SECOND
ANNUAL REPORT
EL 23888 ‘Stafford’
REYNOLDS RANGE PROJECT

For Year Ending 11 August 2006

Author
C Rohde

August 2006

Distribution:
o Department of Business, Industry & Resources Development (1)
o Native Title Unit - Central Land Council (1)
o Newmont Gold Exploration Pty Ltd (1)
o Tanami Gold NL - Perth (1)
o Tanami Gold NL - Alice Springs (1)

File: cr27dbirdAR2006_Stafford
NL PLATES

Plate 1 Interpreted Geology and Prospect Locations 1: 250,000
Plate 2 Regional Interpreted Regolith 1: 100,000
Plate 3 Geochemical Sampling 1: 100,000
Plate 4 Drill Location Plan 1: 100,000

APPENDICES

FILE DESC
SF_WADG3_DHSAMP_2006A Downhole Samples and Assays (Flat)
SF_WADL3_ASSAYL_2006A Drilling Assays (Normalised)
SF_WADL3_GEOL_2006A Geology
SF_WADL3_VEIN_2006A Veining
SF_WADL3_WEAT_2006A Weathering
SF_WADS3_DHSURV_2006A Downhole Survey
SF_WASG3_SURF_2006A Surface Sampling
SF_WASL3_COLL_2006A Drillhole Collars
1.0 SUMMARY

EL 23888 is explored as part of the Reynolds Range Project area, where Tanami Gold NL identified the potential for quartz-vein-hosted gold mineralisation in the Proterozoic basement rocks. The tenement is managed by Tanami Exploration NL (TENL), a wholly owned subsidiary of Tanami Gold NL (TGNL), a publicly listed company as part of their Reynolds Range Project under an option agreement dated 28 May 2004. It was granted to Newmont Australia Pty Ltd (Newmont) on 12 August 2004. Transfer of 100% ownership of EL 23888, from Newmont to TENL, was lodged on 17 August 2006 and is pending registration.

The tenements of the Reynolds Range Project lie in Central Australia centred approximately 225 kilometres north-northwest of Alice Springs (Figure 1). They are situated in the central part of the Aileron Province of the Arunta Region and are covered by the Mount Peake, Napperby, Mount Doreen and Mount Theo 1 : 250,000 Geological Sheets.

Exploration on EL 23888 included geological and regolith mapping and interpretation, rock chip and vegetation sampling, RAB, Aircore and SLRC drilling in two drilling phases. An exploration summary is listed below in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Exploration Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL 23888</td>
</tr>
<tr>
<td>Rock Chip Sampling</td>
</tr>
<tr>
<td>Vegetation Sampling</td>
</tr>
<tr>
<td>RAB Drilling</td>
</tr>
<tr>
<td>Aircore Drilling</td>
</tr>
<tr>
<td>SLRC Drilling</td>
</tr>
</tbody>
</table>

Significant rock chip results were returned from the known Falchion mineralization with a maximum value of 11.5 ppm. Results of vegetation sampling highlighted detectable concentrations of various metals, including Au.

In 2005 RAB, Aircore and slimline RC drilling was completed testing three regional targets and three advanced targets, Falchion, Sabre and Yataghan South. In 2006 RAB drilling was on untested Lander beds south and parallel to Sabre and Falchion.

At Falchion the width and tenor of previously identified mineralisation was confirmed, including an intercept of 14m at 3.8g/t Au from 5m (RRA009). Step-out drilling also extended the known mineralised structure along strike in both directions, with intercepts of 4m at 1.5g/t Au from 40m depth (RRA011) over 50 metres to the east, and 4m at 0.5g/t Au from 44m depth (RRB2326) over 100 metres to the northwest.

At Yataghan South infill drilling established the main structural orientation and confirmed continuity of previously recognised mineralisation, returning a best result of 20m at 0.5g/t Au from 16m which included 4m at 1.2g/t Au from 20m depth (RRN026).

The drilling at Sabre was disappointing with only moderate anomalism returned from the traverse across the interpreted fold hinge and further west across the interpreted opposing limb to the main Sabre mineralisation.
2.0 INTRODUCTION

The Reynolds Range Project is located approximately 225 kilometres north-northeast of Alice Springs, and includes EL 23888. This report covers the exploration undertaken by TENL during the second year of tenure on EL 23888.

Access to the project area is via the Stuart Highway, and then a major gravel road between Aileron and Yuendumu. Station tracks provide further access throughout the project area.

3.0 TENURE

Newmont Gold Exploration Pty Ltd is the registered tenement holder of EL 23888 (Figure 2), with tenement details shown below in Table 1. TENL entered into an option agreement with Newmont on 28 May 2004 and is currently managing exploration. Transfer of 100% ownership of EL 23888, from Newmont to TENL, was lodged on 17 August 2006 and is pending registration.

Table 2: Tenement Details

<table>
<thead>
<tr>
<th>Tenement No</th>
<th>Blocks</th>
<th>Km²</th>
<th>Grant Date</th>
<th>Expiry</th>
<th>Current Covenant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stafford EL 23888</td>
<td>149</td>
<td>474</td>
<td>12 Aug 04</td>
<td>11 Aug 10</td>
<td>$159,000</td>
</tr>
</tbody>
</table>

In the first year of tenure, an Indigenous Land Use Agreement covering EL 23888 was negotiated with the Central Land Council on behalf of the traditional owners.

4.0 GEOLOGY AND MINERALISATION

The Reynolds Range Project covers Palaeoproterozoic metasediments and intrusives in the central Aileron Province of the Arunta region. The surface geology has been mapped and described by the Northern Territory Geological Survey (NTGS) in the 1:250,000 scale Mount Peake (SF53-05), Napperby (SF53-09) and Mount Theo (SF52-08) sheets and in more detail by the Bureau of Mineral Resources on the special edition Reynolds Range Region 1:100,000 scale geological map. About 30% of the tenement area comprises outcrop of Palaeoproterozoic Arunta basement rocks, with the remaining areas covered by recent transported sediments.

Widespread gold anomalism was identified within greenschist-facies metasediments along the eastern side of the Reynolds Range in the early 1990's. Gold is hosted by sulphidic quartz veins and has been interpreted to broadly correlate with gold mineralisation in the Tanami region.

The area has a very complex geology with polydeformed Palaeoproterozoic Lander Group metasediments, which host gold mineralisation, intruded by numerous felsic and mafic intrusive phases and overlain by slightly younger siliciclastic metasediments, including the Reynolds Range Group. The area is also covered by very complex regolith, with scree shedding from substantial hills cut by large drainage systems.

Most of the gold mineralisation in the Reynolds Range Region appears to be concentrated along a relatively narrow corridor of greenschist facies Lander Rock Formation metaturbidites. Where there is good exposure in the central northeastern part of the belt, in the vicinity of Troutbeck-Bowness, folding in the Lander beds has northwest-striking axes, plunge towards the southeast and verges towards the southwest with steep southwestern limbs and gently dipping northeastern limbs (English, 2006).
The highest grade gold mineralisation is at the Sabre and Falchion prospects. A sharp increase in metamorphic grade occurs towards the northeast where granulite facies is encountered and these rocks have been named the Mt Stafford Formation. High grade intercepts do occur in rocks of higher metamorphic grade, such as the Black Knight Prospect, but in this case it appears to be associated with retrograde greenschist facies metamorphism. Gold mineralisation occurs in a number of different geological settings and with a number of different metal associations.

5.0 PREVIOUS EXPLORATION

Exploration in the first year of tenure consisted of regional desktop studies, including geophysical and geological interpretations. The study confirmed that a major Trans-Tanami structural corridor which runs through the area hosts the known gold mineralisation.

