 both lodes	IBDH31	10100	10006	112	270	-60	200	100	158	167	118	129	
IBDH33101259946115270-6012512568833646Projection of eastern lodes on section, updig extn of western lodeIBDH341012510024111270-60200100175185138144Downdip extension of both lodesIBDH341012510024111270-60200100175185138144Downdip extension of both lodes		40400	40004	110	070	~~~	005	400	400	004	450	404	•
IBDH33 10125 9946 115 270 -60 125 125 68 83 36 46 Iodes on section, updig extn of western lode IBDH34 10125 10024 111 270 -60 200 100 175 185 138 144 Downdip extension of both lodes IBDH34 10125 10024 111 270 -60 200 100 175 185 138 144 both lodes	IBDH32	10100	10031	112	270	-60	225	100	192	201	152	164	
IBDH33 10125 9946 115 270 -60 125 125 68 83 36 46 extn of western lode IBDH34 10125 10024 111 270 -60 200 100 175 185 138 144 Downdip extension of both lodes IBDH34 10125 10024 111 270 -60 200 100 175 185 138 144 both lodes													
IBDH341012510024111270-60200100175185138144Downdip extension of both lodesIBDH3400000175185138144Downdip extension of both lodes		10125	0046	115	270	60	105	105	60	02	26	46	
IBDH34 10125 10024 111 270 -60 200 100 175 185 138 144 both lodes IBDH34		10125	9940	115	270	-60	125	125	00	ంు	30	40	
Downdip extension of		10125	10024	111	270	-60	200	100	175	195	128	111	
	1001134	10125	10024		210	-00	200	100	175	105	130	144	
		10125	100/0	111	270	-60	225	150	203	213	170	176	
Projection of Western	100	10125	100-13		210		220	100	200	210	170	170	Projection of Western
IBDH36 10135 9959 111 270 -60 125 125 84 96 52 61 Lode on section	IBDH36	10135	9959	111	270	-60	125	125	84	96	52	61	-
Downdip extension of	1001100	10100	0000		210		120	120			02	01	
IBDH37 10135 10024 110 270 -70 225 100 167 174 eastern lode	IBDH37	10135	10024	110	270	-70	225	100			167	174	•

	<u>Pı</u>	roposed	Drill	Holes	<u>5</u>		Western Lode		Eastern Lode		Comments	
Hole No	Northing	Easting	RL	Az	Dip	Depth	RC	From	То	From	То	
IBDH38	10160	9943	115	270	-60	100	100	62	75	36	43	Northern extension of both lodes
IBDH39	10160	9968	114	270	-60	150	150	98	111	69	74	Northern extension of both lodes
IBDH40	10160	9993	113	270	-60	175	50	135	145	102	107	Northern extension of both lodes
IBDH41	10160	10018	113	270	-60	200	100			136	140	Northern extension of both lodes
IBDH42	10160	10042	113	270	-60	225	100			169	172	Northern extension of both lodes
IBDH43	10160	10068	113	270	-60	250	150			200	205	Northern extension of both lodes

10. References

Crohn, PW, 1972, Mineralization in the Pine Creek Geosyncline. in Economic Geology of Australia and Papua New Guinea, AusIMM Monograph No 5.

Danielson, MJ, 1970, Geological Report – Iron Blow Prospect, NT. Unpublished Geopeko Report.

Goulevitch J 1977, Diamond Drill Logs Quest 53 Holes S/7 to S/18 and relog of DDHs 1 to 6. Unpublished Geopeko Report.

Goulevitch, J 1980, Stratigraphy of the Kapalga Formation north of Pine Creek and its relationship to base metal mineralization, in Uranium in the Pine Creek Geosyncline, Proceedings of the international uranium symposium on the Pine Creek Geosyncline, Sydney, 4-8 June 1979.

Hearse, P. 1984. Preliminary Metallurgical Investigations – Iron Blow. Northern Metallurgical Services unpublished report to Mt Bonnie Mine.

Hossfeld, P. 1937 The Iron Blow Area, Pine Creek District, Geological Report, AGSSNA Report No 13

Hughes, TC. 2005, AM2 – a hydroxamate flotation collector reagent for oxides and oxidized mineral systems, in Australian Journal of Mining. July/August 2005.

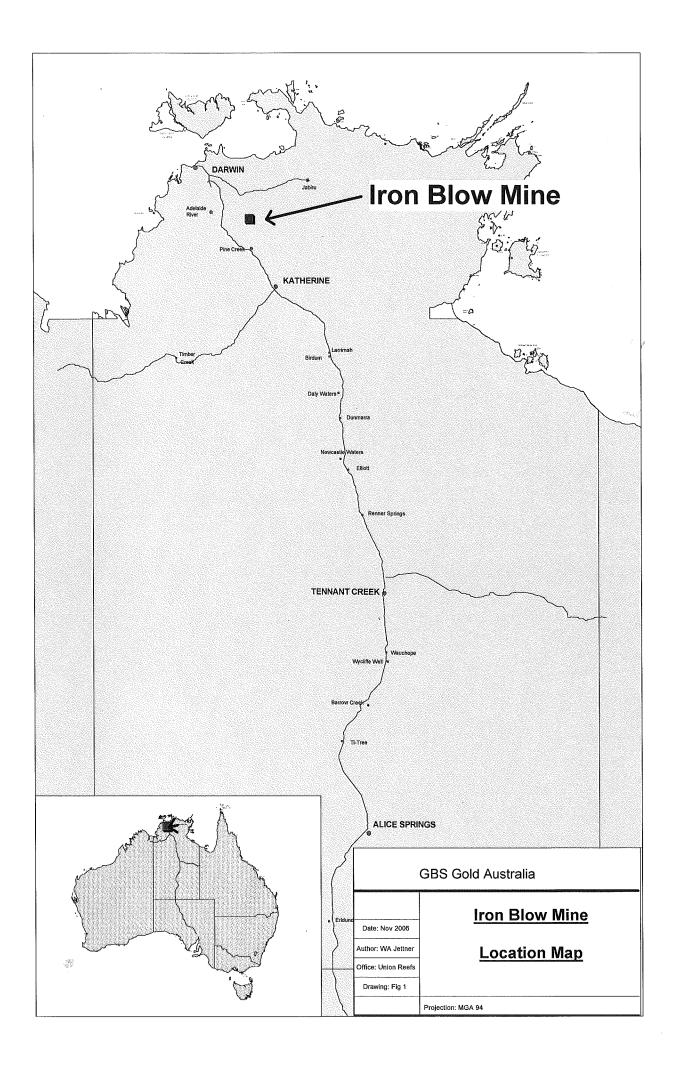
Jensen, HI, 1919 Report on the Geology of the Agicondi Province of the NT, Bulletin of the Northern Territory No 19 July 1919.

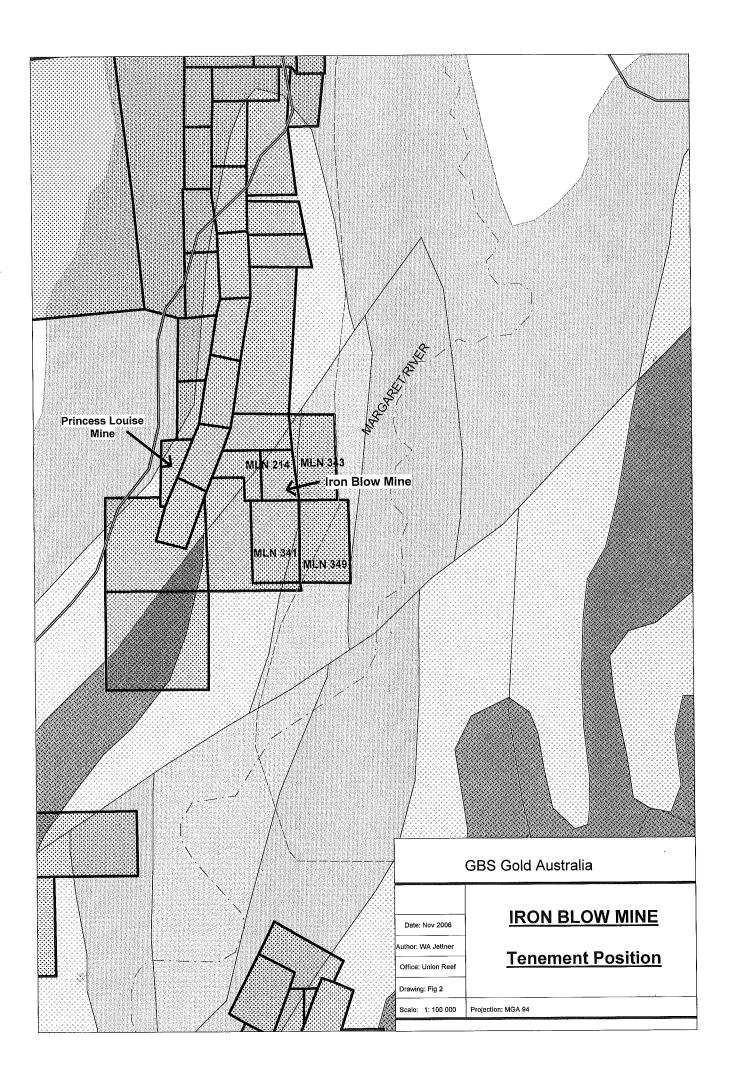
Jones, TG, 1987 Pegging the Northern Territory. The History of Mining in the NT of Australia, 1873 to 1946, NT Govt.

