ROBERTSON RESEARCH (SINGAPORE) PRIVATE LIMITED

Report No. 1101

A PETROLEUM GEOCHEMICAL EVALUATION OF SELECTED SAMPLES FROM TEN WELLS
by
J.P. ARMSTRONG
K.H.NG

Project No. S/II/823/9
May 1982
repared for:

Robertson Research (Australia) Pty. Ltd. A.D.C. House, 77, Pacific Highway North Sydney, N.S.W. 2060, Australia.

ONSHORE

SUMMARY

I INTRODUCTION 1
II RESULTS AND DISCUSSION 2
Organic Richness and Pyrolysis Results 2
（a）ERLDUNDA－1 2
（b）EXOIL LUCY CREEK－1 3
（c）EXOIL HUCKITTA－1 3
（d）FARMOUNT DRILLERS AMMAROO－1 4
（e）BMR－13 4
（f）BMR HUCKITTA－1 4
（g）BMR HUCKITTA－6 5
（h）BMR HUCKITTA－7 5
（i）BMR ELKEDRA－5 5
（j）BMR HAY RIVER－10 5
III CONCLUSIONS 7
TABLE $1(a-j):$＇Rock Eval＇Pyrolysis Data and Organic Richnessof Ten Wells Analysed

SUMMARY

A total of fifty-six samples were received representing ten wells drilled in Australia. Subsequent organic carbon determinations (using the Leco WR 12 carbon analyser) and pyrolysis analyses (using the Girdel 'Rock Eval' Mk II) showed that all wells were generally both lean in organic material with only a few relatively 'rich' horizons and also that much of the kerogen is inertinite. No significant source rocks were identified, however horizons in the Ammaroo-1 and BMR-13 wells showed some potential as a minor gas source.

I

INTRODUCTION

A total of fifty-six samples from ten wells were received for total organic carbon and 'Rock Eval' pyrolysis determination. The batch of samples was made up as follows:

| ERLDUNDA-1 | ** 32 samples |
| :--- | ---: | :--- |
| EXOIL LUCY CREEK-1 | 3 samples |
| EXOIL HUCKITTA-1 | 3 samples |
| FARMOUNT DRILLERS AMMAROO-1 | 3 samples |
| BMR-13 | 5 samples |
| BMR HUCKITTA-1 | 1 sample |
| BMR HUCKITTA-6 | 2 samples |
| BMR HUCKITTA-7 | 4 samples |
| BMR ELKEDRA-5 | 1 sample |
| BMR HAY RIVER-10 | 2 samples |

A variety of geological information was provided including available well completion reports.

The results of the analyses carried out are given in Table 1 ($a-j$).

RESULTS AND DISCUSSION

(1) Organic Richness and Pyrolysis Results (Table 1 (a-j))

All samples received were prepared for total organic carbon analysis. Those samples with an organic carbon content of a suitable magnitude (normally greater than 0.5%) were selected for further analysis. A discussion of the results, well by well is given below.
(a) ERLDUNDA-1 (Table 1(a))

Thirty-two samples were received from this well covering the interval 2070' to 4185'. The analysed section, when viewed overall, is organically lean with all samples showing below average organic carbon contents. Many of the organic carbon determinations are below 0.3%, however, at several horizons particularly below 3000', some relatively rich samples (i.e. greater than 0.5% TOC) are identified and these have been further analysed by 'Rock Eval' pyrolysis. The pyrolysis results for this well section are characterised by low hydrogen indices and consequently very poor potential yields. The low hydrogen indices can most probably be attributed to inertinite as the dominant kerogen type. The potential yield values indicate that the rocks encountered in the analysed section have no significant source potential. High production indices are a phenomena of the lean nature of the samples and do not necessarily indicate the presence of significant oil staining.
(b) EXOIL LUCY CREEK-1 (Table $1(b))$

