Combined Annual Technical Report

For period ending 8th November 2014

GR042-12
Stromberg-Quantum - EL25222, EL25229, EL28970, EL29242

Commodity: Rare Earths

PINE CREEK SD5208 1:250,000
FERGUSSON RIVER SD5212 1:250,000
Batchelor 5171 1:100,000
Daly River 5070 1:100,000
Fergusson River 5269 1:100,000
Jinduckin 5169 1:100,000
Pine Creek 5270 1:100,000
Reynolds River 5071 1:100,000
Tipperary 5170 1:100,000
Wingate Mountains 5069 1:100,000

Report No. 2015-002
Prepared for Spectrum Rare Earths Ltd.
By L. Petrella
December 2014
Content

Content .. 1
List of Figures .. 2
List of Tables ... 2
1. SUMMARY .. 3
2. LOCATION AND ACCESS ... 4
3. TENEMENT STATUS AND OWNERSHIP ... 6
4. GEOLOGY .. 7
5. PREVIOUS EXPLORATION ... 9
 Exploration by Other Companies .. 9
 Previous Exploration by TUC Resources (Years 1 - 7) ... 9
6. EXPLORATION DURING YEAR 8 .. 13
 Basic Information on Stromberg Trial Pit ... 13
 Targeting Information .. 15
 Pit Description ... 15
 Photographs of Trial Pit STRTP2014 .. 16
 GRAPHIC LOG .. 18
 Assay Information .. 19
 Orientation .. 19
 Samples taken from Trial Pit STRTP2014: ... 20
7. CONCLUSIONS/RECOMMENDATIONS ... 21
8. REFERENCES .. 22
9. APPENDICES ... 23
 APPENDIX A ... 23
List of Figures

Figure 1: Location Map showing project tenements for 2014 .. 5
Figure 2: Fergusson River Regional Geology (AGSO 250K Geology map). ... 8
Figure 3: Location Map of Stromberg; Trial Pit STRTP2014 (GDA94, z52) ... 14
Figure 4: Location Map of Stromberg showing Trial Pit STRTP2014 area in black box (GDA94, z52)15
Figure 5: Photograph of Stromberg Trial Pit STRTP2014’s northern wall 16
Figure 6: Photograph showing the full extent of Trial Pit STRTP2014, samples taken on the eastern
and western walls of the pit shown by red crosses ... 17
Figure 7: Log of Trial Pit STRPT2014 to 2.2m depth (Log on Northern wall of pit) 18
Figure 8: Schematic diagram showing the physical orientation of STRTP2014 19

List of Tables

Table 1: Tenement Status and Ownership ... 6
Table 2: Stromberg Trial Pit STRTP2014 Details .. 13
Table 3: STRTP2014 samples taken to date – Assays Pending .. 19
1. SUMMARY

The project area is approximately 140km due south of Darwin and consists of 4 tenements: EL25222, EL25229, EL28970 and EL29242.

During Year 8 full rehabilitation was undertaken on EL25222 and the digging of a trial pit for further metallurgy analysis.

Further exploration will continue at the Knightfall Prospect to test the projects rare earth element potential by continuing soil geochemistry sampling over the prospect to better define the areas HREE potential.
2. LOCATION AND ACCESS

The project area is approximately 140km due south of Darwin and consists of 4 tenements: EL25222, EL25229 EL28970 and EL29242 covering around 290 km2 (Figure 1).

EL25222 and EL29242 are accessed from Darwin via the Stuart Highway onto the Douglas Daly Road to Ooloo Crossing; after which, a track to Fish River transects the southern and western portion of the Licence. Access is only possible in the dry season, as the crossings at Ooloo Crossing and Cattle Creek are impassable after rains. The eastern boundary of the Licence is defined by the Daly River and other NS-trending river systems within EL25222 including Fish River and Bamboo Creek. Most of the ground is open and with low relief and numerous sinkholes. To the south a series of ridges and mesas trend SE along the southern boundary of the tenement.

EL25229 is accessed via the Stuart Highway to Douglas Crossing via Hayes Creek. Tipperary Station provides access to the north western part of EL25229. Tracks extend west in all directions from Douglas Crossing. Access to the southern part of the tenement is via the Stuart Highway heading west through Umbrawarra Gorge. Access is limited during the wet season. Most of the ground is open and with low relief. The tenement boundary in the east follows the approximate geological boundaries of outcropping Depot Creek Sandstone and Stray Creek Sandstone.