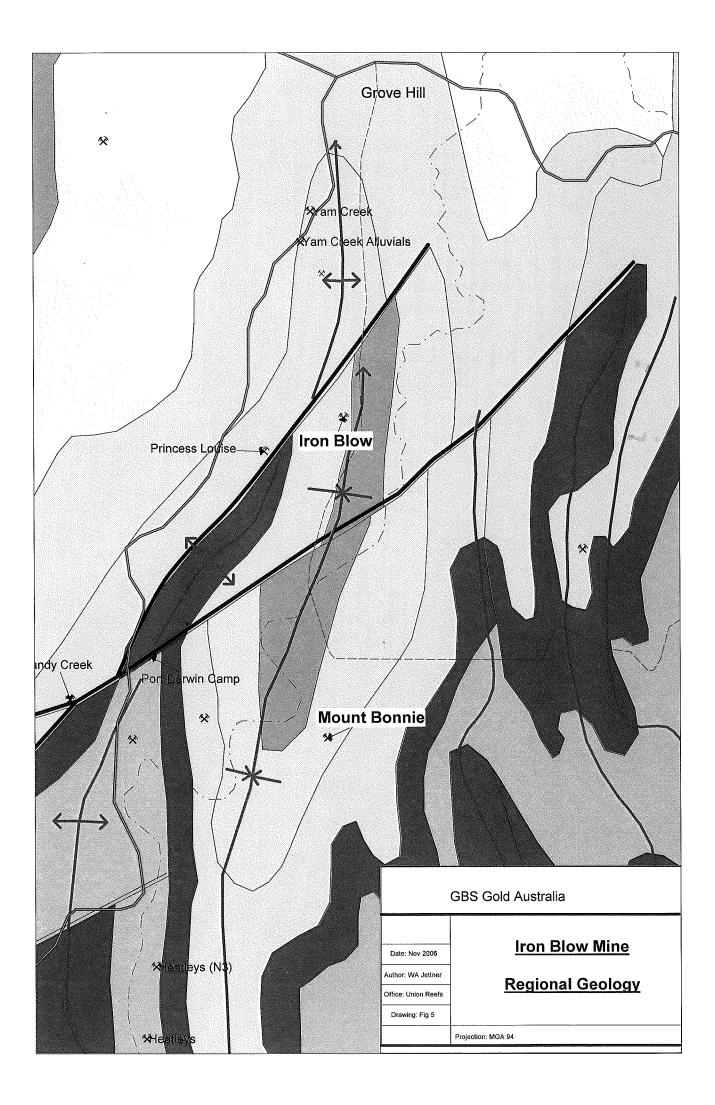
Kaye, T, 2006 New copper process floats off arsenic, in Australian Mining, March 2006.

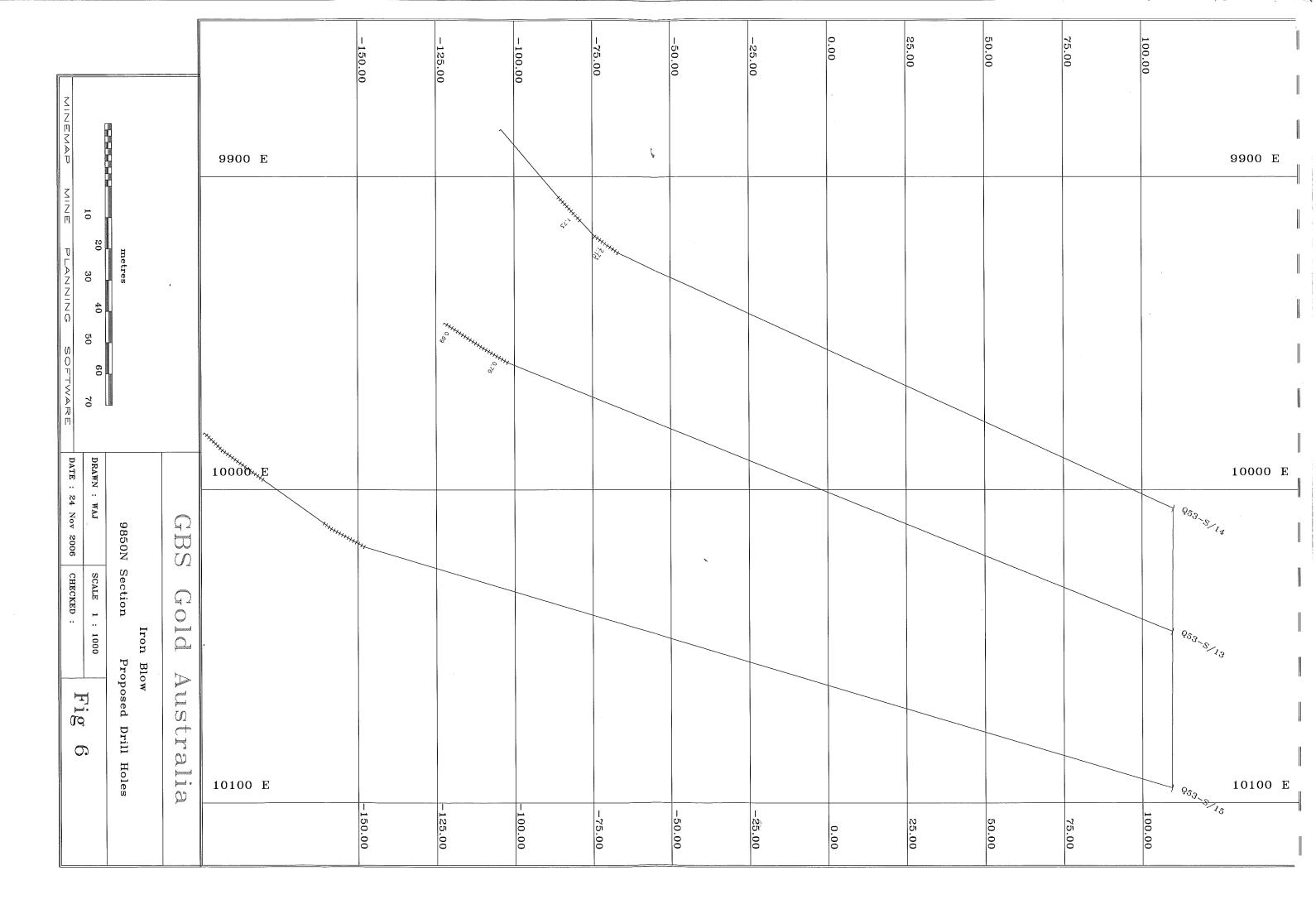
Kitto, PL, 1968 Geological Report - Iron Blow AP No 1914, Unpublished Geopeko Report

