Neutral Junction
(EL24253)

Annual Report for the Year
Ending 6th April 2006

1:250 000 map sheet SF53-6 Barrow Creek

Operator: Hindmarsh Resources Limited
Registered holder: Mithril Resources Limited
Compiled by: Andrew Fowler (Mithril)
Teena Coppin (Hindmarsh)
Date: 15 May 2006
Summary

- A field visit and geochemical survey failed to identify any significant mafic rocks within the prospective Hatches Creek Group stratigraphy and the nickel sulphide potential was downgraded.

- The uranium prospectivity of the licence area was then evaluated and this led to the establishment of a joint venture with Hindmarsh Resources, a uranium explorer and now the operator of the licence.

- Hindmarsh Resources Limited commissioned Central Mining and Exploration Services to prepare a report on previous exploration in the licence area. The report is included as Appendix 2.
Table of Contents

Summary ..2
Introduction ..3
Geology ...5
Historical Work ..5
Work completed 2005-2006 ..6
Conclusions ..7

Table of Figures

Figure 1. Map showing the location of EL24253. ..4
Figure 2. Magnetic map of the region surrounding EL24253 showing the major fault described in the text, Ni occurrences and the Hatches Creek Group outcrops.5
Figure 3. Magnetic lag sample locations and HCG over magnetics ...6

Appendices

Appendix 1 Geochemical survey analytical results

Introduction

Neutral Junction EL24253 is located immediately east of the Stuart Highway approximately 200 km north of Alice Springs (Fig. 1). The licence was granted to Mithril Resources Limited on 7 April 2005 for a period of six years.

The area was considered by Mithril to be prospective for nickel, copper and cobalt in sulphides hosted by mafic intrusions. Two nickel sulphide occurrences (Prospect D and Strzeleckie) occur to the north of EL24253. These occurrences are mapped as being within amphibolites associated with metasediments of the Hatches Creek Group (HCG) (Fig. 2).

In December 2005 Mithril Resources Limited and Hindmarsh Resources Limited signed a joint venture Heads of Agreement giving Hindmarsh the right to earn an 80% interest in the tenement. Hindmarsh considers the area has potential for both unconformity-related and sedimentary roll-front uranium mineralisation.

From a continental scale it is apparent that EL24253 is on major magnetic and gravity breaks as well as major lineament trends. Prospect D and Strzeleckie also occur on or near the regional magnetic break with prospect D occurring at an inflection point. Mapped outcrops of HCG with amphibolites are restricted to three areas on the Barrow Creek 250K Sheet. The prospect D and Strzeleckie occurrences are associated with two of the outcrops with the third outcrop occurring in EL24253.

![Figure 1. Map showing the location of EL24253.](image-url)
Geology

EL24253 is generally covered by flat-lying Late Proterozoic Georgina Basin sediments. Modelling of the depth of these sediments has been completed by the NTGS and indicates that a major fault forms the western margin of the Georgina Basin. The depth of the basin sediments in the southern half of EL24253 increases from <100 m to over 1000 m in less than 500 m horizontal distance. This suggests a major crustal discontinuity, which could provide a pathway for migrating mafic magma. This fault bounds the HCG in the northern half of EL24253 and north of the licence the fault approximately coincides with the Strzeleckie nickel sulphide occurrence.

Mafic intrusions are not known from the licence area. However, outcrops of the prospective HCG stratigraphy along a major fault provide the basis for follow up of the Prospect D and Strzeleckie nickel sulphide occurrences along strike.

Figure 2. Magnetic map of the region surrounding EL24253 showing the major fault described in the text, Ni occurrences and the Hatches Creek Group outcrops.

Historical Work

Very little historical work has been reported in this area. In 1977 Otter Exploration was active in the Mt Ida region, which was considered prospective for uranium mineralisation. Trace amounts were discovered in microgneisses adjacent to pegmatite bodies in Lower Proterozoic metasediments and intrusive granite bodies.

1978 CRA undertook a series of magnetic-radiometric surveys and followed them up with ground surveys over anomalies. In 1980 the company collected some -80#
stream sediment samples (EL1879, CR19810020) as part of a much larger program. Only about 20 samples were taken over the area within the northern part of EL24253. These samples were analysed for base metals.

Magnetics were flown by the NTGS in 1981 on a 500 m spacing at 100 m height N-S.