EL28970 is situated within the Dorisvale station and is accessed from Dorisvale station access roads from the Stuart Highway and the Dorisvale crossing. Access is only possible in the dry season as the crossings are impassable after rains. Most of the ground is open and with low relief with occasional ridges and cut by the Daly River.
Figure 1: Location Map showing project tenements for 2014.
3. TENEMENT STATUS AND OWNERSHIP

Tenement Status and Landowner information is summarised in the Table 1.

Table 1: Tenement Status and Ownership

<table>
<thead>
<tr>
<th>Tenement</th>
<th>Group</th>
<th>Project Area</th>
<th>Prospects</th>
<th>Area (Km²)</th>
<th>Blocks</th>
<th>Date Granted</th>
<th>Expiry</th>
<th>Current Year (Today)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL25222</td>
<td>GR042-09</td>
<td>HREE District</td>
<td>Stromberg, Scaramanga</td>
<td>125.29</td>
<td>39</td>
<td>9/11/2006</td>
<td>8/11/2014</td>
<td>9</td>
</tr>
<tr>
<td>EL28970</td>
<td>GR042-09</td>
<td>HREE District</td>
<td>Knightfall, Craig</td>
<td>126.27</td>
<td>39</td>
<td>5/03/2012</td>
<td>4/03/2018</td>
<td>3</td>
</tr>
<tr>
<td>EL29242</td>
<td>GR042-09</td>
<td>HREE District</td>
<td></td>
<td>2.12</td>
<td>4</td>
<td>26/07/2012</td>
<td>25/07/2018</td>
<td>3</td>
</tr>
</tbody>
</table>

EL25222 – Partial waiver from reduction (surrender 18 of the 57 blocks) submitted in Nov 14.

EL25229 – Partial waiver from reduction (surrender 12 blocks of the 23 blocks) submitted in Nov 14.

EL28970 – Partial waiver from reduction (surrender 54 of the 93 blocks) submitted in Feb 14.

EL29242 – No reduction was done.

EL29026 – Was dropped in July 2014
4. GEOLOGY

The tenement group is situated near the western margin of the Pine Creek Orogen (Figure 2). Descriptions of the regional geology can be found in several texts, including Ahmad et al., 1993; Ahmad, 1998; Pontifex & Mendum, 1972; Dundas et al., 1987; Edgoose et al., 1989 and Pietsch 1989.

Middle Proterozoic sediments of the Tolmer Group are mapped as overlying the western portion of EL25222 and EL25229. The Tolmer Group is a sequence of arenite, siltstone and dolomite up to 1600m thick unconformably overlying Early Proterozoic Finniss River Group sediments. The Stray Creek Sandstone and Hinde Dolomite are the most common stratigraphic units of the Tolmer Group within EL25222 and EL25229. Fault splays from the Giants Reef Fault to the west offset and thrust blocks of Stray Creek Sandstone adjacent to Hinde Dolomite.

The Cambrian Antrim Plateau Volcanics is mapped as overlying portions of the Tolmer Group. Further east, limestones and quartzarenites of the Cambro-Ordovician Daly River Group (comprising Tindall Limestone and Jinduckin Formation) form the Daly Basin.

In the east EL25229 covers the eastern edge of the Daly Basin with Proterozoic sediments exposed along the western boundary. Simplified stratigraphic components and geological relationships are described as follows:

- Early Proterozoic folded (NW trending axial plane - doubly plunging) South Alligator Group (iron and carbonate rich siltstones, shales, tuffs and greywackes) and Burrell Creek Formation (Finniss River Group sediments) have been intruded by a later, Early Proterozoic granitoid suite.

- These rocks are unconformably overlain by Early to Mid Proterozoic, westerly dipping shallow marine sandstones known as Depot Creek and Stray Creek Formations.

- These rocks are further unconformably overlain by a Mid to Late Proterozoic, semi concordant, limestone sequence (known as the Daly River Group (Tindall Limestone, Jinduckin Formation and Oolitic Dolomite).

- These rocks are disconcordantly overlain by a Jurassic and Cretaceous sequence of sands and silts.

- Multiple periods of erosion show many sequences onlapping onto different aged rock groups.