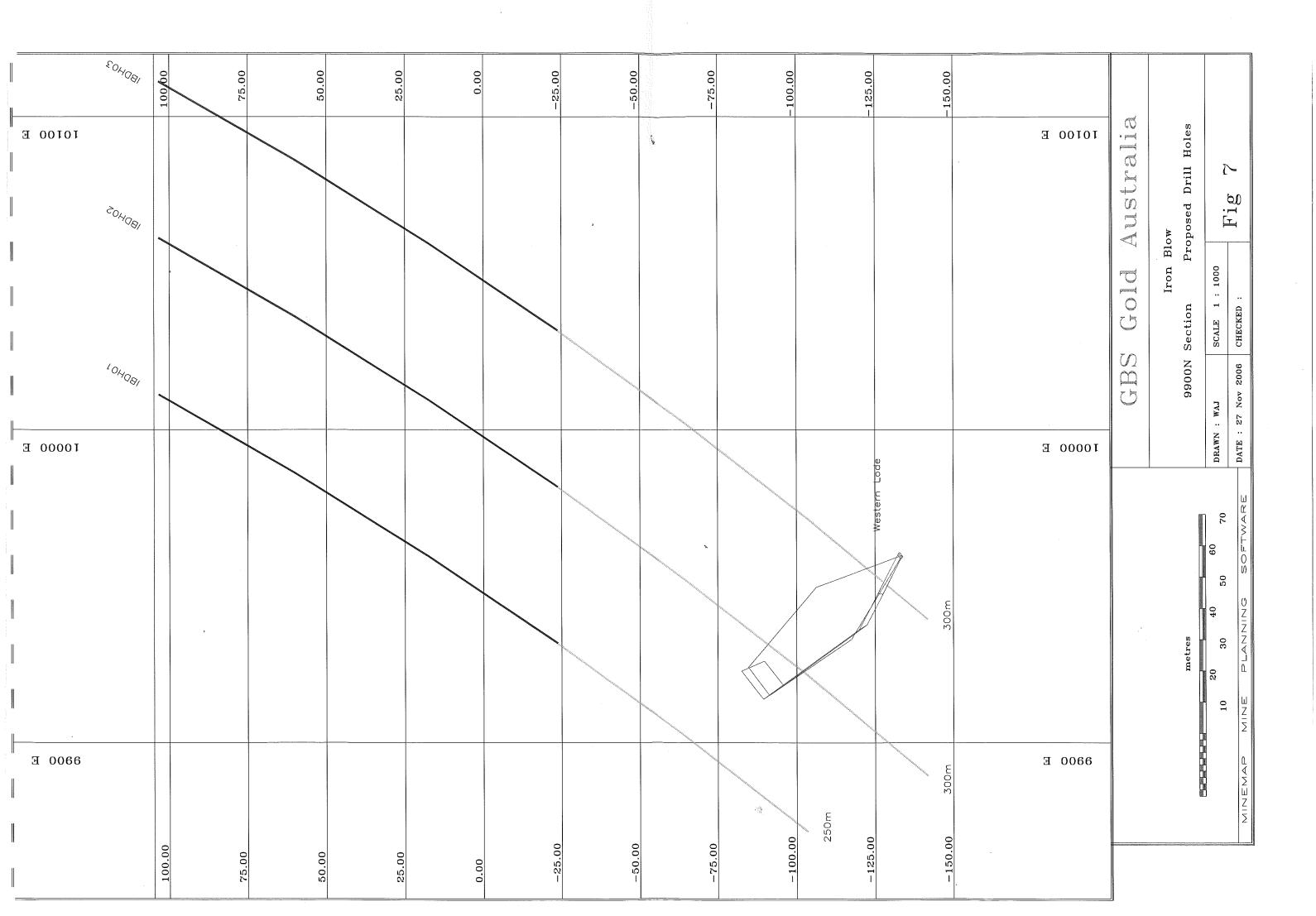
Nicholson, PM. and Radford NW. 1981, Regional Exploration of Stratiform Gold Mineralization Cosmo-Burrundie- Mt Masson Area Report of Activities for 1981, unpublished Geopeko Report.

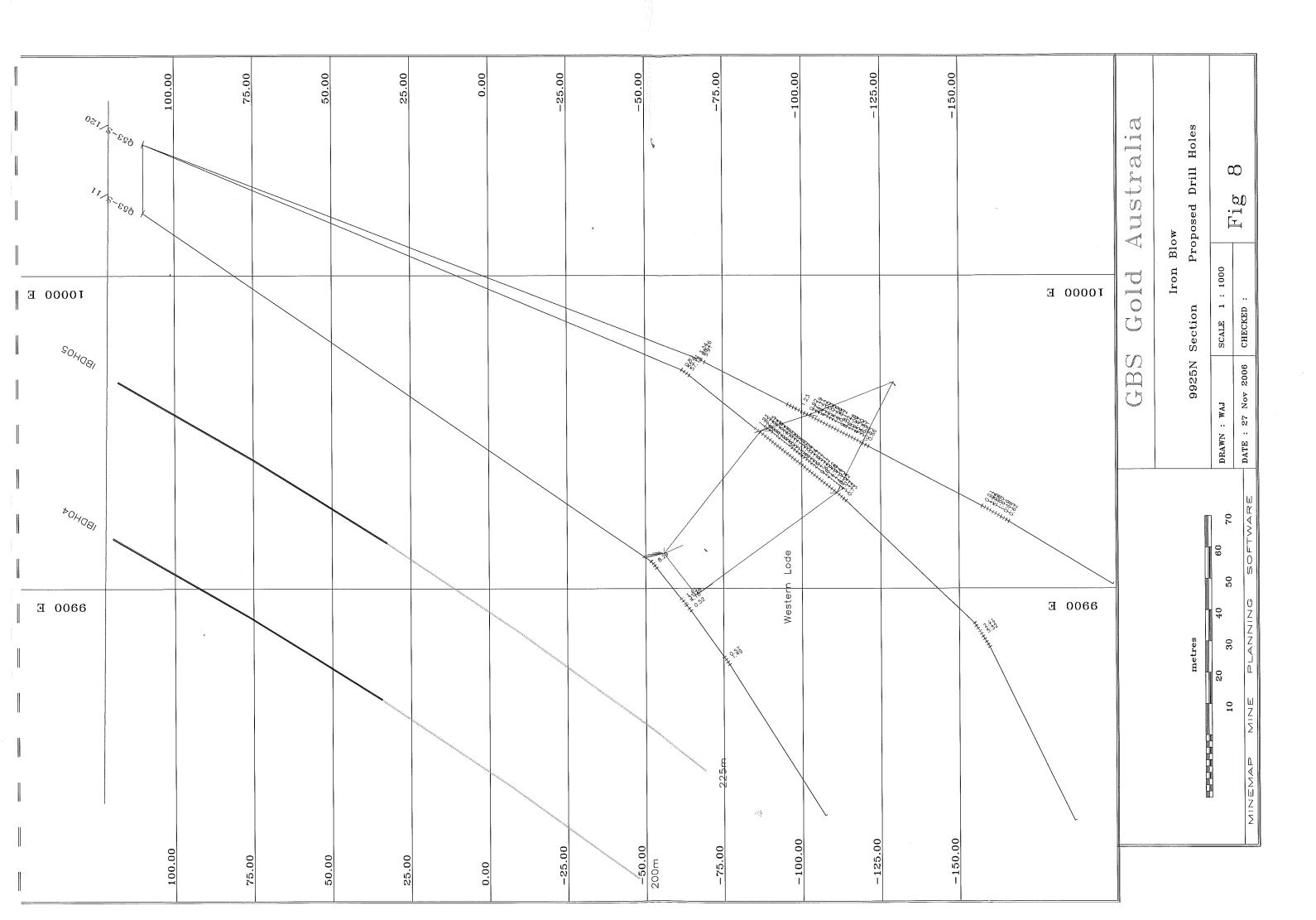

Parkes, JV. 1891, Report on Northern Territory Mines and Mineral Resources, SA Parliamentary Paper No 32.