Work completed – 2005-2006

In June 2005 a mapping and reconnaissance geochemistry survey was undertaken by Mithril to look for extensions of the HCG and any evidence of mafic intrusions in the area.

Mapping in the area did little to improve the nickel prospectivity of the area. HCG outcrops did not contain any mafics. Outcrops were only found where they were mapped and not further to the south in the Springs Range area as was hoped. Gabbroic float was identified in one stream draining an escarpment composed of uplifted Georgina Basin sediments. The source of the float was unsuccessfully sought upstream, leading to the conclusion that the alluvial gravels incised by the current stream may have been deposited by a stream draining a different area.

Similarly, the reconnaissance geochemical survey did not encourage further nickel exploration. 27 magnetic lag fractions were taken from sample sites denoted in figure 3. Results are given in Appendix 1. The highest nickel value was 67 ppm and the highest copper value was 24 ppm. None of the elements assayed show any significant trends.

![Figure 3. Magnetic lag sample locations and HCG over magnetics](image)
In March 2006, Central Mining and Exploration Services prepared a report for Hindmarsh Resources Limited, summarising previous exploration.

Conclusions

The work conducted by Mithril downgraded the nickel sulphide prospectivity of EL24253.

Central Mining and Exploration Services concluded:

1. that uranium values from stream sediment and airborne radiometric surveys indicate potential for further investigations
2. sedimentary members within the late Proterozoic Mount Stuart Formation are potential hosts for uranium mineralisation.
APPENDIX 1

Geochemical survey analytical results
number	east	north	weight	prospect	sample type	tops	log type	surface type	comments	Ag	An	Co	Cr	Cu	Fe	Mg	Ni	Na	Nb	N	P	Ti	V	Zn		
24	489675	781026	61	Colhus camp	mag lag	eastern slope of Mimbryala	magnetic resolution	fine magnetite	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
13	412370	7810571	66	Colhus camp	mag lag	northeastern slope	magnetic resolution	fine magnetite	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
10	410308	7810519	118	Colhus camp	mag lag	north	cobalt rundle	fine magnetite	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
22	417720	7810477	168	Colhus camp	mag lag	steeping to SE	cobalt black rundle	fine magnetite	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
8	416457	7810425	51	Colhus camp	mag lag	slope to SW	fine magnetite	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
42	423684	7810253	122	Spring Range	mag lag	flat	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
7	416303	7810249	111	Colhus camp	mag lag	slope to SE	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
28	412440	7810147	297	Colhus camp	mag lag	flat	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
46	416015	7811312	65	Colhus camp	mag lag	gentle eastward slope to flat	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
8	416165	7810549	104	Colhus camp	mag lag	flat, NE of ridge	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
19	411554	7810337	157	Colhus camp	mag lag	flat to SW	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
12	412072	7810271	61	Colhus camp	mag lag	flat	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
23	412222	7810349	65	Colhus camp	mag lag	creek	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
13	413300	7810630	66	Colhus camp	mag lag	eastern slope	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
41	414494	7810719	167	Colhus camp	mag lag	north sloping, 4 m wide, 1.5 m deep	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
16	416352	7810496	104	Colhus camp	mag lag	saddle to SE	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
21	417701	7810538	206	Colhus camp	mag lag	flat to SW	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
11	416436	7810414	138	Colhus camp	mag lag	flat, south of ridge	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
2	417240	7810486	108	Colhus camp	mag lag	flat	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
6	416510	7810372	75	Colhus camp	mag lag	creek	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
5	414434	7810820	43	Colhus camp	mag lag	slope to SE	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
16	414594	7811327	79	Colhus camp	mag lag	creek	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
4	416720	7810936	68	Colhus camp	mag lag	creek	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
17	413111	7810331	33	Colhus camp	mag lag	flat	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
15	416105	7810977	68	Colhus camp	mag lag	dissected arid basin	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
9	416339	7810458	68	Colhus camp	mag lag	slope to SE flank of ridge	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
1	417502	7810234	95	Colhus camp	mag lag	flat	cobaltite and nickel	surface type	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
APPENDIX 2

EL 24253 “Neutral Junction”
by
Central Mining and Exploration Services
HINDMARSH RESOURCES Ltd.
EL 24253 “Neutral Junction”
Previous Exploration - Summary Report.
March 2006

Prepared for
Hindmarsh Resources Ltd.

by
Central Mining and Exploration Services
March 2006
Report No. hmr0103/2006

A.B.N. 19 364 145 799

Central Mining and Exploration Services
13 Bromley Street
Alice Springs NT 0870

Mobile: 0428833770
Email: lennartz@ozemail.com.au
EXECUTIVE SUMMARY

Exploration Licence 24253 covers 1,400 square kilometres of a relatively under-explored region of the Northern Territory, Australia.