A number of NW trending faults are interpreted to offset the geology.
Figure 2: Fergusson River Regional Geology (AGSO 250K Geology map).
5. PREVIOUS EXPLORATION

Exploration by Other Companies

Previous exploration from the 1960’s to present has been reviewed and summarised in previous annual reports for these tenements. Exploration ranged from airborne geophysics to drilling exploring for phosphate, and base metals, geochemical exploration was also undertaken for diamonds, uranium and nickel.

On EL25222, Suttons explored for uranium base metal deposits with drilling at the Beeboom crossing area and along the northern boundary of EL25222.

Phosphate exploration within the Daly Basin showed limited potential with only thin horizons carrying just over 1% P_2O_5.

Old copper workings at Douglas are adjacent to EL25229 and also a soil exploration program was undertaken by CRA on the northern boundary of the tenement for base metals and manganese.

Previous Exploration by TUC Resources (Years 1 - 7)

During Year 1, a historical data compilation was completed for all tenements in the project. The results of this work are outlined in detail in the previous annual reports. Work included:

- Checking historic tenure in MapInfo, using a MapInfo file supplied by DPIFM (containing exploration tenure, but not mining tenure).
- Checking NTGS datasets, such as COREDAT, MODAT, Explorer 3;
- Checking open file company reports submitted for previous tenure covering the tenements;
- Georeferencing relevant maps and plans into MapInfo to obtain locations of samples and mapped geology;
- Checking the sacred sites register (AAPA).

During Year 2, exploration focused on EL25222. In addition, target identification and ranking were performed for all tenements. An airborne radiometric and magnetic survey (7,116 line km) was completed on EL25222. A full assessment of uranium targets within 2 tenements (EL25222 and EL25229) based on structure, stratigraphic setting and radiometrics were undertaken and highlighted over 20 targets for reconnaissance work. Helicopter based reconnaissance of these targets identified five high priority areas for follow up geochemical and ground based geophysics programs. Geochemical samples were collected with 71 rock chips, 271 soil samples, and 18 stream samples over all tenements.

In Year 3 TUC Resources applied for, and was awarded, an NT government drilling collaboration at the Green Prospect to assist TUC Resources in testing the depth to uranium
prospective basement rocks beneath the Tolmer sediments in an area where cover may be much shallower than previously believed.

Exploration during Year 3 included infill geochemical sampling on EL25222 and EL25229, with 548 soil and 125 rock chip samples taken. Reconnaissance sampling at a new target was undertaken on EL25229, 5 geochemical samples and 7 spectrometer assays were completed. A soil auger program was commenced on EL25222, 23 holes were completed. RC drilling was completed at EL25222 targeting uranium mineralisation discovered at the Energy Prospect in year 2. A total of 20 holes for 1,147m were drilled, with assays pending.

During Year 4, exploration was undertaken primarily on EL25222 and EL25229 of the Daly River Group. RC drilling was undertaken at the Green Ant Prospect and the Quantum Prospect (newly discovered uranium, gold and REE deposit), diamond drilling was undertaken at the Green and Quantum Prospects and RAB drilling was undertaken at the Wildcard Prospect. A total of 4770m were drilled.

Geochemical sampling was undertaken at various prospects on EL25229 (8 samples) and on EL25222 at the Green Prospect (14 rock chip). Also results from 268 soil auger samples taken in 2009 from EL25222 (the Green Prospect) were returned, results from which confirmed uranium anomaly targets with corresponding multi-element highs.

Drilling was undertaken at the Green Ant Prospect (4 holes for 310m, 253 samples). No significant mineralisation was intersected, but uranium prospective Proterozoic basement beneath the Tindal Cover was intersected at shallow depths. Drilling at the Green Prospect (part of the Northern Territory Government’s “Bringing Forward Discovery” collaboration initiative, 2 holes for 1066.9m, 64 samples) did not reach the unconformity between the Tolmer group and the lower Proterozoic sediment but did demonstrate that the unconformity was shallower to the north.

Reinterpretation of geology across the group revealed a new prospect on EL25229, named Quantum. Re-sampling of historic drill core returned significant uranium intercepts including 0.5m @ 4,224ppm U3O8 (0.42% U3O8 or 4.24kg/t U3O8). Also other elements were associated with mineralisation including gold-silver-bismuth-zinc. A down hole gamma logging program was completed on 7 of the historic drill holes in the area. This confirmed the presence of several additional target zones.

