ABM RESOURCES NL
ABN 58 009 127 020

ANNUAL REPORT

EL 27906
‘Terry’s Find’
For the period
30 August 2012 to 29 August 2013

NIL WORK REPORT

Holder ABM Resources NL
Operator ABM Resources NL,
Author J Rohde
Date September 2013
Email joer@abmresources.com.au
Target Commodity Gold, Base Metal
Datum/Zone GDA94/ MGA Zone 52
250,000 mapsheet Mt Dorren (SF52-12)
100,000 mapsheet Vaughan (5053)

Distribution:
ο NT DoR - digital
ο Central Land Council - digital
ο ABM RESOURCES NL - Perth - digital
ο INDEPENDENCE GROUP NL - Perth - digital

File: jr67 DoR EL 27906 Terrys Find AR 13
ACKNOWLEDGEMENT AND WARRANTY

1. Subject to 2, the tenure holder acknowledges that this Report, including the material, information and data incorporated in it, has been made under the direction or control of the Northern Territory (the NT) within the meaning of section 176 of the Copyright Act 1968.

2. To the extent that copyright in any material included in this Report is not owned by the NT, the tenure holder warrants that it has the full legal right and authority to grant, and hereby does grant, to the NT, subject to any confidentiality obligation undertaken by the NT, the right to do (including to authorise any other person to do) any act in the copyright, including to:

 • use;
 • reproduce;
 • publish; and
 • communicate in electronic form to the public, such material, including any data and information included in the material.

3. Without limiting the scope of 1 and 2 above, the tenure holder warrants that all relevant authorisations and consents have been obtained for all acts referred to in 1 and 2 above, to ensure that the doing of any of the acts is not unauthorised within the meaning of section 29(6) of the Copyright Act.
1.0 ABSTRACT

Exploration Licences 27906 ‘Terry’s Find’ is situated approximately 375km northwest of Alice Springs (Figure 1). ABM Resources NL (ABM) explores the tenement for the potential of gold mineralisation.

EL 27906 forms part of ABM’s Lake MacKay project. ABM reviewed and evaluated the exploration potential of the Lake MacKay project and has focussed on the development of its higher ranking Old Pirate High-Grade Gold Project.

To further exploration of the Lake MacKay project ABM entered into negotiations with various other quality exploration companies. On the 20th August 2013, ABM signed an exploration agreement, as a result of these negotiations, with the Independence Group NL., Perth (Independence) for ABM’s Lake Mackay Project which includes EL 27906.

No on ground exploration neither by ABM nor by Independent was conducted during the reporting period from the 30th August 2012 to 29th August 2013;

Subsequent to the reporting period, Independence has undertaken first pass soil sampling over the tenement, comprising collection of 167 soil samples at nominal 800m x 800m spacing.

Therefore this report covers nothing that was conducted during the reporting period.

2.0 INTRODUCTION

The EL 27906 is located approximately 375km north west of Alice Springs. Access from Alice Springs is northwest via the Tanami Highway for approximately 350km to the Mt Doreen (Ruins) turn off and then on tracks along the Treuer Range and station tracks for another 90km to the southwest (Figure 1, 2). EL 27906 falls into ABM’s Lake MacKay Project area.

In August 2013 ABM entered a joint venture agreement with Independent which allowed another quality explorer to substantially advance exploration of the tenement.

This report covers all exploration on EL 27906 carried out between from the 30th August 2012 to the 29th August 2013.

3.0 TENURE

On the 30th August 2010 Exploration Licence 27906 ‘Terry’s Find’ was granted to ABM for a period of six years.

On the 20 August 2013 ABM entered an exploration agreement with the Independence Group NL., Perth for ABM’s Lake Mackay Project, which included EL 27906.

The joint venture agreement has a Phase 1 and 2.