Previous exploration was limited to surrounding regional prospects with sparse exploration overlaps into EL 24253. Based on investigation of regional exploration, by numerous companies and prospectors, there appears to be enormous exploration potential in EL 24253.

The main observations derived from this review of previous exploration in EL 24253 are listed below:

- Uranium values from stream sediment and airborne radiometric surveys indicate the potential for further investigations.
- Sedimentary members within the Late Proterozoic Central Mount Stuart Formation (*NTGS Barrow Creek SF53-6 Explanatory Notes*) are potential hosts for Uranium mineralisation.
- NTGS airborne magnetic surveys indicate potential basement targets for exploration. It is recommended that ground magnetic traverses be carried out with follow-up drilling as required. Future exploration programs should be designed to delineate and prioritize indicated areas of potential uranium and base metal mineralisation.
- Granites of the Barrow Creek Complex indicate potential for pegmatite hosted mineralisation.
- Water bore geochemistry may be an inexpensive method of testing for geochemical properties using secondary mineral assemblages as indicators for Uranium levels.
Table of Contents

1.0 INTRODUCTION ... 5
2.0 LOCATION ... 7
3.0 REGIONAL GEOLOGY ... 8
4.0 PREVIOUS WORK .. 9
 4.1 Base Metal Exploration ... 9
 4.2 Uranium / Wolfram / Tin ... 11
 4.3 Gold ... 11
 4.4 Diamonds ... 11
5.0 EXPLORATION POTENTIAL .. 12
6.0 CONCLUSION .. 15
BIBLIOGRAPHY .. 18

List of Figures

Figure 1. Tenement Locality .. 7
Figure 2. Regional NTGS RTP magnetics .. 14
Figure 3. Regional NTGS Uranium Count .. 15

Attachment / Enclosure

Digital data CD – Soil Sampling, Whole Rock, Rock Chip and Drilling.
Presented in Microsoft Office Excel format.
1.0 INTRODUCTION

Extensive regional exploration has been undertaken at major mineralised centres such as “Millionaires Well” and “Home Of Bullion” which abuts the area held under EL24253.

Earliest mining in the Barrow Creek region commenced in 1923 at the now abandoned Home Of Bullion copper mine situated on a fault zone within the early Proterozoic, Arunta Inlier Bullion Schist.

There has been exploration activity around EL24253 since the early 1920’s by various companies with minor dedicated exploration activity undertaken in EL24253. Most of EL24253 is covered in Quaternary sediments and alluvial and without extensive surface expression of lithologies it appears the tenement area was largely ignored.

EL 24253 is considered to have potential to host both unconformity-related uranium mineralisation and sedimentary “roll—front” uranium mineralisation in the Central Mount Stuart Formation (Hindmarsh Resources/Mithril Public release document).

There is further exploration potential for Wolfram and Tin in pegmatites of the Barrow Creek Granite Complex in EL25253.

Recordings of base metals have been made in numerous localities in the Barrow Creek region in other tenement areas in equivalent geological lithologies to those present in EL 24253 indicating the potential in EL 24253 for base metal exploration.

A distinct zone of magnetic anomaly traverses the south-western boundary of EL24253 and numerous high magnetic responses are potential exploration targets. (Figure 2).
Digital data related to soil sampling, whole rock, rock chip and drilling in the regions covering and surrounding EL 24253 is presented in Microsoft Excel spreadsheet format.
2.0 LOCATION

Exploration Licence 24253 lies approximately 200km north of Alice Springs, Northern Territory on the Barrow Creek 1:250,000 map sheet SF53-6. (Figure 1).

Figure 1. Tenement Locality.
3.0 REGIONAL GEOLOGY

EL 24253 is located at the boundary of the Arunta Inlier to the south and the Tennant Creek Inlier/ Davenport Province to the north. The contact between the tectonic blocks constitutes a wide northwest – southeast trending corridor which includes intensely folded and faulted rock types of both provinces.