RC drilling (8 RC holes for 802m, and 2 RC precollars, 753 samples) and diamond drilling (2 diamond tails for 524.8m, 179 samples) were completed to test the prospect. Significant mineralisation was intersected including 50m @ 1.55% TREO (Total Rare Earth Oxide) from 245m and 2.3m @ 2.75% TREO from 374m. Gold and Silver mineralisation was also noted associated with mineralisation.

During Year 5, exploration was undertaken primarily on EL25222 and EL25229 of the Daly River Group. RC drilling (54 RC holes for 1,698m) was undertaken at the Energy Prospect (now named Stromberg) and at the Quantum Prospect (19 RC Holes for 2,447m and 18 DDH
Holes for 3,482.5m). Shallow RC drilling (22 RC holes for 604m) and geochemical sampling (14 Rock Chip pulps and 278 soil auger pulps from EL25222) was also undertaken at the Green Prospect (now named Drax). Reconnaissance with a hired hand-held XRF machine was also undertaken on EL25222. Also metallurgical and petrographic work was completed on samples from the Stromberg Prospect (EL25222) and the Quantum Prospect (EL25229).

During Year 6 at the Stromberg Prospect (EL25222) 16 RC holes were drilled (418m with 229 samples taken) and 5 diamond holes (44 samples) were drilled for metallurgical sampling (see assay work and metallurgy work in the current year (Year 7), section 6.2.2). Drilling has confirmed both the presence of significant near surface HREE mineralisation and also assisted in the interpretation of extensions to known REE mineralisation. A suite of samples were submitted for mineralogical and metallurgical testing to provide an early assessment of the physical and chemical processing properties of the Stromberg Prospects secondary Xenotime rare earth mineralogy. In addition, a Lidar survey was completed over the Stromberg Prospect to provide accurate elevations for drill hole locations and for future resource modeling.

At the Scaramanga Prospect (5km NE of the Stromberg Prospect in EL25222) a total of 224 Gridded soil samples were taken as well as 139 samples from the Skyfall North Prospect. Results of up to 190ppm Yttrium were returned from the Scaramanga soil samples associated with an airborne radiometric signature comparable to the Stromberg Prospect. Anomalous results were also returned from the Skyfall North Prospect. A total 7 RC holes (220m with 165 samples taken) were drilled at the Scaramanga Prospect which intersected shallow HREE mineralisation of a similar nature to the Stromberg Prospect mineralisation.

No further on-ground exploration was completed at the Quantum REE prospect (EL25229) however considerable interpretation and data analysis was completed.

A total of 11 soils and 1 rock chip sample were taken on EL25229 during a helicopter reconnaissance program to test district REE potential. Very weakly anomalous REE results were returned with best result of 345ppm TREE at a weak radiometric anomaly 3.5km NE of the Quantum Prospect.

A total of 3 rock chip and 6 soil samples were collected during a helicopter reconnaissance program to test district REE potential at Knightfall (EL28970). Results were returned with anomalous results for uranium (37ppm U max) and REE (418.5ppm max TREE). One soil sample was collected in EL25223 with no significant results returned. The tenement was not renewed at the end of year 6.

During Year 7, Geological logging, sampling and metallurgical work was done on 5 diamond drill holes at the Stromberg Heavy Rare Earth Prospect (drilled in Year 6) in EL25222 and rehabilitation commenced at the Stromberg Prospect (EL25222) focusing on erosion control of the tracks leading into the prospect. A half core composite (3.8-8m) sample from 2012 Stromberg diamond drill hole STDH03 was submitted to ANSTO Minerals for QWEMSCAN and Mineral Liberation Analysis (MLA). The purpose of this testing was to more accurately define the typical Xenotime phase mineralogy at the Stromberg Prospect, assess Gangue mineral
characteristics and make a preliminary assessment on the susceptibility of this material type to more typical beneficiation methods such as froth flotation and magnetic separation.