A review of the open file reports by Poseidon Gold, Normandy Exploration and Exodus minerals was completed for the Reynolds Range area. There are numerous untested anomalies (surface geochemical and geophysical) as well as prospects with economic grades and widths. Diamond and RC drilling was completed at Sabre, Falchion, Assegai and Yataghan, but only hammer RAB, blade RAB, vacuum or surface sampling elsewhere. A couple of historic Au-Cu mines (Reward, Pine Hill) are situated southeast of the Sabre-Falchion area (Plate 1). Gold is commonly associated with Sb, Pb and As. Geochemical sampling data obtained from Newmont and from open file reports were transferred to the TGNL database and validated.

Diamond drillcore was also retrieved from Newmont’s Ivy camp and relogged. A number of brief reconnaissance trips were undertaken through the area, but the absence of comprehensive work area clearances limited these trips to logistical planning.

During the final reconnaissance trip in the Reynolds Range area, previous drilling and grid lines, prospect mapping and sample sites were identified. A total of 24 rockchip samples were collected with some encouraging results:

- RRK004 1494 ppb Au, 190 ppm As, 10 ppm Cu and
- RRK009 7775 ppb Au, 668 ppm As, 25 ppm Cu from the Sabre area and
- RRK023 12,149 ppb Au, 44 ppm As, 1176 ppm Bi and 5405 ppm Cu from a known prospect ca 1.1 kilometres southwest of Sabre.

6.0 TENL EXPLORATION

6.1 Geological and Regolith Mapping / Interpretation

In the 2005/2006 reporting period geological field and regolith mapping and interpretation was conducted at Reynolds Range in September 2005. A geological interpretation including EL 23888 is shown on Plate 1. It was undertaken to develop a geological history and mineralisation model of the area. In brief, the model suggests that vein-related gold mineralisation was emplaced late in the Stafford tectono-thermal event (ca.1800 Ma) and so mineralisation was deformed (folded, sheared, boudinaged) during the Yambah event (ca. 1760 Ma), which folds the Reynolds Range Group.

The rock chip sampling results (see 6.2) suggests three metal associations within the Reynolds Range Project area. At Falchion, Au is associated with elevated As, Pb and Sb, though the correlations are not straightforward and may be due to metal zonation. The results at Falchion demonstrate that mineralisation is exposed and that it is traceable for over 100 m, consistent with previous drilling results. More importantly, the geological context of the mineralisation is consistent with early emplacement
followed by folding and shearing. THIS SPECULATION IS REDUNDANT AS THE ORE SHOOTS CAN BE SEEN ON DRILL SECTION.

Steve Hill from CRC-LEME, Adelaide University and TGNL geologists undertook a regional regolith mapping program in September 2005. Regolith units and descriptions in the Reynolds Range area are shown on Plate 2. This outlined the areas of cover and bedrock with the aim to assess the successfulness of the surface geochemistry and shallow drilling.

6.2 Rock Chip Sampling

A total of 66 rock chip samples were collected on EL 23888 and submitted to Genalysis for multi-element analyses. Sample locations are shown on Plate 3, while all sample and assay data are listed in the digital Appendix. Best results are shown below in Table 3.

Table 3 Best results (>100 ppb) from Reynolds Range rockchip sampling on EL 23888

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Locality</th>
<th>Au ppb</th>
<th>As ppm</th>
<th>Bi ppm</th>
<th>Cu ppm</th>
<th>Pb ppm</th>
<th>Sb ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRK042</td>
<td>Recon – W of Sabre</td>
<td>214</td>
<td>459</td>
<td>66</td>
<td>574</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>RRK057</td>
<td>Recon – NW of Sabre</td>
<td>157</td>
<td>207</td>
<td>15</td>
<td>642</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>RRK064</td>
<td>Recon – W of Sabre</td>
<td>427</td>
<td>6</td>
<td>523</td>
<td>>143200</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>RRK065</td>
<td>Recon – W of Sabre</td>
<td>650</td>
<td>30</td>
<td>365</td>
<td>785</td>
<td>179</td>
<td>5</td>
</tr>
<tr>
<td>RRK084</td>
<td>Falchion</td>
<td>11546</td>
<td>3283</td>
<td>0</td>
<td>46</td>
<td>117</td>
<td>469</td>
</tr>
<tr>
<td>RRK085</td>
<td>Falchion</td>
<td>4243</td>
<td>3966</td>
<td>0</td>
<td>64</td>
<td>2115</td>
<td>2173</td>
</tr>
<tr>
<td>RRK086</td>
<td>Falchion</td>
<td>157</td>
<td>601</td>
<td>1</td>
<td>45</td>
<td>31</td>
<td>52</td>
</tr>
<tr>
<td>RRK098</td>
<td>Sabre</td>
<td>196</td>
<td>217</td>
<td>-</td>
<td>9</td>
<td>941</td>
<td>264</td>
</tr>
</tbody>
</table>

6.3 Vegetation Sampling

During the regolith mapping one of the main problems identified was that large parts of the Lander River valley, where the best prospects are known, are covered by talus lobes or reworked material from these lobes. Such coarse material is problematic for mineral exploration, particularly the suspicion that basement geochemical signatures are masked and surface sampling is ineffective. Therefore, in conjunction with the regolith overview provided by Steve Hill, it was decided to collect some vegetation samples from various prospects to determine whether common plants in the Reynolds Range area may incorporate metals indicative of buried mineralisation. The study was opportunistic and so provides only limited information about the potential of vegetation sampling. Of broader interest is whether a suite of plants could be used to identify gold in the Palaeoproterozoic basement irrespective of the regolith. The specific aims of this study were to:

- identify whether there is a suitable suite of plants covering most of the area,
- see whether sampling and sample preparation is efficient,
- determine whether commercial laboratories can analyse for the desired elements at suitable detection limits at a reasonable price, and
- see whether the samples collected have elevated concentrations of metals indicative of gold mineralisation.

Metal concentrations variations between various tissues (eg, leaves versus bark) and seasonality of sample collection (wet versus dry climatic conditions) were not addressed.
Common plant species were targeted as they are most likely to be regionally useful. Mulga (*Acacia aneura*) is common in the Reynolds Range area with mulga woodlands common on sheetwash plains. Spinifex (*Troidia sp.*) is also very common, particularly in areas with well drained soils (aeolian sand, hills). Mulga and spinifex sometimes occur together, so it is possible to calibrate these species with each other. River red gum (*Eucalyptus calmandensis*) is common along river courses and could provide a useful reconnaissance species, especially where drainage cuts structural corridors. These three species are found in many regolith landforms over larger areas of the greater Reynolds Range area. Moreover, they are readily identified and are among the species most likely to be used for regional exploration.

A total of 29 samples were collected on EL 23888 (Plate 3) from the Yataghan, Sabre and Falchion areas. Sample and assay data are included in the digital Appendix. Fifty gram samples were placed into paper bags and dried in the sun. Disposable latex gloves were used to preclude human contamination. Samples were ground successfully using a household electrical coffee grinder. Leaves were collected from mulga and from river red gum. Seed spears without seeds were collected from spinifex.

Results highlighted detectable concentrations of various metals, including Au. Initial observations include:

- Profound differences between mulga leaves and spinifex seed spears collected at same site for both MS/OES and INAA methods. As, B, Ba, Br, Ca, Ce, Co, Cu, Dy, Er, Eu, K, La, Li, Mg, Mn, Nd, P, Pr, Rb, S, Sm, Sr, Tb, Y, Yb, Zn greater in mulga relative to spinifex, whereas Cr and Au are greater in spinifex relative to mulga.

- Western Creek river red gum samples elevated in Be, K, Ti and U

- Falchion results have highest Sb and As, but no detectable Au. The pegmatite pit samples also had elevated Sb and As, but also detectable Au and elevated Cs. Falchion has elevated Mn relative to the pegmatite pits.