During Phase 1, the Option Phase, ABM retains 100% interest while Independent can earn the right to proceed to Phase 2 by:
FIGURE 2

Tenement Locality
EL 27906

Date: 22/6/2011
Author: J. Rohde
Office: Perth
Drawing: J.R.
Scale: 1:500000
Projection: Longitude / Latitude (NAD 83)
• Spending $1.6M on exploration expenditure.
• After two years Independent can elect to withdraw or proceed to Phase 2.

During Phase 2 – Independent has the option to enter into a farm-in and joint venture agreement with ABM to earn a 70% interest in the project by:

- Making a $1M cash payment to ABM or subscribing for $1.5M ABM shares in placement with a six month escrow period.
- Spending $6M on exploration on the project over 4 years.

Tenement details are listed below in Table 1 and are illustrated in Figure 2.

Table 1: Tenement Details

<table>
<thead>
<tr>
<th>Tenement Name</th>
<th>Tenement No</th>
<th>Blocks</th>
<th>Km²</th>
<th>Grant Date</th>
<th>Expiry</th>
<th>Current Covenant</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Terry’s Find’</td>
<td>EL 27906</td>
<td>39</td>
<td>125.5</td>
<td>30 August 10</td>
<td>29 August 16</td>
<td>$61,500</td>
</tr>
</tbody>
</table>

Even so as EL 27906 is situated on a Pastoral Lease (Braitling Nominees Pty Ltd) the Central Land Council is included in the distribution list of the reporting.

4.0 GEOLOGY

The Lake Mackay Project is situated on the 1:250,000 Lake Mackay (SF52-11) map sheet, an area comprising less than 1% exposed bedrock. Tanami Gold NL (TGNL) carried out a 1:250,000 bedrock interpretation in 2003 (Rohde, 2004). Outcrop mapping by the Northern Territory Geological Survey (NTGS) and drilling by Newmont were combined with aeromagnetics, Landsat and gravity data to interpret the lithology and structure beneath covered areas (Plate 1).

4.1 Regional Geology

The Lake Mackay area is part of the Arunta region, a Proterozoic domain covering a large part of central Australia. The Arunta region is very complex due to the superposition of numerous depositional, magmatic, metamorphic and tectonic events. NTGS geological mapping of parts of the Arunta region has been combined with whole-rock elemental geochemistry and zircon U-Pb geochronology to assist with unravelling the lithostratigraphy and geological history of the area. The reviews of the regional implications of this work are presented by Scrimgeour (2003, 2004).

Of interest to gold explorers is whether the geology in the Tanami region, which hosts >10 million oz Au, continues south into the Arunta region. The case for lateral equivalence between the two regions was originally proposed based on gross lithological similarities (Blake et al., 1979), and such correlations have been strengthened based on geophysical continuity and the similarities of depositional and magmatic systems (Green et al., 2003). In general, the Lake Mackay area comprises rocks which are interpreted to correlate with the Au-hosting units in the Tanami region.

The Lake Mackay area comprises strongly deformed and variably metamorphosed siliciclastic sediments which were deposited between 1840 and 1800Ma. These metasedimentary rocks have been assigned to the Lander Group, which is interpreted to be laterally equivalent with the Tanami...
A regional lithostratigraphy has not been established in the Lander Group due to the lack of continuous outcrop and marker horizons, the high metamorphic grade of many areas and extensive deformation. In some areas, a local lithostratigraphy has been established (Donnellan and Johnstone, 2003), but it has not been possible to extend such local divisions with great confidence.

The Lake Mackay area is interpreted to be part of the lower Lander Group based on geochronological constraints and the presence of putative volcanic-dominated lithologies (linear highly magnetic units). Such constraints are not well established, but if correct the Lake Mackay area would most closely correlate with the lithostratigraphic units, which hosts The Granites and Dead Bullock Soak Au deposits in the Tanami Region.

4.2 Local Geology

The Lake Mackay area comprises two distinct tectonic elements; the Palaeoproterozoic Aileron Province and the Neoproterozoic-Palaeozoic Centralian Superbasin (Walter and Whittaker, 2003). The rocks of the Aileron Province form the basement to the Centralian Basin.