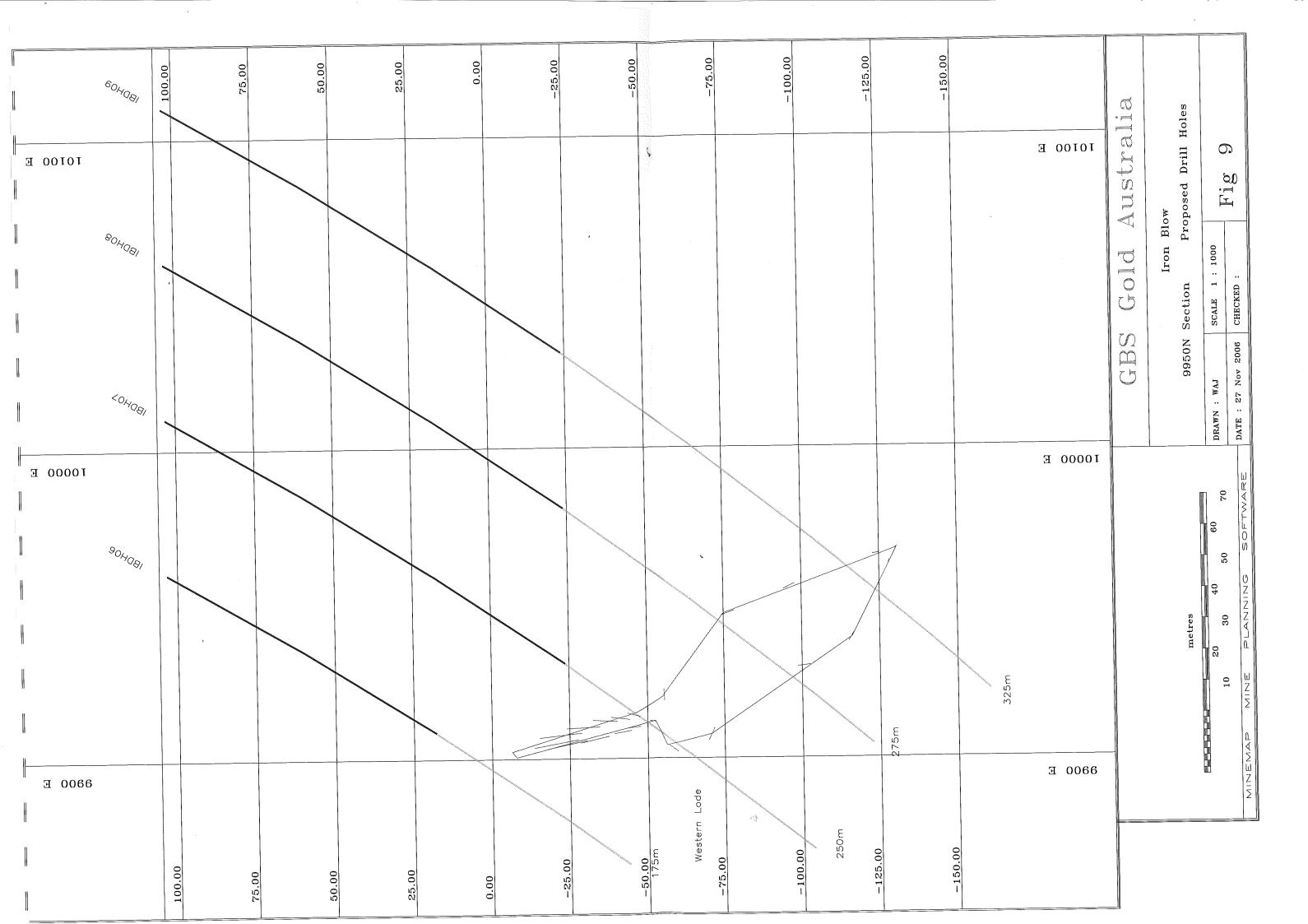

Rayner, JM and Nye, PB. 1937 The Iron Blow Area, Pine Creek District, Geophysical Report, AGSSNA Report No 14.

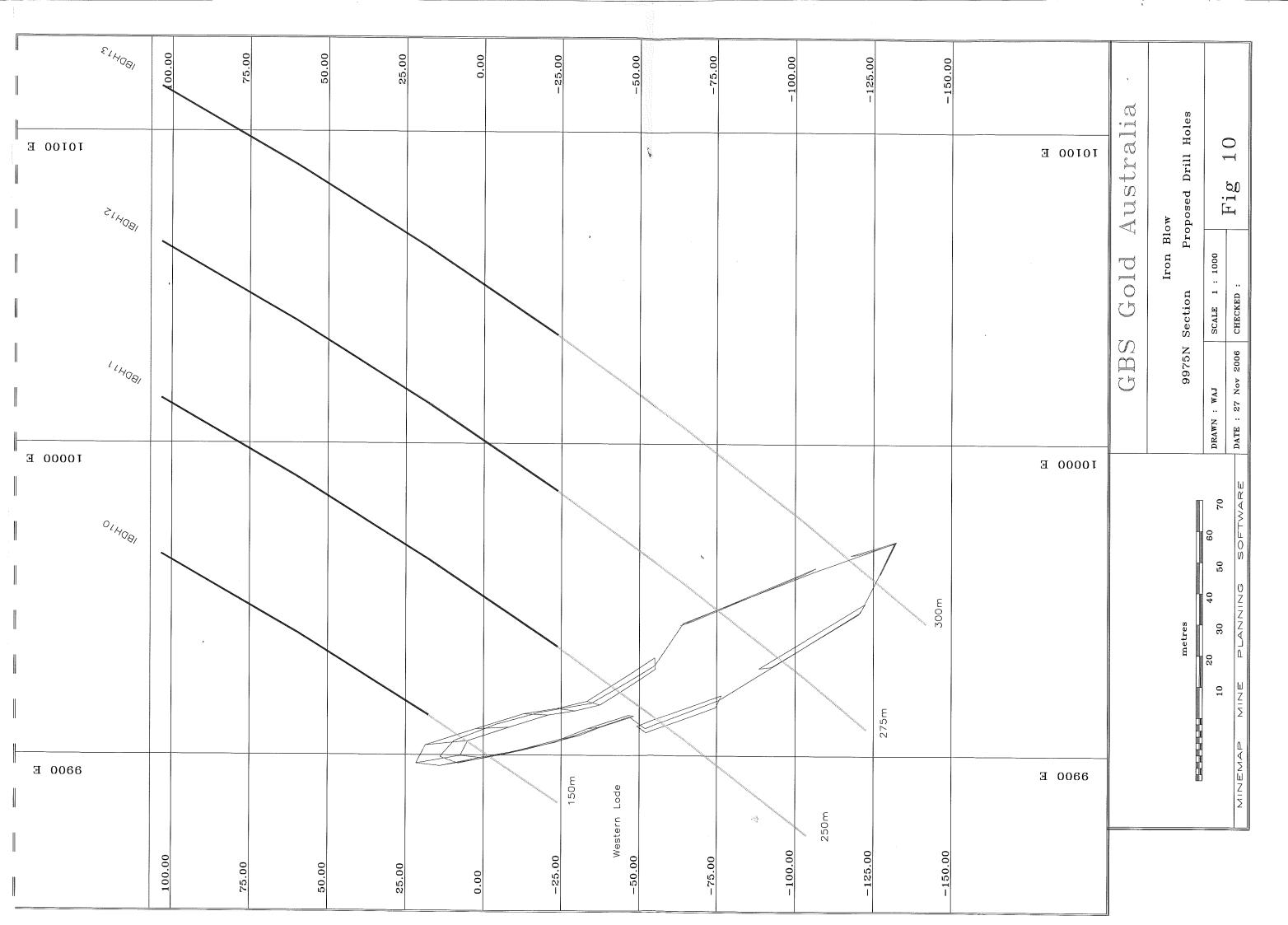

Rix, P. 1964, Diamond Drilling Results - Iron Blow Mine NT BMR Report 1964/60.