6.4 Drilling

6.4.1 2005 Drilling

Drill programs were designed for the Reynolds Range Project in October 2005 to target gold anomalism identified in historic surface sample and drilling data. The majority of the drilling was planned to verify and infill gold anomalism identified in rock chip sampling and vacuum, post-hole, and angled RAB drilling conducted by historic tenement managers Poseidon Gold, Normandy, NFM and Exodus Minerals NL. Further drill holes were designed to test conceptual targets and areas deemed to be under-explored. This drilling is discussed in detail in Robinson, 2006 and most sections below have been taken from this report.

Due to restricted rig availability and slower than expected drilling conditions, only part of the initial proposed drilling programme within the Reynolds Range project area was completed. Ten of the eighteen target areas were drilled either partially or completely. This included three regional target and three advanced targets including the Sabre, Falchion and the Yataghan South anomalies.

RAB drilling started at Reynolds Range commenced in October 2005 with 49 holes for 1589 m (RRB2280 – RRB2328). Initial holes were reconnaissance holes to check the package of rocks west of Sabre-Falchion. Drill holes intersected a lot of lithological variability including carbonaceous silt and shale. Also a total of 16 Aircore holes for 863 metres (RRA001 – RRA016) were completed in November 2005, as well as 42 Slimline RC holes (RRN001 – RRN042) for 2,220 metres.
Drill hole locations are shown on **Plate 4** and all drill and assay data are included in the digital Appendix. All drilling was undertaken by Bostech Drilling Pty Ltd, using a RAB/AC rig mounted on a four wheel drive Hino truck.

Following **regional targets** were tested:

i) **Reynolds Range to Giles Range Traverse:**

A total of 25 holes (RRB2280-RRB2306) were drilled along the Yuendumu-Pine Hill road to test relatively under-explored stratigraphy and provide information on poorly exposed geology. Drilling was conducted along the road verge with approximate AMG easterly spacings of 150 and 300 m. All holes were drilled at -60° towards 220°. A number of holes were removed from the programme where subcrop of slightly weathered to fresh granite was noticed. Blade refusal depths exhibited significant variability over this traverse, from 4 m (in granite) to 104 m (in sandstone). Where refusal depths were shallow (ie less than 40 m) 150 m infill holes were drilled, instead of a planned 320 m spacing. In general, blade RAB was relatively effective at penetrating transported regolith (up to 5 m deep) and providing a sample of moderate to slightly weathered saprock. The RAB hammer was used in a few instances to penetrate polymictic boulder colluvium, quartz veins and hard sandstone beds in the basement.

A wide distribution of lithologies was logged on this traverse, including granite, dolerite, sandstone, siltstone (including interbedded units), carbonaceous siltstones and carbonaceous mudstones. Hornfels were developed in proximity to granite bodies.

Seven holes within this traverse returned weakly anomalous (+5 ppb Au) values - three of which include numerous intercepts with gold values in excess of 16 ppb Au. Within these three holes (RRB2301-2303), gold anomalism is generally spatially related to sandstone-siltstone/mudstone contacts. Quartz veining has been recognised in all mineralised intercepts. Regional 100,000-scale mapping suggests a fold closure within Lander Group metasediments approximately 100 m north of anomalous results, with anomalism directly correlated with the projected strike of the hinge zone. It is strongly recommended that the anomalism identified within RRB2301-2303 be further tested.

ii) **Folded/faulted magnetic high:**

Thirteen of the 20 proposed holes were drilled to test a folded, or structurally offset magnetic unit, which was believed to have been ineffectively tested by shallow, wide spaced vacuum drilling. These holes (RRB2307-RRB2319) were drilled on two (of the planned 3) grid east-west (040-220°) traverses. All holes were drilled -60° towards 220°.

Transported cover was 2 to 5 m deep and comprises alluvial and colluvial sediments. Blade refusal depths varied from 20 to 97 m. In all holes, samples of moderate to slightly weathered saprock were returned. In general lithologies were predominantly low grade Lander Rock Beds including variably muddy, medium-grained quartz sandstone, siltstone and interbedded equivalents. Minor medium-grained dolerite was identified in two drill holes RRB2307 and RRB2326. These drill hole intersections correlate well with a subtle linear east-west magnetic anomaly, identical to the magnetic responses of other cross cutting dolerite dykes in the area. Drilling identified no source for the strong folded (or faulted) linear magnetic anomaly. This may indicate the presence of a deep magnetic source.

Three holes returned weakly anomalous results (+5 ppb Au) over single metre intervals, which do not justify follow up drilling, although the unexplained magnetic feature potentially remains as an untested exploration target.
iii) North of Falchion:

Four holes (RRB2320-RRB2323) drilled -60° towards 220° were completed over this target (460 ppb Au rockchip anomaly). All holes required hammer RAB to penetrate moderate to slightly weathered subcropping metasediments. Hole depths equal to or in excess of 40 m were attained for the three holes RRB2320-2322. RRB2323 only went to 23 m due to a damaged drill bit.

All four drill holes returned slightly elevated results (+5 ppb Au) including one drill hole (RRB2321) with a maximum intercept of 2 m @ 50 ppb Au. However given that the drilling did not reproduce a result consistent with the historic rockchip and that target area lies within the extension of the Sabre-Falchion mineralised corridor, this area has been downgraded. As such, no further drilling is deemed necessary.

Following advanced targets were tested:

i) Falchion:

A total of 21 holes (RRB2324-RRB2328, RRA001-RRA016) were drilled at the Falchion Prospect on three local grid east-west traverses. This included 18 holes on the northern (51550 local N) and southern (51200 local N) lines, which were designed to close off mineralisation along projected northern and southern strike extensions. A further 3 holes were designed at the time of drilling on 51350 local N to confirm intersections reported from historic drilling.

All holes were drilled -60° towards 220° on both the northern and southern lines. Holes RRA008-010 were drilled -60° towards 040° to twin historic holes. Drilling was undertaken initially with hammer RAB from surface. Due to repeated hole collapse and an inability to attain target depths of 55 m (thus providing complete head-tail coverage), the drill rig was converted to aircore rods with a 1 m cross over hammer. Contamination and hole collapse were more or less alleviated with this set-up, however, in many cases, sample recovery was very poor.

Transported regolith at Falchion is less than 2 m drilling depth and comprised both alluvial and colluvial sediments. Moderately weathered to fresh basement was intersected immediately below transported sediments. Basement lithologies include sandstone (variably muddy), siltstone, and massive medium-grained dolerite.

Encouraging gold values were returned from each of the three traverses, as shown below in Table 4.
Table 4 Falchion – Drill hole intercepts (100 ppb Au cut, 1 m internal waste)

<table>
<thead>
<tr>
<th>Hole ID</th>
<th>From</th>
<th>To</th>
<th>Thickness (m)</th>
<th>Intercept Au ppm</th>
<th>Gram metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRA002</td>
<td>15</td>
<td>16</td>
<td>1</td>
<td>0.260</td>
<td>0.260</td>
</tr>
<tr>
<td>RRA002</td>
<td>23</td>
<td>24</td>
<td>1</td>
<td>0.610</td>
<td>0.610</td>
</tr>
<tr>
<td>RRA003</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>0.100</td>
<td>0.100</td>
</tr>
<tr>
<td>RRA008</td>
<td>31</td>
<td>32</td>
<td>1</td>
<td>0.240</td>
<td>0.240</td>
</tr>
<tr>
<td>RRA009</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0.490</td>
<td>0.980</td>
</tr>
<tr>
<td>RRA009</td>
<td>5</td>
<td>26</td>
<td>21</td>
<td>2.855</td>
<td>59.955</td>
</tr>
<tr>
<td>RRA009</td>
<td>28</td>
<td>29</td>
<td>1</td>
<td>5.950</td>
<td>5.950</td>
</tr>
<tr>
<td>RRA009</td>
<td>42</td>
<td>61</td>
<td>19</td>
<td>0.482</td>
<td>9.158</td>
</tr>
<tr>
<td>RRA011</td>
<td>40</td>
<td>45</td>
<td>5</td>
<td>0.956</td>
<td>4.780</td>
</tr>
<tr>
<td>RRA011</td>
<td>47</td>
<td>48</td>
<td>1</td>
<td>3.050</td>
<td>3.050</td>
</tr>
<tr>
<td>RRA013</td>
<td>21</td>
<td>22</td>
<td>1</td>
<td>0.220</td>
<td>0.220</td>
</tr>
<tr>
<td>RRA014</td>
<td>22</td>
<td>24</td>
<td>2</td>
<td>0.430</td>
<td>0.860</td>
</tr>
<tr>
<td>RRB2325</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>0.417</td>
<td>1.251</td>
</tr>
<tr>
<td>RRB2326</td>
<td>36</td>
<td>40</td>
<td>4</td>
<td>0.218</td>
<td>0.872</td>
</tr>
</tbody>
</table>