North-west trending late Proterozoic, Adelaidean Central Mount Stuart Formation with south-west gentle dips (100 to 150) are the dominant outcropping rock units in the tenement. Proterozoic granite outcrops in the licence are aligned along a north-west trend.

Small outcrops of early Proterozoic Bullion Schist are present in the central area of the licence.
The rest of the licence is covered by Tertiary and Quaternary sediments.
4.0 PREVIOUS WORK

4.1 Base Metal Exploration

There has been no dedicated exploration for base metal mineralisation in EL 24253.

In 1966 Kennecott Exploration initiated basement exploration south of EL 24253 in the Mount Skinner region. The highest recorded copper was 1.0m @ 0.72% Cu taken from a costean and 1.5m @ 0.15% Cu at a depth of 115.9m in drill hole BH3 (CR66/015). Mineralisation occurrence was within the Central Mount Stuart Formation lithologies – a continuation south of the lithologies exhibited in EL24253.

The DMBA13 anomaly in the Mollie Bluff exploration area of Otter Exploration was revisited by Track Minerals Pty. Ltd (CR89/706) in 1989 and rock chips were collected and sampled. Slightly elevated base metal (Cu, Pd, and Zn) values were observed.

Holes drilled by the Department of Mines and Water Resources in 1968 recorded maximum assays of 1.0m @0.22% Cu in the Central Mount Stuart Formation and 0.30m @ 2% Pb in the Grants Bluff Formation (Grainger, 1968).

In the late 1960’s and early 1970’s other companies undertook exploration in the Mount Skinner region (south of EL 24253) for base metals and gold but did not proceed with drilling. Exploration at in the Mount Skinner region was focused on the same Central Mount Stuart Formation as is represented in EL24253.

Exploration by Alcoa Australia Ltd. in 1983 concentrated on a search for syngenetic marine sediment-hosted base metal mineralisation below the Central Mount Stuart Formation. Prospectivity was downgraded and exploration did not proceed further (CR83/125).

Diamond core drilling of a magnetic anomaly near the “Home of Bullion” mine north-east of EL 24253 intersected a magnetite-bearing gabbroic intrusive of uniform medium to coarse crystalline texture (CR82/341). Of note are the important nickel, chromium, and platinum minerals that occur almost exclusively in association with
gabbroic or related rocks. Magnetite (iron) and ilmenite (titanium) are also found in
gabbroic complexes.
4.2 Uranium / Wolfram / Tin

In 1978 C.R.A. Exploration Pty. Ltd (CR1980/0071) recognised the exploration potential for Uranium in the Arunta Complex basement and in the unconformity of the overlying Central Mount Stuart Formation. Consequently C.R.A.E. undertook a series of magnetic – radiometric surveys with ground follow – up of anomalies. Most of the previous exploration activity was restricted to the northern portion of EL 24253 with a minor scattering of stream sediment samples taken within EL 24253.

In the early 1980's BHP Minerals Ltd. (CR1982/0094) collected and analysed rock chip samples taken from narrow pegmatite veins in the Barrow Creek Region. Some scheelite and wolfram were noted within pegmatites and within the Arunta Inlier wall rock near pegmatites. Narrow pegmatite veins and greisen contact zones were considered as a potential source of alluvial tin, tantalum and tungsten minerals. Exploration by BHP Minerals was undertaken in regions outside the current EL 24253 boundary but in geological units that are exhibited in the existing area of interest.

In 1981, R.B. Mining Pty. Ltd (CR1982/0034) exploration activities concentrated on the Barrow Creek Granites to the north/east of EL 24253. Low grade Tantalum and Tin mineralisation was revealed.

In 1977, Otter Exploration undertook exploration activities in the Mt. Ida region, an area considered to be prospective for uranium mineralisation. Trace amounts (maximum 215ppm) of uranium mineralisation (uriniferous leucoxene) were discovered in microgneisses adjacent to pegmatite bodies in Lower Proterozoic metasediments and intrusive granite bodies (CR1979/091).

4.3 Gold

Gold formed a part of the regularly assayed suite of elements in all company exploration programs undertaken around EL24253. There appears to be no significant results from all programs.