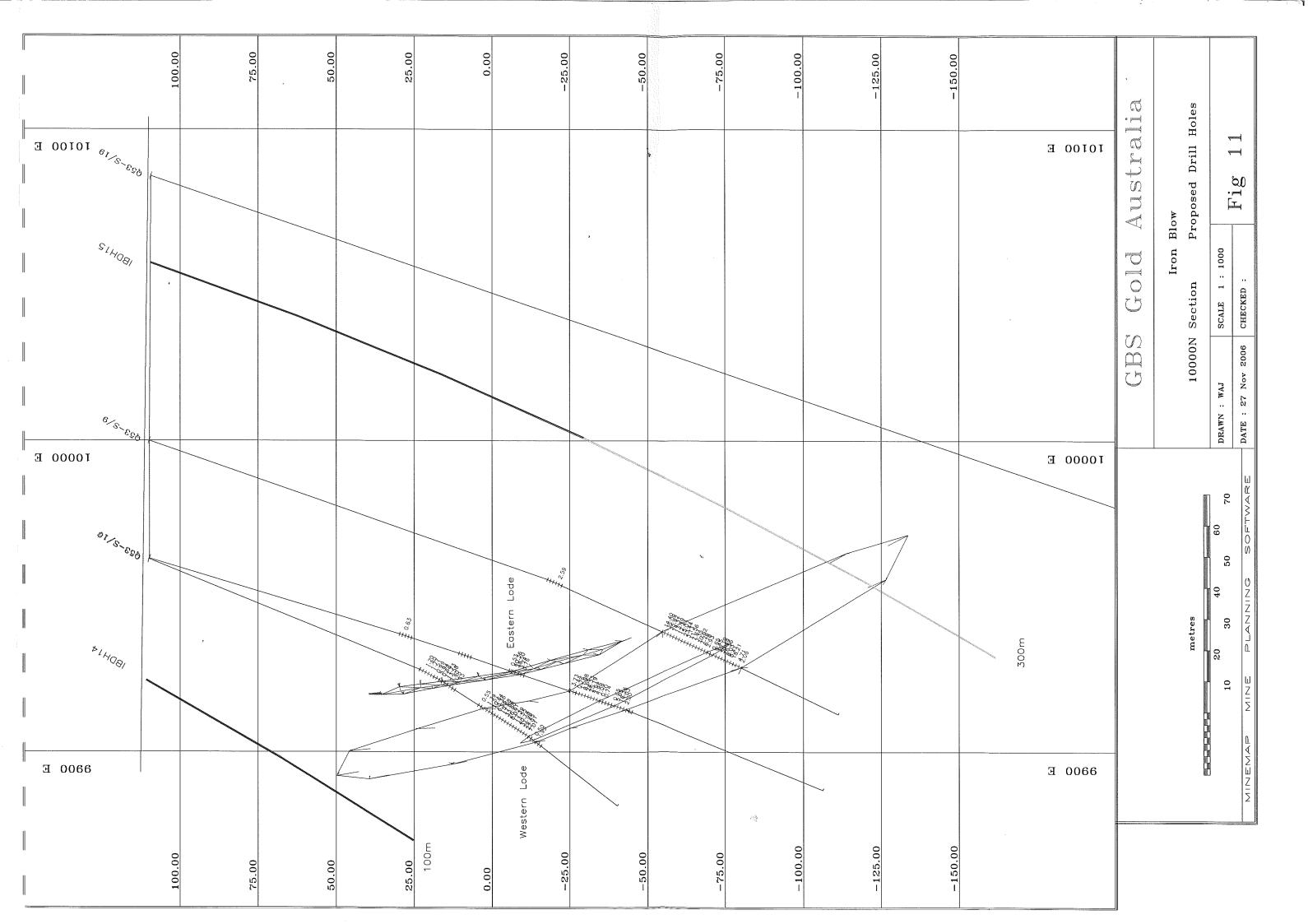

Tamlyn, MH. 1990 Mines, Money and Men: Top End Mining, 1895 to 1921, NT Historical Society

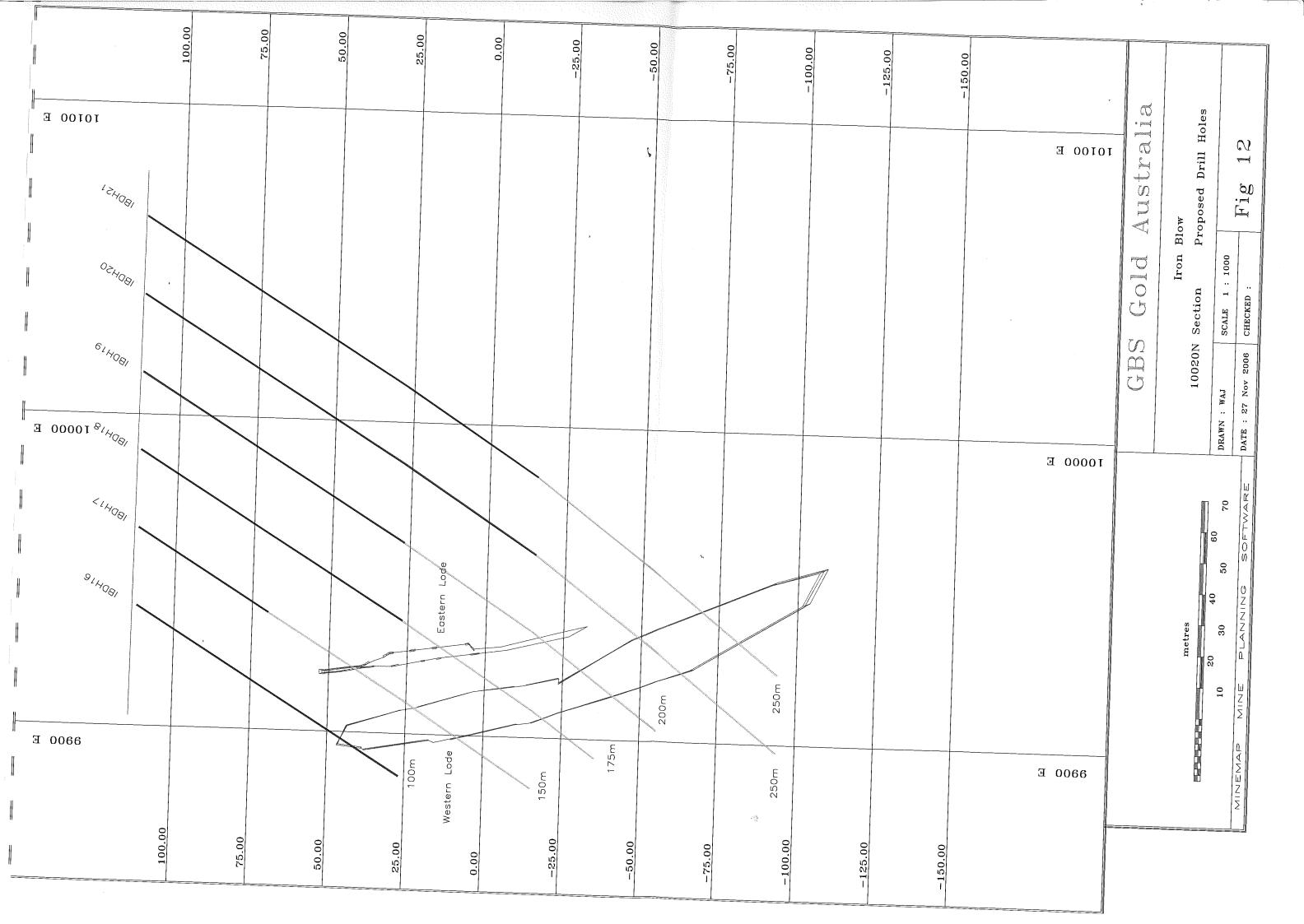

Walpole, BP, Crohn PW, Dunn PR and Randall MA, 1968, Geology of the Katherine - Darwin Region. BMR Report No 82.