Two mineralised zones were defined on the northern 51550 N traverse. Intersections of 1 m @ 260 ppb Au and 1 m @ 610 ppb Au within RRA002 are believed to represent the northern extension of the main mineralisation at Falchion. Gold anomalousism appears to occur within relatively thick (>6m) sandstone and siltstone units. Significant veining has not been identified. Gold anomalousism within these drill holes appears to be related to a contact between a 4-6m wide siltstone bed and a 6-10m weakly silicified sandstone bed. Gold occurs within both units, however higher grades appear to be preferentially contained within the siltstone. Sulphide bearing veinlets, identified in drill chips as goethitic veins are believed to carry gold have not been identified. A second subvertical zone of anomalousism defined by 3 m @ 417 ppb Au (RRB2325) and 4 m @ 218 ppb Au (RRB2326) is believed to represent a new mineralised corridor to the local east of Falchion. Gold anomalousism within these drill holes appears to be related to a contact between a 4-6m wide siltstone bed and a 6-10m weakly silicified sandstone bed. Gold occurs within both units, however higher grades appear to be preferentially contained within the siltstone. Sulphide bearing veinlets, identified in drill chips as goethitic veins are believed to carry gold.

Three drill holes on the 51350 N traverse were designed to twin historic drill holes, and returned comparable results confirming both the width and tenor of mineralisation. A best intercept of 21 m @ 2.86 g/t Au was returned from drill hole RRA009. This correlates directly with a historic intercept of 21 m @ 2.3 g/t Au in RRB2120. Gold mineralisation appears to be intimately associated with a massive zone of grey-green silica-sericite alteration within pervasively foliated (occasionally mylonitic) package of interbedded sandstone and siltstone beds. This is manifest as pervasive bleaching and iron staining within the upper more oxidised part of the profile. In fresher rock chips, silica-sericite-carbonate alteration associated with graphite and pyrite-arsenopyrite sulphide assemblages have been noted. Quartz veining within this interval was not significant. No relationship appears to exist between quartz veining and gold grade throughout the mineralised zone. +5 g/t gold grade identified in a 3 m wide quartz vein in RRA009 are not repeated in what appears to be the same vein in RRA010.

On the southern 51200 N traverse, an intercept of 2 m @ 430 ppb Au in RRA014 is believed to represent the southern strike extension to the main Falchion mineralisation. Mineralisation occurs preferentially within an iron stained siltstone dominant unit with interbeds of sandstone. The maximum intercept (1 m @ 760 ppb Au) correlated directly with a sulphide bearing quartz vein almost one metre wide. Similarly, intercepts of 5 m @ 956 ppb Au and 1 m @ 3.05 g/t Au in RRA011 may reflect the southern extension of a new subparallel mineralised corridor, identified in RRB2325 and RRB2326 on
Gold anomalism within this drill hole is related to a graphitic carbonaceous siltstone with interbedded sandstone lenses, carbonate alteration and pyrite-pyrrhotite sulphide assemblages.

Mineralisation at Falchion appears to be constrained to a north-south corridor (local grid) of sporadic anomalism over 350 m of strike. Local northing 51350 N contains the best gold intercepts defining a subvertical zone of mineralisation 5-10 m thick and with grade exceeding 2 g/t Au. Intercepts of this magnitude, however, do not appear to have any strike continuity. A complete coverage (head-tail) drill traverse (51400 N) 50 m further north contains no anomalism. To the south, mineralisation occurs as a 3-4 m wide drill intercept of approximately 2 g/t Au.

The lack of strike continuity of both width and tenor of gold suggests that there may be no simple control on mineralisation. The spatial distribution of gold currently suggests that high grade mineralisation may be controlled by the interplay of a number of structures. The proximity of dolerites to high grade intercepts on 51350 N is not believed to have influenced mineralisation. Whilst there appears to be a spatial correlation between gold tenor and proximity to dolerites, the lack of deformation, alteration and apparent primary mineralisation within dolerites suggests emplacement post gold mineralisation. Anomalism contained within dolerite in drill hole RRA009 is not considered primary, and may reflect remobilisation of gold, and subsequent scavenging (by carbonates related to the dolerite). These dolerites are more likely to have exploited a major structural discontinuity which may have affected gold emplacement.

Further work should comprise detailed field mapping and structural analysis prior to more drilling, with the intention of identifying key structural controls. Drilling results also need to be modelled in three dimensions to constrain preferred geometries. Plunge directions, cross cutting structures, and potential for deformed mineralisation should be considered.

ii) Sabre:

A total of 22 holes (RRN001-RRN022) were drilled at Sabre on three separate traverses. A single local-grid east-west traverse, comprising a total of seven holes (RRN016-022) was drilled on 50200 N to test for northern strike extensions to the Sabre mineralisation. Five holes (RRN001-005) were drilled along a local-grid north-south traverse to test for possible east-west striking stratigraphy (and mineralisation) associated with the hinge of an interpreted fold closure. A further ten holes (RRN010-015) were drilled on a single local-grid east-west traverse (49900 N) to test relatively unexplored stratigraphy in an areas believed to represent the western limb of the interpreted northwest plunging synform. A traverse of five drill holes planned on 50430 N and six drill holes (on two separate lines 49950 N and 50050 N) in the centre of the prospect were deemed lower priority and not drilled due to time constraints.

All holes were drilled -60° towards 040° on local-grid east-west traverses. The five holes drilled on the local-grid north-south traverse were drilled -60° towards 130°. Due to poor sample return with the 1 m cross-over hammer aircore at Falchion the drilling method was changed to Slimline (Narrow) Reverse Circulation for the remainder of the programme. An external booster compressor was used to increase sample recovery and increase penetration rates. All drill holes were initially labelled sequentially from RRC052. However, after completing the programme, all of these RRC prefixed holes were relabelled sequentially from RRN001 to reflect “Narrow” RC, and not confuse these holes with standard RC drill holes.

Transported overburden at Sabre is somewhat variable, with up to 5 m drill depth in places. Basement, in most cases, is completely to highly weathered saprolite for a few metres immediately below the transported regolith. Moderate to slightly weathered saprock is generally intersected by 10 m depth. Basement lithologies at Sabre included sandstone (variable mud content), siltstone, mudstone and
dolerite. Significant quartz veining and minor silica and sericite alteration was identified. Malachite, azurite and pyrite were identified in drill hole RRN009.

This drilling at Sabre returned very little anomalism. The northern traverse (50200 N) returned no anomalism, which indicates that any northern extensions of the Sabre and Sabre North mineralisation are not simply linear. The 10175 E traverse (RRN001-005) also returned disappointing results with a maximum intercept of 3 m @ 260 ppb Au (from 32 m) in RRN003. This is associated with a sandstone siltstone contact with iron stained quartz veining. The western traverse returned a maximum intercept of 2 m @ 690 ppb Au in RRN007 and 2 m @ 605 ppb Au in RRN010. Mineralisation occurs within iron stained interbedded sand and silt units. In RRN006, mineralisation appears to be related to fine ferruginous veinlets. Anomalous copper values (>100 ppm Cu) were returned over interval 30-40m within drill hole RRN009, correlating directly with observed malachite and azurite. This may comprise part of a separate phase of mineralisation, which has occurred throughout the Reynolds Range Corridor. Further work should be undertaken to assess the relative significance of such an event.