Three samples, one core and two cuttings were received for analysis. The organic carbon analysis indicate that the core sample is of average organic content whereas the two cutting samples are of only fair organic content. All three samples were further analysed, using pyrolysis methods. The potential yield values indicated by pyrolysis analyses are below those normally expected of a commercial source rock. Hydrogen indices, although higher than the previous well indicate that the rocks probably contain a mixture of inertinite and vitrinite and therefore may be marginally gas-prone. No source potential is envisaged for these rocks. Production indices are high for sample depths 3524° and 3490'-4530' indicating the presence of minor oil staining.
(c) EXOIL HUCKITTA-1 (Table $1(c)$)

Three cutting samples covering the depth range 2100^{\prime} to 2690^{\prime} were received for analysis. Organic carbon determination revealed that only the uppermost sample (2100'-2120') was of rich enough quality to be further analysed. The lower two samples were organically very lean. Pyrolysis hydrogen index data indicate that the sample from depth 2100'-2120' probably contains a mix of inertinite and vitrinite giving a low to moderate hydrogen index of 131. The potential yield is however low and therefore no significant source potential is envisaged. The production index is relatively high indicating minor oil staining. It is not possible to comment, however, on the origin of this hydrocarbon stain from the data available.
(d) FARMOUNT DRILLERS AMMAROO-1 (Table 1(d))

Three core samples from depths 185', 214^{\prime} and 218' were analysed. The organic carbon determinations indicate an average content in the two upper samples and a lean content in the lower sample. Subsequent pyrolysis analysis on the core samples from depths 185^{\prime} and 214^{\prime} has revealed that kerogen types are probably predominantly inertinite in the 185^{\prime} sample (hydrogen index 52), with a possibility of some vitrinite in the sample taken from 214 (i.e. hydrogen index 155). Both samples show relatively high production indices suggesting possible oil staining. The potential yield of the sample from 214^{\prime} suggests it may be considered as a poor to fair source rock, probably a source of minor gas only.
(e) BMR-13 (Table 1(e))

Four ditch cuttings and one core sample were analysed. These covered a depth range 560^{\prime} to 3230^{\prime}. The core sample proved to be organically lean and no further analysis was carried out. The ditch cutting samples showed fair ($0.55 \%-0.66 \%$) organic carbon contents and further analyses were carried out using pyrolysis methods. The results indicate a mixture of kerogen types, probably inertinite and vitrinite. Potential yields indicate that none of the analysed horizons have any significant source potential.

(f) BMR HICKITTA-1 (Table $1(f)$)

One core sample from 203' was analysed. Organic carbon determination proved to be lean and no further analyses were carried out.
(g) BMR HUCKITTA-6 (Table $1(\mathrm{~g})$)

Two core samples taken at 365' 6年" and 437' were analysed for organic carbon content. The uppermost sample was organically lean and no further analyses were carried out. The lower sample indicated an average organic carbon content (1.17\% TOC) and was subjected to further pyrolysis analysis. The pyrolysis hydrogen index suggests that the kerogen of the sample is composed mainly of inertinite. Although the potential yield is low and therefore the rock cannot be considered to be a source of hydrocarbons, the production index is high suggesting slight oil staining.
(h) BMR HUCKITTA-7 (Table 1(h))

Four core samples were analysed from this well section covering a depth range 101^{\prime} to 404'. Only the sample located at 148' was considered organically rich enough for further analysis. The results of the pyrolysis analysis strongly suggest that inertinite is the dominant kerogen type within this sample. No source rock potential is envisaged for the analysed section of this well.
(i) BMR ELKEDRA-5 (Table 1(i))

One core sample from this well was analysed for total organic carbon. The result showed that the sample was organically lean and therefore no further analyses were carried out.

BMR HAY RIVER-10 (Table 1(j))
Two core samples from depths 82^{\prime} and 99^{\prime} were analysed. The $99 '$ sample had an average total organic carbon content ($1.24 \% \mathrm{TOC}$)
and was subjected to further analysis using pyrolysis, the 82' sample was organically lean and no further analyses were performed. The pyrolysis results suggest a poor gas-prone source probably containing a mixture of vitrinitic and inertinitic keroqen.

The potential yield is just 'fair' ($2.7 \mathrm{kq} / \mathrm{ton}$) and therefore the 99° sample may provide a minor gas source at full thermal maturity.