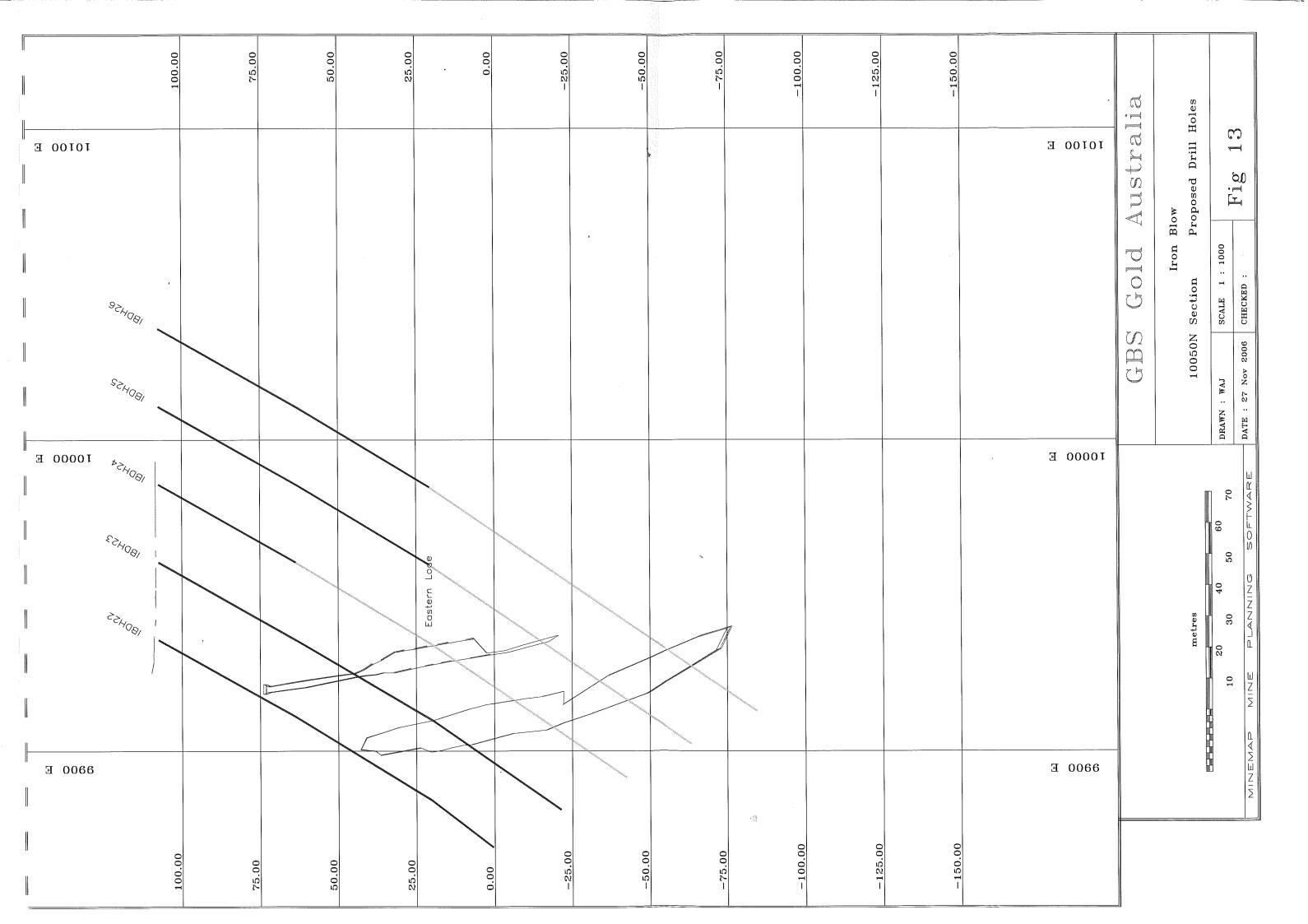


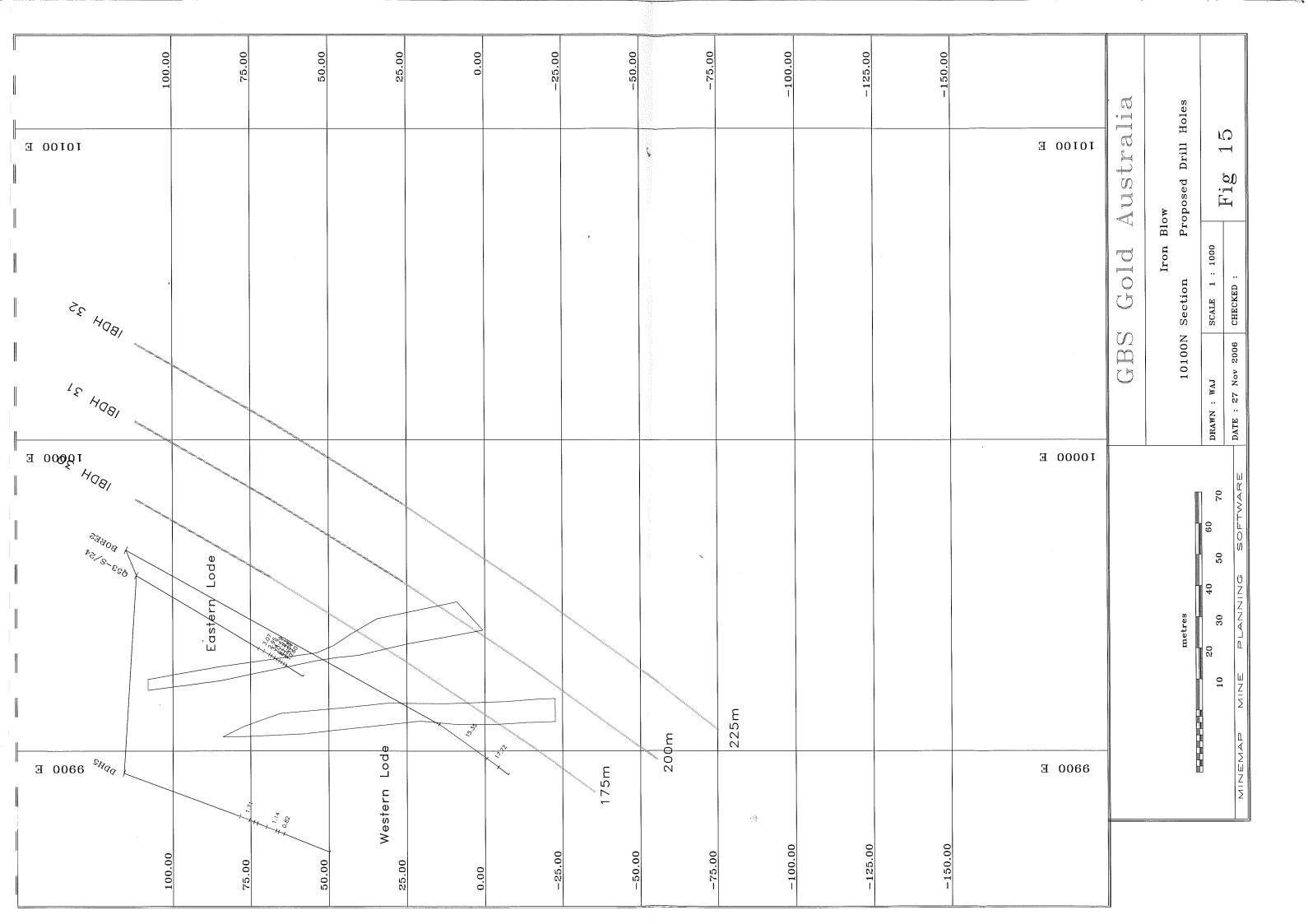


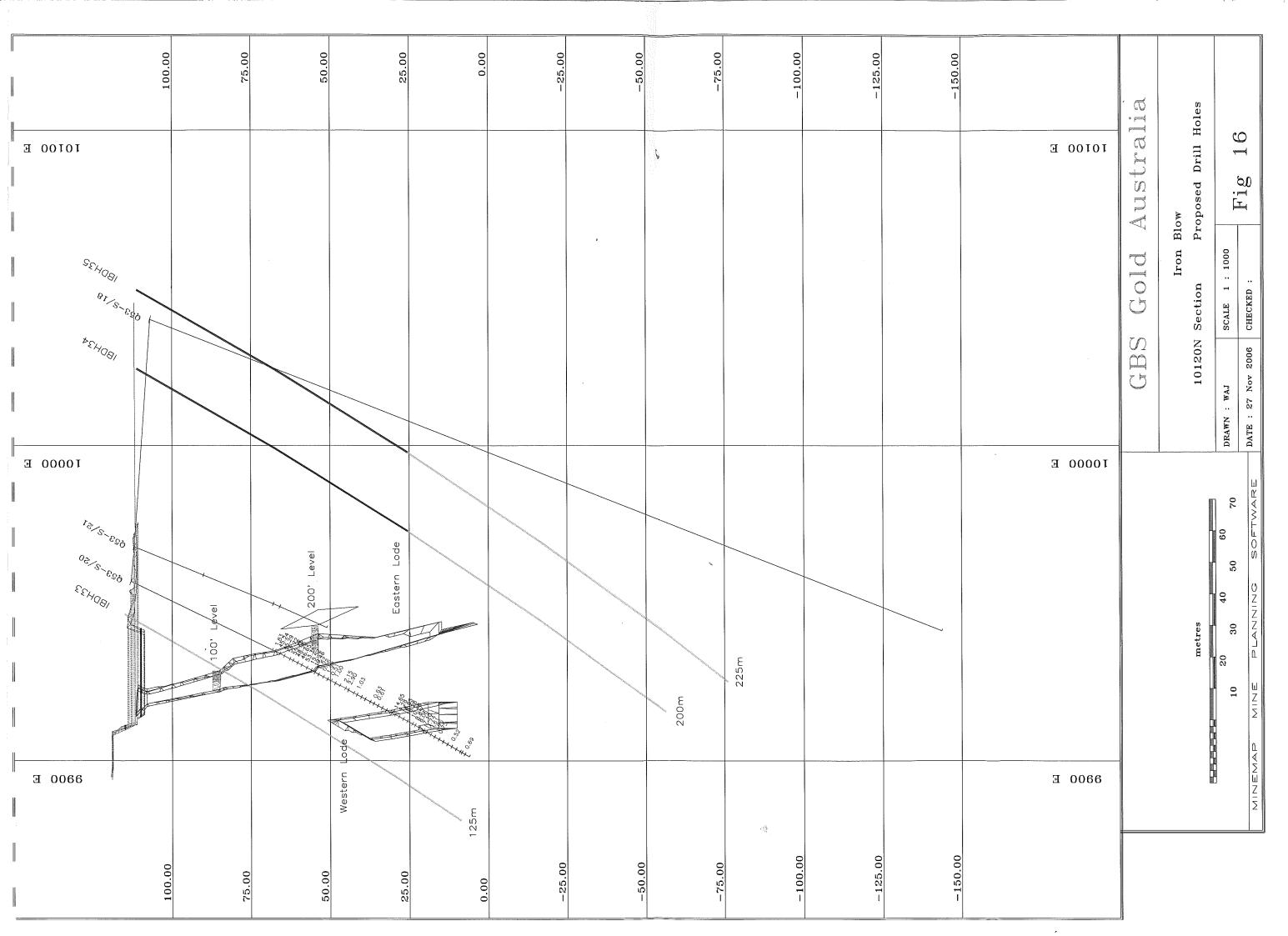