Spectrum’s conclusions from this test work can be summarised as follows:

- Gangue mineralogy is relatively inert kaolin, iron minerals and predominantly quartz;
- The mineral liberation of xenotime particles from gangue was relatively good with little or no grinding work;
- It is possible to hypothesise that the Stromberg mineralised material could be susceptible to concentration methods such as froth flotation and magnetic separation given the mineral liberation characteristics exhibited. Particles examined illustrated efficient mineral liberation and exposure of mineral surfaces (this conclusion is subject to further grinding test work recommended by ANSTO minerals).
- The typical presence of unusual spherical aggregates and small (<5 µm) particles of Y-phosphate/Xenotime may be the reason for the more advantageous partial leaching of Y+REE under relatively mild, acidic atmospheric leach conditions observed for other samples from the Stromberg deposit.

Geochemical soil sampling was undertaken at the Knightfall Heavy Rare Earth Prospect (EL28970). A total of 171 Gridded soil samples were taken at nominal 1km line spacing with samples taken every 100 metres. Results of up to 65ppm Yttrium were returned closely associated with the airborne radiometric signature and gravity gradient interpreted fault. The samples were assayed with ICPMS for rare earths, base metals and indicator elements (ppm detection) with a fusion finish on rare earths. Full rehabilitation was carried out at the Quantum Prospect (EL25229) which included the cleanup of 58 drill pads. Rehabilitation work at the Wildcard Prospect (also in EL25229) included the cleanup of 28 drill pads.
6. EXPLORATION DURING YEAR 8

Due to the focus of Skyfall Prospect, Spectrum exploration work was limited on GR042-12. However, full rehabilitation was undertaken on EL25222 (Stromberg Prospect). All the drill pads were cleaned and rehabilitated to encourage regrowth.

Moreover, more bulk sample was taken from a newly dug trial pit at Stromberg prospect for further metallurgical testing. Details on this new trial pit (STRTP2014) are displayed below. All data are attached in Appendix A.

Basic Information on Stromberg Trial Pit

STRTP2014 location is displayed in Figure 3 and Figure 4 and details are listed in Table 2 below.

<table>
<thead>
<tr>
<th>Table 2: Stromberg Trial Pit STRTP2014 Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
</tr>
<tr>
<td>Coordinates Grid</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Depth</td>
</tr>
<tr>
<td>Width</td>
</tr>
<tr>
<td>Length</td>
</tr>
<tr>
<td>Start Elevation</td>
</tr>
<tr>
<td>Tenement</td>
</tr>
<tr>
<td>Method</td>
</tr>
<tr>
<td>Date Commenced</td>
</tr>
<tr>
<td>Date Completed</td>
</tr>
</tbody>
</table>
Figure 3: Location Map of Stromberg; Trial Pit STRTP2014 (GDA94, z52)
Targeting Information

Trial pit STRTP2014 is a secondary phase of work made by Spectrum to re-investigate the metallurgical potential of the Stromberg Heavy Rare Earth Prospect. An exploration target of 1.5Mt @ 0.46% TREO (87% HREO) has been published for this prospect. Bulk samples (approximately 1t) have been dispatched to NAGROM in Perth.

Pit Description

STRTP2014 consists of three different units which have been sampled; red, yellow and white zones. The units are not flat lying but are irregular and wrap around one another. Chert bands are observed which are horizontal beds in the western wall of the pit but become disturbed and broken in the northern wall where they appear vertically. More horizontal bedding is seen in the eastern wall with a more consistent dip of approximately 15°/090° (dip/dip direction).
Photographs of Trial Pit STRTP2014

Trial pit STRTP2014’s northern wall shows the most detail possibly being a fault affected area.

Figure 5: Photograph of Stromberg Trial Pit STRTP2014’s northern wall.
Figure 6: Photograph showing the full extent of Trial Pit STRTP2014, samples taken on the eastern and western walls of the pit shown by red crosses.

Variation in chert band orientation from the horizontal bands on the eastern and western walls.
Chert bands which are horizontally bedded in the eastern wall are here broken and vertical.

Pale/white powdery material which is ore grade material.