In the Aileron Province, the oldest units comprise a succession of interbedded sandstone, siltstone and mudstone which has been intensely deformed and metamorphosed. These metasediments are considered part of the Lander Group (Yuendumu Supergroup), which extends over much of the northern Arunta region. The Lander Group is generally considered to be part of a very large depositional system with vast regions of probable turbiditic sediments. There are numerous folded and metamorphosed mafic units within the Aileron Province, but it is uncertain whether they are volcanic, and so part of the Lander Group, or later sills. Similar units are known in the Tanami Region. SHRIMP U-Pb dating of detrital zircon from several samples of the Lander Group in the greater Lake Mackay area have interpreted maximum deposition ages of <1860Ma.

In the Lake Mackay area, the Lander Group is metamorphosed from lower greenschist to granulite facies, with granulate and amphibolite facies metasediments confined to discrete domains in the northeast of the area. SHRIMP U-Pb analyses of zircon rims from these granulite-facies metapelites define a significant population at 1806 ± 7 Ma, which is interpreted to be the age of metamorphism. This correlates with the Stafford Event described from further east in the Aileron Province, suggesting that this is an important and widespread event.

In the northeast of the Lake Mackay area, there are siliciclastic-dominated metasediments of the Nicker beds and Reynolds Range Group. These successions postdate the Stafford Event and were probably metamorphosed and deformed during the Yambah Event at about 1780-1770Ma. Metamorphic grade varies in these units from greenschist to amphibolite facies. The Reynolds Range Group (1800-1780Ma) unconformably overlies the Lander Group, though most exposures comprise tectonic slivers preserved adjacent to faults. The Reynolds Range Group comprises a basal quartzite (Mount Thomas Quartzite) and an overlying siliciclastic-dominated succession with minor calc-silicates (Pine Hill Formation). Other units within the Reynolds Range Group are unknown in the Lake Mackay area. The Reynolds Range Group has a distinctive strong linear magnetic signature and tracing these features from known outcrop suggests the Reynolds Range Group may be more extensive under aeolian cover. The Nicker beds are only known from immediately north of the Ngalia Basin and are more quartz-rich than the Lander Group. An intercalated felsic volcanic has an interpreted magmatic age of 1772 ± 5 Ma (SHRIMP U-Pb zircon age).

There are numerous granite bodies in the Lake Mackay area that probably correlate with the 1820-1790Ma granites from the northern Aileron Province, the 1770-1760Ma Carrington Suite and the 1570Ma Southwark Suite. A biotite granite beneath the Vaughan Springs Quartzite in the southeast of
the Lake Mackay area has a poorly constrained SHRIMP U-Pb zircon age of 1758 ± 21Ma and is considered to belong to the Carrington Suite. A weakly to moderately deformed garnet-bearing granite (Rapide Granite) in the northwest of the Lake Mackay area has an interpreted magmatic age of c.1600Ma, and so may be part of the Southwark Suite, but also contains significant c.1800Ma zircon possibly indicating an earlier magmatic phase. Megacrystic and porphyritic biotite granite with localised shearing on the eastern margin of Lake Mackay is interpreted on field characteristics to belong to the Southwark Suite. It has an interpreted SHRIMP U-Pb magmatic age of c.1520Ma, and so is the only known granite of this age in the Arunta region. This may indicate that the Southwark Suite was intruded over the 50 my period from 1570-1520Ma, or this granite could be part of a younger, discrete event. Although no 1820-1790Ma granite has been dated in the immediate area it is likely that granite of this age, which is widespread to the north of the Lake Mackay area, extend into the Lake Mackay area. In the southern part of the Lake Mackay area, there are scattered exposures of Vaughan Springs Quartzite, the basal unit of the Neoproterozoic to Palaeozoic Ngalia Basin, which is part of the Centralian Superbasin.