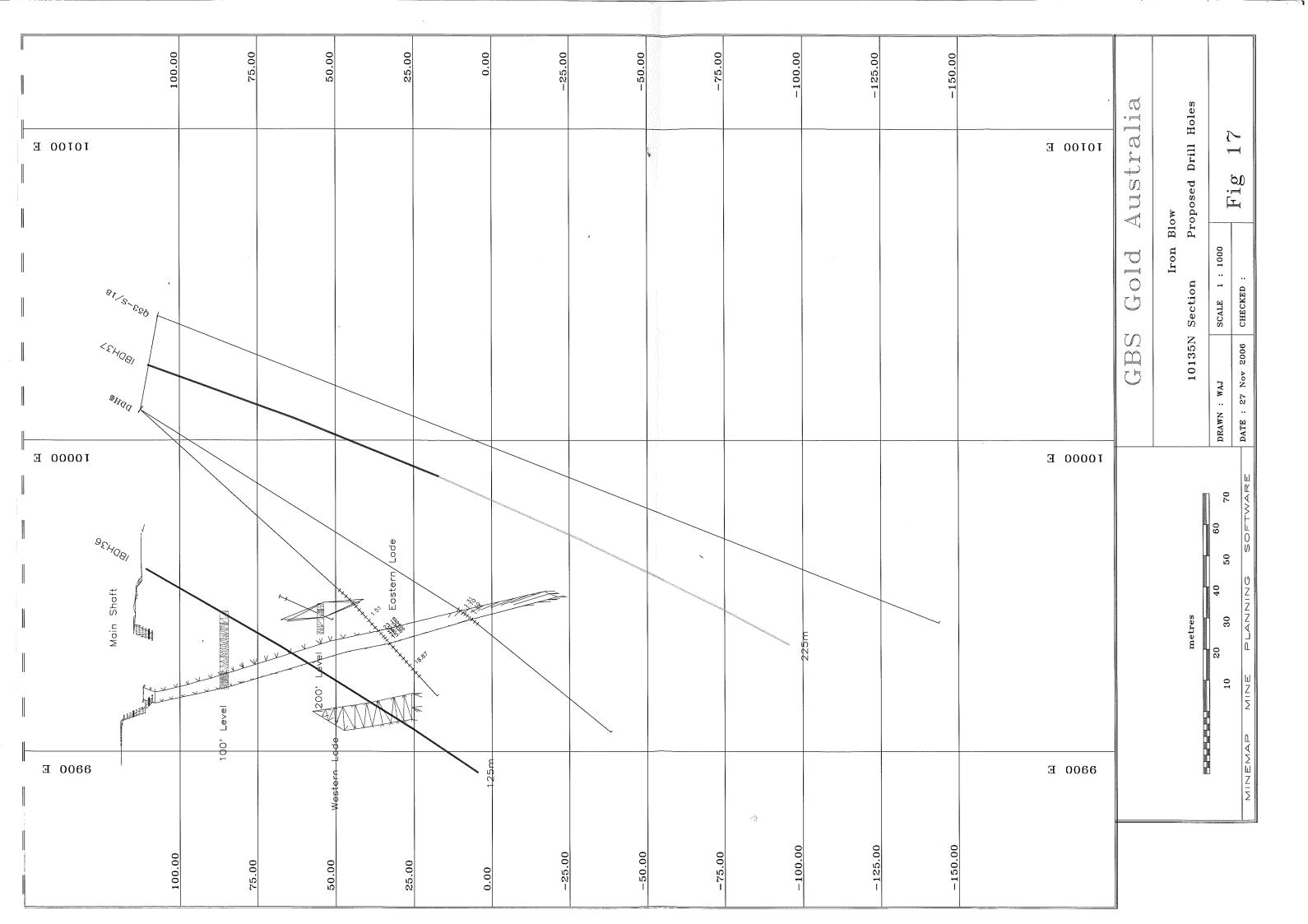


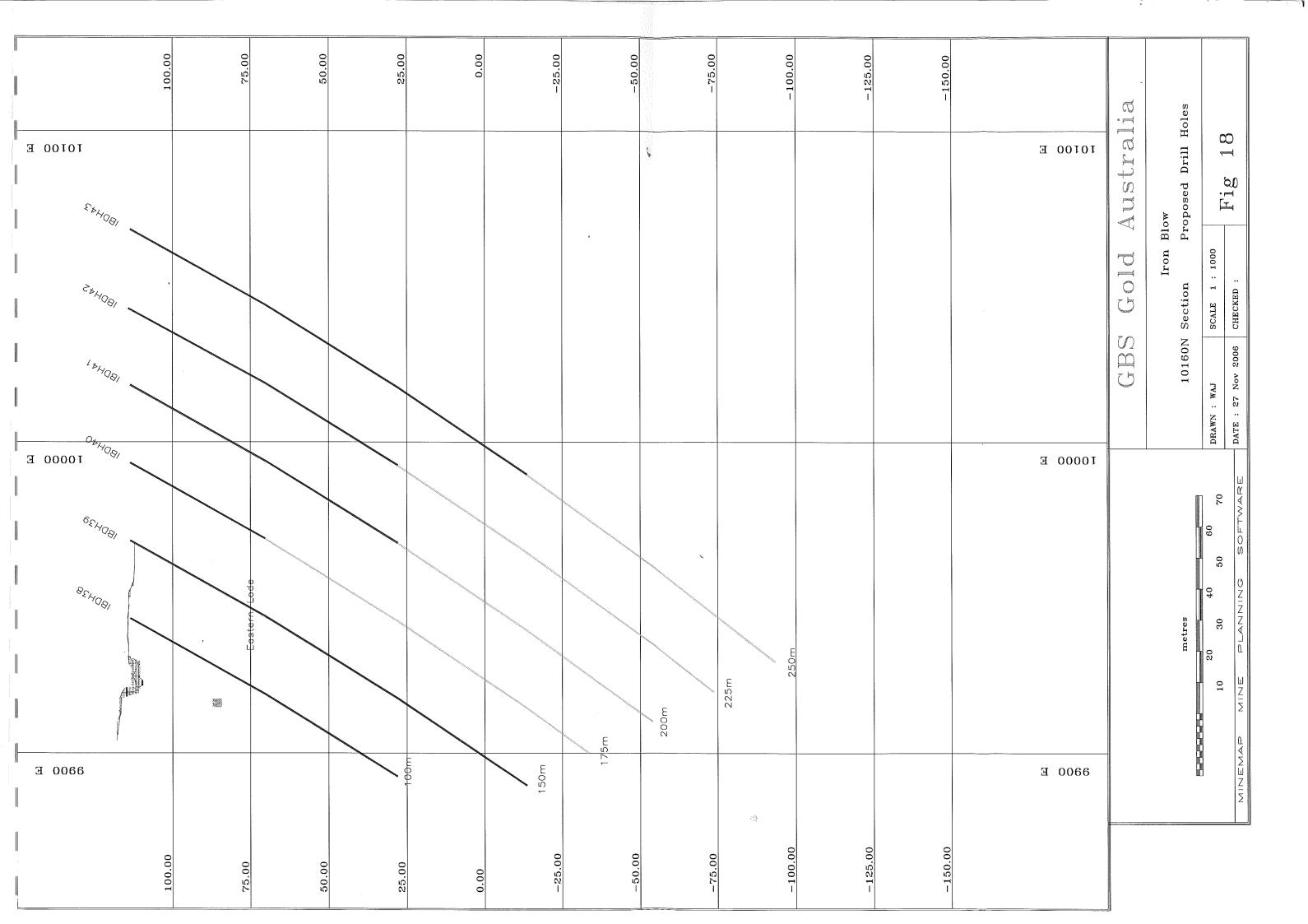


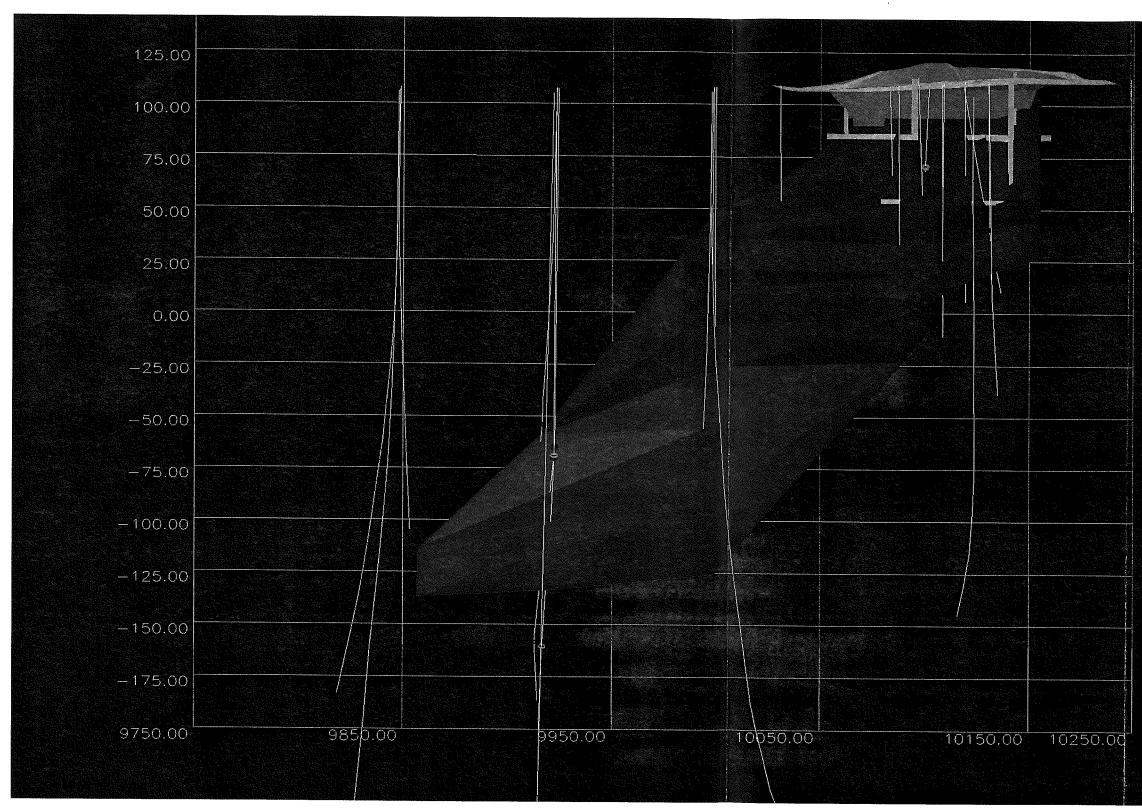