The relatively poor anomalism returned in this drilling suggests that the main zone of Sabre mineralisation may have geometries more complicated than the simple fold hypothesis. Whatever the geometry of mineralisation, the weakly anomalous results in drill holes RRN006 and RRN010 are encouraging, suggesting the presence of numerous subparallel mineralised corridors.

Mineralisation at the Sabre prospect is defined by gold anomalism over a 400 m relatively linear north-northwest-trending corridor closed off to the south by RAB drilling, and to the north by the current slimline drilling (traverse 50200 N). Mineralisation attains a maximum true thickness in excess of 20 m, with intercepts peaking at 1 m @ 3.4 g/t Au (RRB2043, from 28 m, section 49750 N). Deep drilling aimed at testing down dip potential of this high grade intercept failed to return significant results. Mineralisation at Sabre also exhibits poor correlation of results both across section and down dip. This may be due to a poor understanding of the structural controls on mineralisation. Detailed structural work particularly aimed at constraining geometric controls on mineralisation is recommended prior to further drilling.

iii) **Yataghan South:**

A total of 20 slimline RC holes (RRN023-RRN042) were drilled at the Yataghan south prospect. Drilling was undertaken on three separate local-grid east-west lines. The northern traverse (56800 N; RRN028-035) was designed to constrain the strike extent of a mineralised corridor defined by a 1.28 g/t and 1.4 g/t Au intercept within historic holes RRB2272 and RRB2278, respectively. The central traverse (56600 N; RRN037-042) was drilled between these two intercepts to verify the results and test for other mineralisation. A further six holes (56200N; RRN023-027) were drilled between historic drill traverses with maximum drill hole intercepts of 390 ppb (RRB2256), and 680 ppb Au (RRB2139). With the exception of two holes (RRN031-032), all holes were drilled -60° towards 040°. RRN031-032 were drilled -60° towards 220° to avoid a deep channel with large trees, and enable complete top to tail coverage.

Transported cover over the Yataghan South anomaly was found to exhibit variability in thickness, ranging from 0.5 to 9 m drill depth, and is predominantly a shallow veneer of fine sheet wash overlying thick, typically coarse (up to boulders), polymictic lithic and vein quartz colluvium. There are several metres of completely to highly weathered saprolite immediately beneath the transported regolith. Moderate to slightly weathered saprock is between 3.5 and 30 m drill depth. Basement lithologies at Yataghan South include variably muddy quartz sandstone, siltstone and mudstone.

Drilling at Yataghan South returned a number of encouraging anomalous results which are presented in Table 5.
Table 5 Yataghan South – Drill hole intercepts (100 ppb cut, 1 m internal waste)

<table>
<thead>
<tr>
<th>Hole ID</th>
<th>From</th>
<th>To</th>
<th>Thickness (m)</th>
<th>Intercept Au ppm</th>
<th>Gram metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRN026</td>
<td>13</td>
<td>14</td>
<td>1</td>
<td>0.170</td>
<td>0.170</td>
</tr>
<tr>
<td>RRN026</td>
<td>17</td>
<td>37</td>
<td>20</td>
<td>0.511</td>
<td>10.220</td>
</tr>
<tr>
<td>RRN037</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0.110</td>
<td>0.110</td>
</tr>
<tr>
<td>RRN037</td>
<td>10</td>
<td>11</td>
<td>1</td>
<td>0.200</td>
<td>0.200</td>
</tr>
<tr>
<td>RRN037</td>
<td>22</td>
<td>25</td>
<td>3</td>
<td>0.277</td>
<td>0.831</td>
</tr>
<tr>
<td>RRN038</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>0.550</td>
<td>0.550</td>
</tr>
<tr>
<td>RRN038</td>
<td>14</td>
<td>15</td>
<td>1</td>
<td>0.130</td>
<td>0.130</td>
</tr>
<tr>
<td>RRN038</td>
<td>29</td>
<td>30</td>
<td>1</td>
<td>0.110</td>
<td>0.110</td>
</tr>
<tr>
<td>RRN038</td>
<td>32</td>
<td>39</td>
<td>7</td>
<td>0.333</td>
<td>2.331</td>
</tr>
<tr>
<td>RRN038</td>
<td>48</td>
<td>49</td>
<td>1</td>
<td>0.140</td>
<td>0.140</td>
</tr>
<tr>
<td>RRN038</td>
<td>52</td>
<td>53</td>
<td>1</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>RRN039</td>
<td>36</td>
<td>37</td>
<td>1</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>RRN039</td>
<td>39</td>
<td>40</td>
<td>1</td>
<td>0.290</td>
<td>0.290</td>
</tr>
<tr>
<td>RRN039</td>
<td>52</td>
<td>54</td>
<td>2</td>
<td>2.355</td>
<td>4.710</td>
</tr>
</tbody>
</table>

Whereas no anomalism was identified in the 56800 N traverse, drilling undertaken on the 56600 N traverse suggests mineralisation may trend local-grid north-south, rather than northeast-southwest as previously thought. Anomalous intercepts within RRN038 and RRN039 including a maximum of 2 m @ 2.355 g/t Au (RRN039) provide good evidence for a local grid north-south zone of mineralisation. Anomalism within historic holes RRB2266 (11 m @ 260 ppb Au) and RRB2272 (12 m @ 650 ppb Au) are believed to represent the southern and northern extensions of this mineralisation, respectively. If so, drilling on the 56800 N traverse was incorrectly positioned to test for northern strike extensions. Anomalous intercepts within drill holes RRB2272 and RRB2278, including a maximum of 12 m @ 813 ppb Au (RRB2278) have potential for both northern and southern strike extensions. Gold anomalism on this traverse is generally related to bedding contacts between sandstone and siltstones or interbedded sandstone-siltstone units. In the majority of cases, veining and/or alteration was not identified within anomalous intervals. Anomalous intervals should be relogged to clarify the control on gold. It is extremely likely gold is contained within thin quartz veinlets.

Drilling undertaken on the southern traverse (56200 N) returned a maximum intercept of 20 m @ 511 ppm Au (from 17 m) within hole RRN026. No other drill holes within the traverse returned elevated gold results. This intercept appears to correlate with a roughly local grid north-south trending corridor of anomalism defined in historic holes RRB2138, RRB2139 (to the south) and RRB2136 (to the north). Northern and southern strike extensions to this anomalous corridor remain untested. Gold anomalism within RRN026 occurs as a wide zone of low grade gold mineralisation, associated with a zone of pervasively foliated, iron stained, silicified sandstone and siltstone units. The amount and distribution of veining recognised within the anomalous zone is somewhat sporadic. Only 4 metres (of the total 20) contained visible veining. Preliminary relogging undertaken on RRN026 suggests there to be multiple veining, or the presence of gold zonation around the vein array.

6.4.2 2006 Drilling

RAB drilling was completed on EL 23888 in June 2006 and tested Lander beds south of and parallel to Sabre and Falchion. A total of 27 holes (RRB2468-2494) for 981 metres were completed. Drill holes are shown on Plate 4 and all drill data are included in the digital Appendix. This drilling has been discussed in detail in English, 2006 and the sections below have been taken from this report.
South-West of the Sabre-Falchion prospects 27 RAB holes were drilled on a 2000m x 400m grid pattern with holes inclined at 60° to 223.5° grid. Drilling was designed to test for mineralisation parallel and to the south-south-west of the Sabre-Falchion gold trend. This drilling also tested an east-west orientated structure, inferred from aeromagnetic data, which passes through the Reward Prospect. This area was formally only tested with lag sampling, most of which was deemed ineffective as it was sampling talus composed of Reynolds Range Group sediments and derived from the nearby Reynolds Range.