CONCLUSIONS

On the basis of the organic carbon and＇Rock Eval＇pyrolysis data the following conclusions have been reached：
－Samples in the ten wells analysed have organic carbon contents ranging from lean（TOC $\leqslant 0.5 \%$ ）through fair （ $0.5 \% 1.0 \% \mathrm{TOC}$ ）to average（ $1.0 \%-2.0 \% \mathrm{TOC}$ ）．The majority of samples are however，organically lean．
－On the basis of pyrolysis evidence only the dominant kerogen type in each well is inertinite with secondary ？vitrinite／？liptinite in some wells（particularly BMR－13， Exoil Lucy Creek－1）．
－No significant hydrocarbon source rocks have been iden－ tified，possible minor gas sources are postulated in BMR Hay River－10（99．5＇－99．55＇）and Farmount Drillers Ammaroo－ 1 （214＇）．

		PYROLYSIS DATA							
SAMPLE DEPTH (feet)	ANALYSED LITHOLOGY	$\begin{gathered} \text { TOC } \\ \% \end{gathered}$	$\underset{\max }{\mathrm{T}} \underset{\mathrm{C}}{\mathrm{Cl}} \stackrel{\mathrm{HI}}{\mathrm{TOC})} \mathrm{g}$	$\begin{gathered} 01 \\ (\mathrm{mg} / \mathrm{g} \\ \mathrm{TOC}) \end{gathered}$	SI FREE HYDROCARBON (mg/g of rock)	SI BOUND HYDROCARBON (mg/g of rock)	$\begin{gathered} \mathrm{S3} \\ \mathrm{CO}_{2} \\ (\mathrm{mg} / \mathrm{g} \\ \text { of rock) } \end{gathered}$	PRODUCTION INDEX	POTENTIAL YIELD (kg/ton)

ERLDUNDA-1 (Table l(a))

2110-2150
2150-2190
2190-2240
2240-2270
2270-2310
2310-2340
2350-2370
2370-2420
sh, brn-blk

2440-2470
2470-2520
2520-2570
2570-2610
2620-2670
2670-2720
2730-2780
2780-2830
2830-2880
2880-2930

sh, brn-blk, calc. $\quad 0.73$	
	0.27

slt, gy-blk, calc. 0.33

sh, brn-blk	0.16
a/a	0.11
sh, blk, slty	0.22

a/a	0.22
a/a	0.24

a/a. 0.44
sh
$\begin{array}{ll}a / a & 0.29\end{array}$
$\begin{array}{ll}\text { h, blk/bl-blk } & 0.37 \\ & 0.29\end{array}$
sh, blk, calc 0.11
$\begin{array}{ll}\text { sh, brn-blk } & 0.74\end{array}$
$\begin{array}{ll}\text { sh, blk/brn-blk } & 0.18 \\ \text { sh, blk calc. } & 0.20\end{array}$
sh, blk/brn-blk 0.20
sh, blk 0.18
sh, blk/brn-blk 0.12
3090-3140
sh, blk/gy-blk
0.18

3140-3190
sh, blk, slty $\quad 0.70$
3190-3240
sh, blk
0.31

3270-3280
3320-3340
3500-3510
$\begin{array}{cc}\text { a/a } \\ \text { sh, blk, calc. } & 0.57\end{array}$
3580-3620
3630-3650
3750-3770
sh, brn-blk, calc.
sh, blk, calc.
0.43

4050-4100
4110-4130
sh, med dk gy
0.33

4180-4185.
$\begin{array}{lllllllll}0.65 & 458 & 13 & 21 & 0.03 & 0.09 & 0.14 & 0.25 & 0.1\end{array}$

EXOIL LUCY CREEK-1 (Table $1(\mathrm{~b})$)

$3524^{\prime} 3^{\prime \prime}-4 \prime \prime$	sh, med dk gy	1.14	440	68	11	0.35	0.78	0.13	0.31	1.1
$3220-3270$	sh, blk	0.57	446	170	50	0.07	0.97	0.29	0.07	1.0
$3490-3530$	a/a	0.64	445	121	32	0.22	0.78	0.21	0.22	1.0

