The Nolans REE-U-P deposit, Northern Territory, Australia: a mineral systems perspective

David Huston, Roland Maas, Andrew Cross, Kelvin Hussey, Terrence Mernagh, Geoff Fraser and David Champion
The Nolans REE-U-P deposit, Northern Territory, Australia: a mineral systems perspective

David Huston\(^1\), Roland Maas\(^2\), Andrew Cross\(^1\), Kelvin Hussey\(^3\), Terrence Mernagh\(^1\), Geoff Fraser\(^1\) and David Champion\(^1\)

\(^1\)Geoscience Australia
\(^2\)School of Earth Sciences, University of Melbourne
\(^3\)Arafura Resources
Nolans – regional geology

- Located north of major suture
- Nearby 1570-1530 Ma granitic magmatism
- Associated with 1590-1550 Ma, high T-low P metamorphism
- Affected by 450-300 Ma Alice Springs Orogeny
Nolans – deposit geology

- Global resource: 56 Mt @ 2.6% TREO, 190 ppm U₃O₈ and 12% P₂O₅
- Averages ~2500 ppm Th
- Extends over 3.5 km × 2 km area
- Three zones
 - North
 - Central
 - Southeast

- North Zone
 - Hosted by granitic gneiss
 - ENE-striking, N-dipping apatite veins
 - Individual veins to 70-m-thick
 - Largely primary position

- Central Zone – extensively remobilised (Schoneveld et al, 2015)
Nolans – hosts and ores

Granite gneiss (~1806 Ma; Collins and Williams, 1995)

Pegmatite (1550 ± 6 Ma; this study)

Massive/brecciated apatite → calcite-allanite

Diopside-garnet altered wall rock
Nolans – conditions of mineralisation (?)

Fluid inclusions

- Mostly multiphase (liquid-NaCl-other solids)
- $T_h: 200-350^\circ C$
- $T_m (\text{NaCl}): 156-246^\circ C$ (23-36 eq wt % NaCl)

Oxygen isotopes

- $\Delta^{18}O_{\text{dp-gt}} = 0.6\%_\circ$ (two pairs)
- $T \sim 410^\circ C$
- $\delta^{18}O_{\text{fluid}} \sim 7-8\%_\circ$

$\Rightarrow P \sim 100-370$ (mostly 130-200) MPa

- Depth $\sim 3.8-14$ km
Nolans – age of mineralisation

• Initial results (discordia) indicated an age of 1240 ± 15 Ma (apatite U-Pb)

• Analysis of second sample indicated an age of 964 ± 16 Ma

WTF?
Nolans – age of mineralisation (???)

- Pegmatite U-Pb monazite age → 1550 ± 6 Ma
- Allanite Th-Pb age → 1522 ± 21 Ma
- Nd-Sm isochron ages → 1443 ± 14 Ma and 967 ± 20 Ma
- 40Ar-39Ar ages → ~370 Ma and ~345 Ma
- Age of mineralisation: ~1550 Ma, ~1522 Ma, ~1443 Ma, ~1240 Ma, ~965 Ma (\times2), ~370 Ma or ~345 Ma (take your pick)
- Most likely age: 1550-1522 Ma
At 1525 Ma, $\varepsilon_{\text{Nd}} - \frac{^{87}\text{Sr}}{^{86}\text{Sr}}$, variations can be explained by three component mixing:

- Nolans ore fluid (NB: $\varepsilon_{\text{Nd}} \sim 5$, $\frac{^{87}\text{Sr}}{^{86}\text{Sr}} \sim 0.5035$)
- Older, juvenile crustal source (AP1)
- Older, more evolved crustal source (AP2)
Mineral systems

Geodynamic and tectonic processes concentrate elements to form source regions

Tectonic events trigger mineralising events (the “critical window”)

Post-depositional processes can substantially change mineral deposits (especially at Nolans Bore)
Nolans mineral system – formation of metal source and architecture