Nine of the twenty-seven drill holes returned weakly anomalous gold assays from initial 4m composite samples. The best result being 4m (composite) at 21ppb Au and 19ppm As from 28m hosted by fine-grained sandstone with translucent to grey quartz veining in RRB2493 which was drilled on the easternmost line. The weak gold anomalies appear to be concentrated on the northern ends of the drill lines forming a corridor linking similar weak mineralisation identified 3km to the west-north-west in RAB drilling on the Yuendumu Road undertaken in 2005 (ie The Reynolds Range to Giles Range traverse).

6.0 EXPLORATION EXPENDITURE AND BUDGET

In the second year of tenure two drilling programs were completed. Drilling comprised step-out from known gold prospects and grass roots drilling of new areas. Additional work including geophysical reprocessing, geological interpretation and 3D computer modelling of advanced prospects took place.

The Year 2 exploration programs confirmed the presence of extensive low level gold anomalism but failed to locate significant extensions of potentially economic grade/width gold mineralisation. No deeper RC or DC drilling is warranted at this time.

Total expenditure for the period to 11 August 2006 was $348,921 as shown in Table 7 below.

Table 6 – EL 23888 Expenditure to 11 August 2005

<table>
<thead>
<tr>
<th>Cost Element</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries and Wages</td>
<td>95,158</td>
</tr>
<tr>
<td>Contractors/Consultants</td>
<td>3,454</td>
</tr>
<tr>
<td>Drafting/Computing & Supplies</td>
<td>1,570</td>
</tr>
<tr>
<td>Aerial Photography</td>
<td>626</td>
</tr>
<tr>
<td>Drilling</td>
<td>134,069</td>
</tr>
<tr>
<td>Drilling Supplies</td>
<td>2,320</td>
</tr>
<tr>
<td>Earthworks</td>
<td>3,500</td>
</tr>
<tr>
<td>Work Area Heritage Clearances</td>
<td>4,370</td>
</tr>
<tr>
<td>Assays & Sample Storage</td>
<td>25,966</td>
</tr>
<tr>
<td>Petrography</td>
<td>1,360</td>
</tr>
<tr>
<td>Camp & Field Consumables & Equipment</td>
<td>2,726</td>
</tr>
<tr>
<td>Vehicles & Fuel</td>
<td>16,799</td>
</tr>
<tr>
<td>Safety</td>
<td>422</td>
</tr>
<tr>
<td>Travel & Airfares</td>
<td>3,006</td>
</tr>
<tr>
<td>Accommodation & Meals</td>
<td>3,610</td>
</tr>
<tr>
<td>Communication</td>
<td>1,971</td>
</tr>
<tr>
<td>Freight</td>
<td>2,483</td>
</tr>
<tr>
<td>Administration/Overheads</td>
<td>45,511</td>
</tr>
<tr>
<td>Total</td>
<td>$348,921</td>
</tr>
<tr>
<td>Covenant</td>
<td>$159,000</td>
</tr>
</tbody>
</table>
In the third year of tenure, RAB drilling to test for a strike extension to the Pine Hill Cu-Au mineralisation and infill RAB drilling to follow-up on recently identified low level drilling anomalies is planned. BLACK KNIGHT IS IN LANDER TENEMENT EL23655

Table 7 – EL 23888 Proposed Budget 12 August 2006 – 11 August 2007

<table>
<thead>
<tr>
<th>Cost Element</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling</td>
<td>12,000</td>
</tr>
<tr>
<td>Geochemical Analysis</td>
<td>2,500</td>
</tr>
<tr>
<td>Drafting, Computing, Airphotos</td>
<td>500</td>
</tr>
<tr>
<td>Salaries and Wages</td>
<td>5,000</td>
</tr>
<tr>
<td>Camp and Field Costs</td>
<td>1,500</td>
</tr>
<tr>
<td>Vehicles/Fuel</td>
<td>1,500</td>
</tr>
<tr>
<td>Travel/Accommodation</td>
<td>2,000</td>
</tr>
<tr>
<td>Administration/Overheads</td>
<td>3,750</td>
</tr>
<tr>
<td>Total</td>
<td>$28,750</td>
</tr>
</tbody>
</table>

7.0 BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>Grainsize</th>
<th>Sed</th>
<th>Ig/Meta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>cy</td>
<td><1/256 mm</td>
</tr>
<tr>
<td>Silt</td>
<td>st</td>
<td>1/256 - 1/32 mm</td>
</tr>
<tr>
<td>Very Fine</td>
<td>vf</td>
<td>1/32 - 1/8 mm</td>
</tr>
<tr>
<td>Fine</td>
<td>fg</td>
<td>1/8 - 1/4 mm</td>
</tr>
<tr>
<td>Medium</td>
<td>mg</td>
<td>1/4 - 1/2 mm</td>
</tr>
<tr>
<td>Coarse</td>
<td>cg</td>
<td>1/2 - 1mm</td>
</tr>
<tr>
<td>Very coarse</td>
<td>vg</td>
<td>1 - 2 mm</td>
</tr>
<tr>
<td>Granule</td>
<td>gn</td>
<td>2 - 4mm</td>
</tr>
<tr>
<td>Pebble</td>
<td>pb</td>
<td>4 - 64 mm</td>
</tr>
<tr>
<td>Cobble</td>
<td>cb</td>
<td>64 - 256 mm</td>
</tr>
<tr>
<td>Boulder</td>
<td>bu</td>
<td>>256</td>
</tr>
<tr>
<td>Pegmatitic</td>
<td>pa</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stratigraphy/Beds</th>
<th>Formal</th>
<th>Informal</th>
<th>Regolith</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gardiner Sandstone</td>
<td>GS</td>
<td>GS</td>
<td>Regolith Layer A</td>
</tr>
<tr>
<td>Antrim Plateau Basalt</td>
<td>AP</td>
<td>MS</td>
<td>Regolith Layer B</td>
</tr>
<tr>
<td>Killi Killi Fm</td>
<td>KK</td>
<td>Marker Siltstone, inferred</td>
<td>IMS</td>
</tr>
<tr>
<td>Bald Hill Sequence</td>
<td>BH</td>
<td>Irvine Conglomerate</td>
<td>IG</td>
</tr>
<tr>
<td>Black Shale Bed</td>
<td>BS</td>
<td>Black Shale Bed</td>
<td>BS</td>
</tr>
<tr>
<td>Coyote No.1 Fault</td>
<td>CF</td>
<td>Coyote fold hinge</td>
<td>FA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deformation Type</th>
<th>Boudinaged</th>
<th>BD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Brecciated</td>
<td>BX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crenulated</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Folded</td>
<td>FD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fractured weakly</td>
<td>CW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fractured moderately</td>
<td>CM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fractured strongly</td>
<td>CS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foliation weak</td>
<td>FW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foliation moderate</td>
<td>FM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foliation strong</td>
<td>FS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lineated</td>
<td>LN</td>
<td></td>
</tr>
</tbody>
</table>

Alteration Style	Fracture Controlled	FC	
--------------------	Foot wall (VMS)	FW	
	Hanging wall (VMS)	HW	
	Patchy	PT	
	Pervasive	PV	
	Selective Replacement	SR	
	Vein Selvedge	SV	