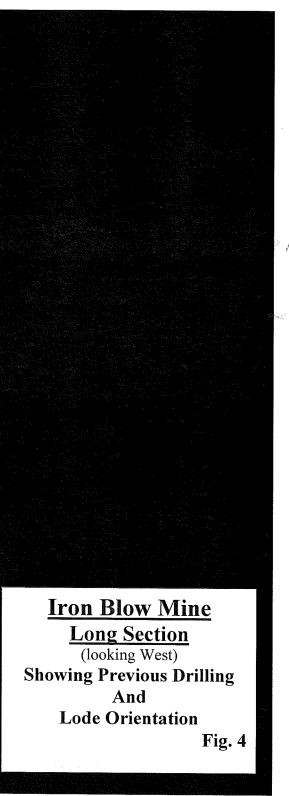

.

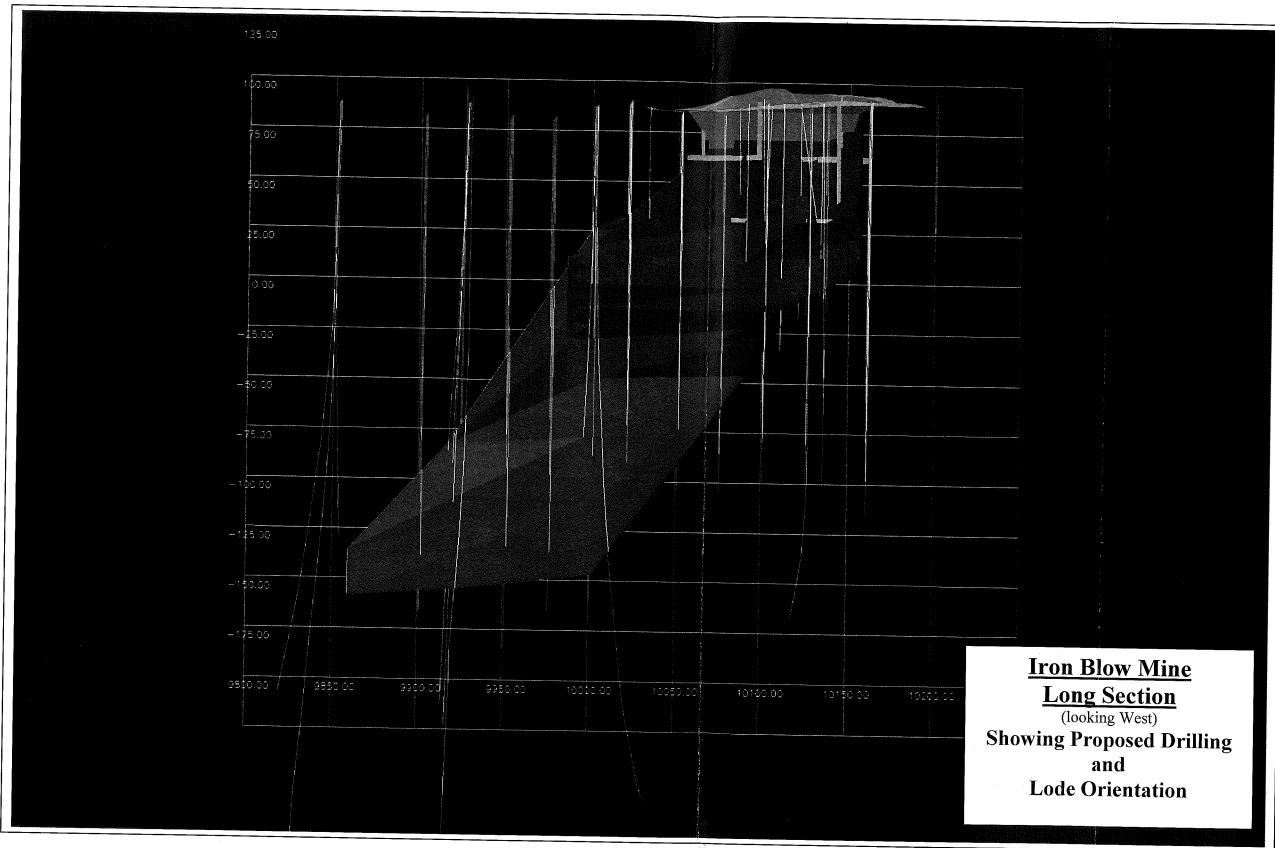












 $\mathcal{Q}_{\mathcal{C}}^{(i)}$