4.4 Diamonds

In 1994 CRA Exploration Pty. Ltd reported (CR94/356) in 1977 circular features occurring approximately 40km south-west of the Mollie Bluff project area (southern
boundary of EL24253) were drill tested. Alkaline igneous intrusions (CR71/020) were being targeted but no ultrabasic lithologies or significant assay values were recorded.

5.0 EXPLORATION POTENTIAL

Occasionally Barrow Creek Granites of the Arunta Complex stand out from the Quaternary Aeolian sands of the regional peneplains covering EL 24253 (Haines, P.W., et al 1991).

A 1.0 metre intersection of 2.8% W, 150ppm Ta, 80ppm Sn and 150 ppm Nb from drilling undertaken by BHP Minerals (CR82/94) suggest there is potential for large low grade deposits should the density of pegmatites be sufficient.

Diamond drilling undertaken by CRA Exploration (CR83/341) indicate sediments of the Central Mount Stuart Formation are 79 metres thick in the north-eastern portion of EL 24253. This suggests that Arunta Inlier basement has the potential to be investigated through the relatively shallow overlying sedimentary sequence in the northern portion of EL 24253.

In Figure 2, a broad magnetic high extends along the south-western boundary of EL 24523. Spot magnetic highs as indicated present several potential exploration targets. Target definition could be refined by ground magnetic surveys prior to drilling.

Basic airborne radiometric signatures as presented in Figure 3. indicates elevated Uranium counts in the Early Cambrian Neutral Junction Formation which forms the capping over the Central Mount Stuart Formation. Intruding into the Neutral Junction Formation are granites of the Barrow Creek Granite suite. This area may represent potential for Uranium exploration.

The potential for palaeochannels emanating from the regions indicated in Figure 3. may also offer an exploration target.
Figure 2. Regional NTGS RTP magnetics.
Figure 3. Regional NTGS Uranium Count.
6.0 CONCLUSION

EL 24253 has not been exposed to any major exploration activity. Regional work on areas surrounding EL 24253 has been fairly intense in some areas and quite broadly spaced in others.

The identification of weakly anomalous base metals, uranium, copper, tantalum, tin and tungsten in regional prospects suggests that there is further exploration potential in EL 24253.

Previous exploration work identified the Barrow Creek Granite as representing a possible source of “hot spots” for Uranium exploration. If this proves to be the case, the granites may have provided the detrital material for placer type uranium deposits in selected lithologies in the early Late Proterozoic to Early Cambrian Georgina Basin Sequence.

There is also unconformity type exploration potential for Uranium deposits where the Central Mount Stuart Formation sediments overly the Arunta Inlier metamorphic basement.

Based on this literature review of previous exploration in the Barrow Creek region the following recommendations and observations have been made:

1) Previous stream sediment and airborne radiometric survey work by exploration companies indicate the potential for further exploration.

2) Future uranium exploration could be enhance by using radiometric signatures to determine possible palaeo channels within the Central Mount Stuart Formation or within the Quaternary sediments of low lying areas.

3) Northern Territory Geological Survey airborne magnetic surveys indicate potential basement targets for exploration. It is recommended that the highlighted conductive bedrock features, and additional features that may be identified, should be refined with ground magnetic traverses followed by
drilling as required to determine if they are potentially associated with sulphide mineralisation.

4) A gravity survey of prospective areas could be used to locate structural elements under Quaternary Aeolian cover.

5) Granites of the Barrow Creek Complex indicate potential for pegmatite hosted mineralisation.

6) Initial field orientated exploration could be focussed on greater rock chip density sampling in EL 24253.

7) Water bore geochemistry may be an inexpensive method of testing;
 a). Water table levels
 b). Uranium levels
 c). Secondary minerals within the near surface zone of oxidation.

8) The accompanying CD, with exploration data related to regional prospects and sporadic sampling on EL 25253, can be used to gain an understanding of mineralisation distribution and could be used to define or refine areas to target further exploration activities.
BIBLIOGRAPHY

Fraser, W.J., (1978): Barrow Creek Area: Uranium/Copper. CRAE Memo to D.R. Kennedy. (CR81/020)

Haines, P.W., Bagas, L., Wyche, S., Simons, B., Barrow Creek (SF 53-06) 1: 250,000 Geological Map Series Explanatory Notes. Department of Mines and

18
<table>
<thead>
<tr>
<th>Company/Mine</th>
<th>Publication Details</th>
</tr>
</thead>
</table>