<table>
<thead>
<tr>
<th>Alteration Intensity</th>
<th>Weak: partial replacement of primary minerals</th>
<th>WA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moderate: alteration approx. equal proportion to primary minerals</td>
<td>MA</td>
</tr>
<tr>
<td></td>
<td>Strong: alteration dominant, some primary minerals remain</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Intense: total replacement of primary minerals</td>
<td>IA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vein Style</th>
<th>Anastomosing</th>
<th>AN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boudinage</td>
<td>BO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>En echelon</td>
<td>EE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Folded</td>
<td>FD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planar</td>
<td>PL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ptygmatic</td>
<td>PT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sigmoideal</td>
<td>SG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stockwork</td>
<td>SW</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mineralisation Style</th>
<th>Blebs</th>
<th>BB</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disseminated</td>
<td>DS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interstitial Network</td>
<td>NW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Massive</td>
<td>MA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stockwork</td>
<td>MW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stringers/Inflelts</td>
<td>SE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vein halo</td>
<td>VH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vein texture</th>
<th>Buck</th>
<th>BK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Breccia</td>
<td>BX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comb-cockade</td>
<td>CB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colloform</td>
<td>CF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chaledonic</td>
<td>CH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fibrous</td>
<td>FB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infill</td>
<td>IN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laminated</td>
<td>LM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recrystallised</td>
<td>RX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Replacement</td>
<td>RP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saccaroidal</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vuggy</td>
<td>VG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tension gashes</td>
<td>VT</td>
<td></td>
</tr>
<tr>
<td>Rock Group</td>
<td>Rock Type</td>
<td>Code</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Ultramafic Extrusive</td>
<td>Komatiite</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Undifferentiated Ultramafic</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basaltic Komatiite</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Ultramafic Intrusive</td>
<td>Undifferentiated Pyroxenite</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peridotite</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dunite</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hornblendeite</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Mafic Extrusive</td>
<td>Undifferentiated Tholeiitic Basalt</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-mag Basalt</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Picritic Basalt</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spilitic Basalt</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Mafic Intrusive</td>
<td>Undifferentiated Gabbro</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Troctolite</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norite</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anorthosite</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dolerite</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gabbronorite</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetitite</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Intermediate Extrusive</td>
<td>Undifferentiated Andesite</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trachyte</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trachy-andesite</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Intermediate Intrusive</td>
<td>Undifferentiated Diорite</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monzonite</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syenite</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porphyry</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Acid Extrusive</td>
<td>Undifferentiated Rhyolite</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dacite</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhyodacite</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Acid Intrusive</td>
<td>Undifferentiated Granite</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monzogranite</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syenogranite</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alkali feldspar granite</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Granodiorite</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tonalite</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porphyry</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pegmatite</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aplite</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Lamprophyre/Kimberlites</td>
<td>Undifferentiated Phyric lamprophyre</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lamproite</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kimberlite</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbonatite</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Vein material</td>
<td>VN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massive sulphide</td>
<td>AM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contamination</td>
<td>XX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment</td>
<td>Undifferentiated</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sediment</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mudstone</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Siltstone</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sandstone</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interbedded - mud & silt</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interbedded - sand & silt</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conglomerate</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breccia</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limestone</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dolomite</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coal</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Chemical Sediments</td>
<td>Undifferentiated</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIF</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chert</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaporites</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Massive Ironstone</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phosphorites</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Metamorphic</td>
<td>Slate</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Unknown protolith</td>
<td>Schist</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gneiss</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Granulite</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marble</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphibolite</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hornfels</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Metamorphic</td>
<td>Quartzite</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Sedimentary protolith</td>
<td>Psammite</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semipelite</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pelite</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slate</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metacarbonate/ marble</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calcisilicate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schist</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gneiss</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Granulite</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphibolite</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hornfels</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Metamorphic</td>
<td>Metafelsic</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Igneous protolith</td>
<td>Metamafic</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meta-ultramafic</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schist</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gneiss</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Granulite</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphibolite</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Metamorphic</td>
<td>Mylonite</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Intensely deformed</td>
<td>Cataclasite</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Hydrothermal</td>
<td>Undifferentiated</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mylonite</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skarn</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Mining Codes</td>
<td>Mullock/Waste</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tailings</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cavity</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stope</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backfill</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stockpile</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lost Core</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Variants - Minerals</td>
<td>Variants - Minerals</td>
<td>Variants - Texture</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Albite ab</td>
<td>Oxidised sulphide os</td>
<td>Adcumulate at</td>
<td></td>
</tr>
<tr>
<td>Actinolite ac</td>
<td>Orthopyroxene ox</td>
<td>Agglomerate al</td>
<td></td>
</tr>
<tr>
<td>Andalusite ad</td>
<td>Phlogopite pg</td>
<td>Amygdaloidal ay</td>
<td></td>
</tr>
<tr>
<td>Anhydrite ai</td>
<td>Phosphate(ic) ph</td>
<td>Banded bd</td>
<td></td>
</tr>
<tr>
<td>Ankerite ak</td>
<td>Plagioclase pl</td>
<td>Breccia bx</td>
<td></td>
</tr>
<tr>
<td>Amphibole am</td>
<td>Pyroxene px</td>
<td>Cherty ch</td>
<td></td>
</tr>
<tr>
<td>Asbestos ao</td>
<td>Quartz qt</td>
<td>Chill margin cz</td>
<td></td>
</tr>
<tr>
<td>Apatite ap</td>
<td>Rutile ru</td>
<td>Coarse-grained cg</td>
<td></td>
</tr>
<tr>
<td>Barite ba</td>
<td>Sanidine se</td>
<td>Crystal Tuff tx</td>
<td></td>
</tr>
<tr>
<td>Biotite bi</td>
<td>Sphene sf</td>
<td>Cumulus cm</td>
<td></td>
</tr>
<tr>
<td>Calcite ca</td>
<td>Smectite sg</td>
<td>Downhole fining df</td>
<td></td>
</tr>
<tr>
<td>Carbonate cb</td>
<td>Siderite sj</td>
<td>Fine-grained fg</td>
<td></td>
</tr>
<tr>
<td>Chloritoid cd</td>
<td>Sillimanite sm</td>
<td>Flaser bedding fz</td>
<td></td>
</tr>
<tr>
<td>Chlorite cl</td>
<td>Cassiterite sn</td>
<td>Flow top breccia fx</td>
<td></td>
</tr>
<tr>
<td>Cordierite co</td>
<td>Staurolite so</td>
<td>Gradational gt</td>
<td></td>
</tr>
<tr>
<td>Carbonaceous cs</td>
<td>Sphalerite sp</td>
<td>Granophyric gp</td>
<td></td>
</tr>
<tr>
<td>Clay cy</td>
<td>Serpentine sr</td>
<td>Groundmass gd</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene cx</td>
<td>Sulphur sv</td>
<td>Lamination lm</td>
<td></td>
</tr>
<tr>
<td>Dolomite(ic) do</td>
<td>Sylvite sy</td>
<td>Lapilli Tuff tl</td>
<td></td>
</tr>
<tr>
<td>Diopside dp</td>
<td>Talc tc</td>
<td>Lenticular bedding lc</td>
<td></td>
</tr>
<tr>
<td>Epidote ep</td>
<td>Tremolite tm</td>
<td>Lithic lk</td>
<td></td>
</tr>
<tr>
<td>Feldspar fd</td>
<td>Tourmaline to</td>
<td>Massive ma</td>
<td></td>
</tr>
<tr>
<td>Ferruginous fe</td>
<td>Wolframite wf</td>
<td>Matrix mx</td>
<td></td>
</tr>
<tr>
<td>Fluorite fi</td>
<td>White Mica wm</td>
<td>Medium-grained mg</td>
<td></td>
</tr>
<tr>
<td>Fuchsite fu</td>
<td>Zircon zr</td>
<td>Mesocumulate mc</td>
<td></td>
</tr>
<tr>
<td>Garnet ga</td>
<td>Zeolite zt</td>
<td>Migmattic mm</td>
<td></td>
</tr>
<tr>
<td>Graphite gf</td>
<td></td>
<td>Muddy md</td>
<td></td>
</tr>
<tr>
<td>Gypsum gm</td>
<td></td>
<td>Oolitic oo</td>
<td></td>
</tr>
<tr>
<td>Goethite go</td>
<td></td>
<td>Orthocumulate oc</td>
<td></td>
</tr>
<tr>
<td>Gossan gs</td>
<td></td>
<td>Phyllitic pi</td>
<td></td>
</tr>
<tr>
<td>Grunerite gu</td>
<td></td>
<td>Pilowed pw</td>
<td></td>
</tr>
<tr>
<td>Halite ha</td>
<td></td>
<td>Poorly sorted ps</td>
<td></td>
</tr>
<tr>
<td>Hornblende hb</td>
<td></td>
<td>Porphyritic pp</td>
<td></td>
</tr>
<tr>
<td>Haematite hm</td>
<td></td>
<td>Porphyrolastic pb</td>
<td></td>
</tr>
<tr>
<td>Ilmenite im</td>
<td></td>
<td>Porphyroelastic pc</td>
<td></td>
</tr>
<tr>
<td>Kaolinite kn</td>
<td></td>
<td>Sandy sd</td>
<td></td>
</tr>
<tr>
<td>K-feldspar ks</td>
<td></td>
<td>Shaley sh</td>
<td></td>
</tr>
<tr>
<td>Leucite lu</td>
<td></td>
<td>Silicification si</td>
<td></td>
</tr>
<tr>
<td>Leucoxene lx</td>
<td></td>
<td>Silty st</td>
<td></td>
</tr>
<tr>
<td>Magnesite me</td>
<td></td>
<td>Spinifex sx</td>
<td></td>
</tr>
<tr>
<td>Manganese-Co-Fe mf</td>
<td></td>
<td>Tuff tf</td>
<td></td>
</tr>
<tr>
<td>Mica mi</td>
<td></td>
<td>Uphole fining uf</td>
<td></td>
</tr>
<tr>
<td>Manganese mn</td>
<td></td>
<td>Volcanic breccia vb</td>
<td></td>
</tr>
<tr>
<td>Montmorillonite mr</td>
<td></td>
<td>Volcaniclastic vc</td>
<td></td>
</tr>
<tr>
<td>Muscovite ms</td>
<td></td>
<td>Wallrock wr</td>
<td></td>
</tr>
<tr>
<td>Oxide od</td>
<td></td>
<td>Welded Tuff tw</td>
<td></td>
</tr>
<tr>
<td>Olivine ol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opalised op</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Weathering and Other Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base of transported</td>
<td>BOA</td>
</tr>
<tr>
<td>Base of complete oxidation</td>
<td>BOCO</td>
</tr>
<tr>
<td>Top of palaeochannel</td>
<td>TOP</td>
</tr>
<tr>
<td>Top of saprolite</td>
<td>TOSR</td>
</tr>
<tr>
<td>Top of fresh rock</td>
<td>TOFR</td>
</tr>
<tr>
<td>Top of basement</td>
<td>TOB</td>
</tr>
<tr>
<td>Water table</td>
<td>WT</td>
</tr>
</tbody>
</table>