EXOIL HUCKITTA-1 (Table $1(c))$

| $2100-2120$ | sltst, med dk gy shly | 0.70 | 444 | 131 | 31 | 0.24 | 0.92 | 0.22 | 0.21 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2120-2150$ | sltst, gy-blk | 0.18 | | | | | | | |
| $2660-2690$ | sh, blk | 0.25 | | | | | | | |

- 1 -

TABLE $1(a-j):$ 'ROCK EVAL' PYROLYSIS DATA AND ORGANIC RICHNESS OF TEN WELLS ANALYSED

SAMPLE OEPTH (feet)	ANALYSED LITHOLOGY	$\begin{gathered} \text { TOC } \\ \% \end{gathered}$	PYROLYSIS DATA								REMARKS
			${ }_{\text {max }}{ }^{\text {T }}$	$\begin{gathered} \mathrm{HI} \\ (\mathrm{mg} / \mathrm{g} \\ \mathrm{TOC}) \end{gathered}$	$\begin{gathered} 01 \\ (\mathrm{mg} / \mathrm{g} \\ \mathrm{TOC}) \end{gathered}$	SI FREE HYDROCARBON (mg/g of rock)	S2 BOUND HYDROCARBO (mg/g of rock)	$\begin{aligned} & \mathrm{S3} \\ & \mathrm{CO}_{2} \\ & (\mathrm{mg} / \mathrm{g} \\ & \text { of } \mathrm{rock}) \end{aligned}$	PRODUCTION INDEX	POTENTIAL YIELD (kg/ton)	
FARMOUNT DRILLERS AMMARO0-1 (Table 1(d))											
185 (core)	sh, brn-blk, slty	1.21	444	52	33	0.33	0.64	0.40	0.34	1.0	
214 (core)	sh/sltst, blk	1.21	440	155	26	0.76	1.88	0.32	0.29	2.6	
218 (core)	sh, blk	0.47									
BMR-13(Table 1(e))											
560-570 (c	re) $s h, 01-g y / g n-g y$	0.59	446	154	72	0.06	0.91	0.43	0.06	1.0	
1344' ${ }^{\prime \prime}$	sh, med gy	0.31									
2612-2620	a/a	0.59	443	177	42	0.07	1.05	0.25	0.06	1.1	
3000-3040	sh, dk gy/med gy	0.66	449	92	56	0.20	0.61	0.37	0.25	0.8	
3220-3230	slt, it gy/blk	0.55	446	174	45	0.06	0.96	0.25	0.06	1.0	

```
BMR HUCKITTA-1 (Table l(f))
203'-203' l" mostymed gy, carb., 0.33
```

BMR HUCKITTA-6 (Table 1(g))
365' 62" mdst, gy, sndy
$\begin{array}{lllllllllllllll}437^{\prime} & 4^{\prime \prime}-6^{\prime \prime} & a / a & 1.17 & 441 & 60 & 19 & 0.32 & 0.71 & 0.23 & 0.31 & 1.0\end{array}$
BMR HUCKITTA-7 (Table l(h))

101'9ぬ"-102' \&"	sltst/mdst, med gy	0.30								
148'9" - 148'10"	sltst, lt gy	1.14	443	53	14	0.35	0.61	0.16	0.36	1.0
151' 3"	sltst, med gy	0.38								
404' ${ }^{\prime \prime}$	a/a	0.26								

BMR ELKEDRA-5 (Table 1(i))
286' 12" - 3í" sitst, lt gy 0.49
BMR HAY RIVER-10 (Table $1(\mathrm{j})$)
82.51-82.57 mdst, gy/blk coaly 0.43
$\begin{array}{lllllllllllllllll}99.5-99.55 & a / a & 1.24 & 439 & 147 & 23 & 0.90 & 1.83 & 0.29 & 0.33 & 2.7\end{array}$

- 2 -

ABBREVIATIONS USED IN ANALYTICAL DATA SHEETS

-	-	Sample not analysed
\star	-	No results obtained
N.D.P.	-	No Determination Possible
N.O.F.	-	No Organic Fluorescence
N.D.O.F.	-	No Determination Organic Fluorescence

LITHOLOGY