The southern and eastern part of the tenement is interpreted to be underlain by meso- and paleoproterozoic granitoides (Ag1, Ag2). The centre is interpreted to be underlain Nicker Beds (Aan) while the north western part of the tenement is interpreted to be underlain by Lander Rock Beds (Aall & Aalh) (Plate 1).

5.0 PREVIOUS EXPLORATION

Year 1
In the first year of tenure ABM reviewed the historic exploration. Due to an unseasonal wet season and bush fires at the time of planed reconnaissance no on ground exploration was conducted during the period from the 30 August 2010 grant date to the first anniversary date 29th August 2011.

Year 2
No on ground exploration was conducted during the period due to delays in regards of clearance from the CLC, the Department of Resources needing more detailed information on historic environmental disturbance and ABM focusing on other targets of its Lake Mackay project area. Reconnaissance was also scheduled for the reporting period although large bushfires hampered attempts of an initial visit to the region. Desktop work completed during the reporting period defined a number of large target areas. In August 2012 ABM has submitted an application to the CLC to undertake a large soil sampling survey covering the majority of the tenure during ABM's 2012 – 2013 exploration season.

6.0 EXPLORATION COMPLETED

No on ground exploration was conducted during the reporting period by ABM due to delays in regards to access to the ground clearance from the CLC and joint venture negotiations.

The Sacred Site Clearance Certificate for ABM’s 2013 work programme to undertake a large soil sampling survey covering the majority of the tenure was received on the 29th of July 2013.

The joint venture negotiations finally resulted in an agreement with Independence on the 20th August 2013. (see Chapter 3.0 Tenure).
Independent did not conduct any exploration during the brief period from the signing of the JV agreement on the 20th August 2013 to the end of the reporting period 29th August 2013, however first pass soil sampling over the tenement by Independent, comprising collection of 167 soil samples at nominal 800m x 800m spacing did commence shortly after the reporting period during the completion of this report.

7.0 RECOMMENDATION and CONCLUSIONS

Execution of geochemical surveys over the identify target areas is recommended.
8.0 REFERENCES

Lower Stubbins Formation: siltstone, basalt & numerous dolerite sills
- interbedded greywacke & siltstone - greywacke dominant (low mag)

Lower Dead Bullock Formation (Ferdies Member): Fe-sandstone, siltstone

Upper Dead Bullock Formation (Callie Member): siltstone, Fe-shale, chert
- interbedded coarse sandstone and greywacke
- interbedded greywacke dominant and siltstone
- siltstone dominated beds

Wilson Formation: sandstone, siltstone, basalt - (position uncertain)

Century Formation: sandstone, siltstone, basalt - (position uncertain)

Nanny Goat Volcanics: ryholite volcanics, basalt, sandstone
- conglomerate, sandstone, siltstone

Pargee Sandstone

Amadeus Basin

Georgina Basin

within Palaeoproterozoic basement

Greenschist facies retrograde shear zones

Patmungala Beds: felsic volcanics & volcaniclastics

Nicker Beds: felsic volcanics & volcaniclastics

Yaya Metamorphics

Complex³

Iwupataka Metamorphics²

Narwietooma Metamorphics³

Cadney Metamorphics²

Oonagalabi Gniess Complex²

Arltunga Gneiss Complex²

Wigley Metamorphics³

Harts Range Orogenic Belt²

Felsic granite

Granofels

Amphibolite-granulite facies: quartzite,
- High mag/high metamorphic grade

pelite schist, calc-rocks & quartzite

siltstone, sandstone, conglomerate, basalt

felsic volcaniclastics

Pargge Sandstone

Antrim Plateau Basalts

 imagery tied into published geological fact maps (NTGS and AGSO).

Bedrock interpretation utilising aeromagnetics, gravity, radiometrics and Landsat

GIS/Cartography by Alex Weston & Miles Bailey