Regolith Group

<table>
<thead>
<tr>
<th>Group</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeolian</td>
<td>EO</td>
</tr>
<tr>
<td>Alluvium</td>
<td>AL</td>
</tr>
<tr>
<td>Calcrete</td>
<td>CT</td>
</tr>
<tr>
<td>Clay Zone</td>
<td>CY</td>
</tr>
<tr>
<td>Colluvium</td>
<td>CV</td>
</tr>
<tr>
<td>Ferricrete</td>
<td>FK</td>
</tr>
<tr>
<td>Gossan</td>
<td>GS</td>
</tr>
<tr>
<td>Lacustrine</td>
<td>LA</td>
</tr>
<tr>
<td>Lacustrine Evaporites</td>
<td>LE</td>
</tr>
<tr>
<td>Lag</td>
<td>LG</td>
</tr>
<tr>
<td>Lateritic Residuum</td>
<td>LT</td>
</tr>
<tr>
<td>Mottled Zone</td>
<td>MZ</td>
</tr>
<tr>
<td>Saprock</td>
<td>SR</td>
</tr>
<tr>
<td>Saproline</td>
<td>SA</td>
</tr>
<tr>
<td>Silcrete</td>
<td>SC</td>
</tr>
<tr>
<td>Soil</td>
<td>SL</td>
</tr>
<tr>
<td>Transported</td>
<td>TR</td>
</tr>
</tbody>
</table>

Colour

<table>
<thead>
<tr>
<th>Colour</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>bk</td>
</tr>
<tr>
<td>Blue</td>
<td>bl</td>
</tr>
<tr>
<td>Blue-green</td>
<td>bg</td>
</tr>
<tr>
<td>Brown</td>
<td>br</td>
</tr>
<tr>
<td>Cream</td>
<td>cw</td>
</tr>
<tr>
<td>Green</td>
<td>gr</td>
</tr>
<tr>
<td>Green-grey</td>
<td>gg</td>
</tr>
<tr>
<td>Grey</td>
<td>gy</td>
</tr>
<tr>
<td>Grey-brown</td>
<td>gb</td>
</tr>
<tr>
<td>Olive green</td>
<td>og</td>
</tr>
<tr>
<td>Orange</td>
<td>or</td>
</tr>
<tr>
<td>Orange-brown</td>
<td>ob</td>
</tr>
<tr>
<td>Pink</td>
<td>pk</td>
</tr>
<tr>
<td>Purple</td>
<td>pu</td>
</tr>
<tr>
<td>Red</td>
<td>rd</td>
</tr>
<tr>
<td>Red-brown</td>
<td>rb</td>
</tr>
<tr>
<td>Translucent</td>
<td>tt</td>
</tr>
<tr>
<td>White</td>
<td>wh</td>
</tr>
<tr>
<td>Yellow</td>
<td>ye</td>
</tr>
<tr>
<td>Yellow-brown</td>
<td>yb</td>
</tr>
<tr>
<td>Yellow-green</td>
<td>yg</td>
</tr>
</tbody>
</table>

* Light (l) and dark (d) prefix optional

Sample Condition

<table>
<thead>
<tr>
<th>Condition</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry – no water</td>
<td>D</td>
</tr>
<tr>
<td>Moist – can be moulded by</td>
<td>M</td>
</tr>
<tr>
<td>Wet – a slurry that is wet to the touch, but no free water</td>
<td>W</td>
</tr>
<tr>
<td>Saturated – sample suspende in free running water, note that water may contain suspended clay particles and therefore be discoloured</td>
<td>S</td>
</tr>
</tbody>
</table>

Weathering

<table>
<thead>
<tr>
<th>Weathering Level</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh rock</td>
<td>No visible signs of rock weathering</td>
<td>FR</td>
</tr>
<tr>
<td>Slightly weathered</td>
<td>Stained along discontinuity surfaces, original colour and texture recognisable</td>
<td>SW</td>
</tr>
<tr>
<td>Moderately weathered</td>
<td>Stained throughout, original texture recognisable throughout</td>
<td>MW</td>
</tr>
<tr>
<td>Highly weathered</td>
<td>Original colour and hardness severely altered, some texture visible</td>
<td>HW</td>
</tr>
<tr>
<td>Completely weathered</td>
<td>Rock exhibits soil-like properties (ie can be remoulded), some rock fragments may remain</td>
<td>CW</td>
</tr>
</tbody>
</table>

Hardness

<table>
<thead>
<tr>
<th>Hardness Level</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconsolidated</td>
<td></td>
<td>UC</td>
</tr>
<tr>
<td>Very weak - may be broken by hand</td>
<td></td>
<td>VW</td>
</tr>
<tr>
<td>Weak - Crumbles under firm blow with sharp end of geological hammer</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Moderately weak - Cannot be cut by hand into triaxial specimen</td>
<td>MW</td>
<td></td>
</tr>
<tr>
<td>Moderately strong - 5mm indentation with sharp end of geological hammer</td>
<td>MS</td>
<td></td>
</tr>
<tr>
<td>Strong - Hand held specimen can be broken with single blow of geological hammer</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Very strong - More than one blow of geological hammer required to break specimen</td>
<td>VS</td>
<td></td>
</tr>
<tr>
<td>Extremely strong - More than one blow of geological hammer required to break specimen</td>
<td>ES</td>
<td></td>
</tr>
</tbody>
</table>