Figure 7: Log of Trial Pit STRPT2014 to 2.2m depth (Log on Northern wall of pit).
Assay Information

Table 3: STRTP2014 samples taken to date – Assays Pending

<table>
<thead>
<tr>
<th>Hole ID</th>
<th>From</th>
<th>To</th>
<th>Sample ID</th>
<th>TREO pct</th>
<th>HREO/pct</th>
<th>MREO/pct</th>
<th>LREO/pct</th>
<th>MEUREO/pct</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRTP2014</td>
<td>30</td>
<td>80</td>
<td>1004044</td>
<td>0.92</td>
<td>94.97</td>
<td>3.95</td>
<td>1.07</td>
<td>13.46</td>
</tr>
<tr>
<td>STRTP2014</td>
<td>80</td>
<td>130</td>
<td>1004045</td>
<td>0.80</td>
<td>95.31</td>
<td>3.65</td>
<td>1.03</td>
<td>13.12</td>
</tr>
<tr>
<td>STRTP2014</td>
<td>100</td>
<td>150</td>
<td>1004046</td>
<td>0.88</td>
<td>95.23</td>
<td>3.69</td>
<td>1.09</td>
<td>12.96</td>
</tr>
</tbody>
</table>

These samples were submitted to Bureau Veritas Darwin on 30 October 2014, Submission number TUCSSS00171. The samples were taken on the 23 October 2014 using a small backhoe machine. This meant the horizons selected were fairly broad given the size of the machine bucket.

Orientation

Schematic Diagram showing the orientation of STRTP2014:

Figure 8: Schematic diagram showing the physical orientation of STRTP2014.
Samples taken from Trial Pit STRTP2014:

No witness samples taken (piles left beside the pit which can be collected if necessary). Trial pit STRTP2014 has now been filled in. No photographs of the samples were taken. Material is evident from the photographs in this report. Furthermore, samples previously taken from this area of work are numerous and include drill core, therefore availability of the material within these samples should never be a problem for Spectrum to reassess. This has been shown with the sampling of this trial pit.

The sampling of STRTP2014 was carried out based only on the depth of the pit and not to geological boundaries. Figure 6 displays the basic sample locations which were taken from STRTP2014 for the 30 samples which were taken but not submitted. This method of sampling is unbiased and appropriate for bulk sample collection. The purpose of this sampling and test work is to test the mineralogy and metallurgy of the area, for the prospect to ever be considered as economic the material would have to be from intervals greater than those taken anyway.

These samples were submitted on the 30 October 2014 to Bureau Veritas in Darwin and the assays are displayed in Table 3. The discovery of favorable mineralogy at Stromberg could provide Spectrum with a new focus moving forward into 2015 and definitely help Spectrum with the difficult market conditions currently putting pressure on the company. The discovery of favorable metallurgy results would also have a positive impact on Spectrum's nearby Skyfall Prospect, possibly increasing the economic viability of both prospects due to their close proximity of around 30km.
7. CONCLUSIONS/RECOMMENDATIONS

Diamond drilling at the Stromberg HREE Prospect (EL25222) has delivered excellent near surface intersections, indicated extremely high (+90%) HREE distributions and further extended known mineralisation zones. Metallurgical studies on material at the Stromberg Prospect has enabled Spectrum to outline a more efficient and economic processing direction in terms of beneficiation (froth flotation and fine wet magnetic separation). Additional drilling to define a Resource at the Stromberg Prospect is planned for after further exploratory/metallurgical work at the nearby Skyfall Rare Earth Prospect in the adjoining lease EL27151.

Further exploration is planned for the Knightfall Prospect to better define the districts HREE potential. Further soil geochemistry will allow development of first stage drilling targets and follow-up on current regional prospects. This will be done by extending the existing 1km line spacing grid with 100m sample intervals to allow mineralised zones to be targeted.
8. REFERENCES

Crick, I., 1980. Geology of the Batchelor-Hayes Creek Region. BMR 1:100,000 Geological Special.

Rade, J., 1956. Shearing along anticlines as an important structural feature in uranium mineralisation in the northern part of the Northern Territory of Australia. Journal of Economic Geology.

9. APPENDICES

APPENDIX A

Stromberg Trial Pit Data

List of files:
GR042_2014_GA_04_ASS2014A.txt
GR042_2014_GA_03_SURV2014A.txt
GR042_2014_GA_02_COLL2014A.txt

10 CONFIDENTIALITY STATEMENT

This document and its content are the copyright of Spectrum Rare Earths Ltd. The document has been written for submission to the Northern Territory Department of Mines and Energy as part of the tenement reporting requirements as per the Mineral Titles Act (NT). Any information included in the report that originates from historical reports or other sources is listed in the “References” section at the end of the document. All relevant authorisations and consents have been obtained. Spectrum Rare Earths Ltd authorises the department to copy and distribute the report and associated data.