- Nolans Bore located ~150 km north of southern margin of Aileron Province
- This margin interpreted as site of north dipping subduction from 1820 to 1740 Ma (CAT granite suite (Zhao and McCuloch, 1995); VHMS deposits)
- Convergence and associated subduction enriched mantle and produced back-arc basin → metal source and architecture used during ~1550-1520 Ma Nolans event (and later Teapot (1130 Ma) and Mud Tank (730 Ma) alkaline events)
- Cratonised during Strangway (1740-1690 Ma) and Leibig (1640-1635 Ma) Orogenies
Nolans mineral system – extraction from source

- Post-orogenic relaxation at end of 1590-1550 Ma low P-high T Chewings Orogeny reactivated architecture and caused very low degree partial melting of pre-existing metasomatised mantle to produce P- and REE-enriched melts.
- Lower crust melting caused by heat flux produced I-type magmas of 1550-1530 Ma Southwark Suite.
Nolans mineral system – mineralisation

- P-REE-U-Th-rich alkaline melts ascend into mid-crust, utilising reactivated structures
- In mid-crust, magmatic immiscibility and/or crystallisation produce P-REE-U-Th-rich magmas/magmatic hydrothermal fluids
- Fluids move into upper crust along reactivated structures
- Apatite deposited by decrease in temperature and/or pressure or reaction with wall rocks
Conclusions (from Beyer, 2017)

• *Discrete zones of biotite-rich schist in two unrelated granites*
• *Geochronological and geochemical data implies genetic relationship between schists and their host granite*
• *New mineral growth in schists at ca 1575 Ma indicates regional metasomatism during the Chewings Orogeny*
• *Schists enriched in F-U-REE-metals compared to host granite*

 => schists represent zones of metasomatised granite

• *Metasomatism driven by fluids derived from a Mesoproterozoic alkaline (phosphatic) source*

Evidence for a regional late-Chewings REE-U-F mineralising event in central Aileron Province
High Th (2500 ppm) and U (157 ppm) → 270 mW/m³ radiogenic heat production (vs ~5 mW/m³ for “normal” granite)

⇒ Local highly elevated thermal gradient associated with Nolans Bore

Thermal modelling indicates T ~340°C at 5 km depth (i.e. likely depth of mineralisation); decreasing at shallower depths

⇒ High radiogenic-driven temperatures would have been maintained until unroofing (during Alice Springs Orogeny – 450-300 Ma)

Lower closure temperature isotopic systems yield younger ages → extensive isotopic re-equilibration due to high Th (and U) concentrations
• Between ~1520 and ~450 Ma, southern Aileron Province was quiescent
• Alice Springs orogenesis produced several periods of uplift (450-440 Ma Rodingan, 390-380 Ma Pertnjara, 365-355 Ma Brewer and 340-320 Ma Eclipse)
• This cooled the Nolans “reactor”, freezing in isotopic ages
• This also allowed ingress of meteoric waters, causing extensive remobilisation (e.g., Central Zone – Schoneveld et al., 2015)
• Recent supergene enrichment has caused local enrichment
Conclusions

- The Nolans deposit is the product of a mineral system that extended over 1.8 billion years
- Subduction at 1820-1740 Ma enriched mantle, producing a source that was tapped at 1550-1520 Ma
- Nolans mineralising event formed near end of low P-high T Chewings Orogeny
- It involved low degree partial melting of enriched mantle, ascent of P-REE-Th melt and evolution of magmatic-hydrothermal fluid
- Mineralisation occurred at depth of ~5 km from ~400°C, saline fluids (??)
- Post mineralisation radiogenic heating has extensively disturbed isotopic systems, yielding anomalously young apparent ages → implications for geochronology of other U- and/or Th-rich systems
- Ingress of meteoric waters during Alice Springs Orogeny caused extensive remobilisation in Central Zone (Schoneveld et al., 2015)
- DON'T be dogmatic about Nolans – it will make a fool of you
Thank you

Phone: +61 2 6249 9577
Web: www.ga.gov.au
Email: David.Huston@ga.gov.au
Address: Cnr Jerrabomberra Avenue and Hindmarsh Drive, Symonston ACT 2609
Postal Address: GPO Box 378, Canberra ACT 2601