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The informally named greater McArthur Basin is a vast 
predominantly sedimentary terrane stretching across the 
northern half of the Northern Territory from northeastern 
Western Australia to northwestern Queensland. It 
includes Palaeo- to Mesoproterozoic successions of the 
McArthur and Birrindudu basins, and large parts of the 
Tennant Region (Figure  1). These basins are interpreted 
to have been interconnected at time of deposition. A 
widely distributed cyclic succession of Mesoproterozoic 
siliciclastic sedimentary and minor igneous rocks at the 
top of the greater McArthur Basin is included within the 
Wilton package of Rawlings (1999). The rarity of limestone 
distinguishes this package lithologically from underlying 
sedimentary successions of the greater McArthur Basin. 
The Wilton package is correlated with the South Nicholson 
Group (South Nicholson Basin), which outcrops in the 
eastern NT and western Queensland. During 2015, the 
Northern Territory Geological Survey (NTGS) completed 
a systematic study (Munson in press) of all sedimentary 
units of three groups of the Wilton package: the Roper 

Group (McArthur Basin), Tijunna Group (Birrindudu 
Basin) and Renner Group (Tomkinson Province, Tennant 
Region). The main aims of this study were: (1) to collate 
and combine historical and new field-based data in order 
to produce baseline datasets of all stratigraphic units; (2) to 
integrate and interpret geochronological data to assist in the 
determination of sedimentary provenances and maximum 
depositional ages, and to test proposed correlations 
of the successions; and (3) to test and refine existing 
palaeoenvironmental and palaeogeographic interpretations. 
An unnamed group, comprising the Jamison sandstone and 
Hayfield mudstone, that overlies the Roper Group in the 
Beetaloo Sub-basin was also described and reinterpreted. 

The Roper Group is a siliciclastic succession 
characterised by alternating mudrock-rich and cross-bedded 
sandstone formations. The group is subdivided into the lower 
sandstone-rich Collara Subgroup and upper mudrock-rich 
Maiwok Subgroup. Sandstone-dominated units consist of 
cross-bedded, fine- to medium-grained, supermature quartz 
sandstone, deposited in a shoreline to shallow-marine inner 

Sedimentary characterisation and correlation of the Wilton package, greater McArthur Basin
Timothy J Munson1,2

1	 Northern Territory Geological Survey, GPO Box 4550, Darwin NT 0801, Australia
2	 Email: tim.munson@nt.gov.au 

© Northern Territory Government March 2016.  Copying and redistribution of this publication is permitted but the copyright notice must be kept intact 
and the source attributed appropriately.

NORTHERN
TERRITORY

0 150 km

129° 132° 138°135°

-12°

-15°

-18°

Wilton package
(geophysical expression)

greater McArthur Basin
(geophysical expression)

A15-240.ai

Beetaloo
Sub-basin

Tijunna Group

Roper
Group

Maiwok Subgroup

Collara Subgroup

Renner Group

South Nicholson Basin

sub-basin

Wilton package
(minimum extent)

Daly 
Waters 
High

Batten

Fault

Zone

Figure 1. Minimum extent of Wilton package sedimentation, showing mapped outcrops of Tijunna, Roper and Renner groups, and 
correlative South Nicholson Group. Subsurface extent of package and of greater McArthur Basin, defined by potential-field interpretation 
mapping, redrafted after Betts et al (2015).



85

AGES 2016 Proceedings, NT Geological Survey

shelf setting. They are commonly capped by thin intertidal 
to emergent facies. Mudrock-rich units are dominated 
by commonly interlaminated and interbedded claystone, 
siltstone and minor fine-grained sandstone. Abundant 
evidence for periodic and regular current activity indicates 
deposition mostly from wave-induced density flows or 
turbidity currents and from suspension in a shallow-marine 
mud-dominated shelf setting. 

The sandstone-rich Jamison sandstone and mudrock-rich 
Hayfield mudstone form a subsurface sedimentary package 
that unconformably overlies the Roper Group. They consist 
of alternating fine- and coarser-grained siliciclastic rocks 
that were deposited in environments similar to those of 
the Roper Group. However the quartz-lithic sandstones are 
distinctly less mature than typical Roper Group sandstones. 

Alternating cross-bedded quartz sandstone- and 
mudrock-dominated units of the relatively thin Tijunna 
Group are similar to those that characterise the Roper 
Group; they were deposited in similar shoreface to shallow-
marine shelf settings. 

Sandstone- and subordinate mudrock-rich units of the 
Renner Group are characterised by having a relatively 
high proportion of interpreted intertidal, supratidal and 
fluvial facies compared to the Roper and Tijunna groups, 
in addition to shallow-marine shelf and shoreline facies. 
Interpreted shallow to emergent palaeoenvironments for 
this group might indicate either a general proximity to a 
basin margin or that the underlying Daly Waters High may 
have been a significant topographic feature at the time of 
deposition.

Detrital-zircon geochronology

LA-ICPMS U-Pb detrital zircon analyses were conducted 
on samples from representative sandstone units of the 
Roper, Renner and Tijunna groups (Figure  2) with the 
aim of determining maximum depositional ages and more 
usefully, gaining information on possible provenance. 
Analytical procedures and basic results are documented in 
Munson et al (in prep). Additional SHRIMP detrital zircon 
analytical data for the Stubb Formation (Carson 2013) and 
upper Velkerri Formation (Fanning 2012) were included 
and reinterpreted in the context of the entire dataset. A 
comparative relative probability diagram of detrital zircon 
data from all samples (Figure  3) enables the following 
conclusions to be drawn: 

•	 Relative probability curves for the five Collara Subgroup 
(Roper Group) samples form a distinctive signature. 
Maximum depositional ages (MDA) are generally 
ca 1600 Ma or greater. More than 90% of analysed zircons 
are older than 1700  Ma; the majority form prominent 
peaks with maxima in the range 1950–1700  Ma. 
Transgressive sediments of the basal Phelp Sandstone 
sampled a wide range of basement terranes as shown by 
presence of numerous scattered individual and clustered 
analyses ranging through the Palaeoproterozoic to the 
Archaean.

•	 Relative probability curves for the four Maiwok 
Subgroup samples also have a distinctive signature. 

MDAs are generally in the range ca 1590–1530 Ma. The 
curves form very broad, complex irregular peaks with a 
number of maxima in the range ca 1900–1550 Ma. The 
percentage of analysed zircons older than 1700  Ma is 
generally in the range ca 70–80%, markedly less than 
that of the Collara Subgroup. 

•	 Relative probability curves for the two units of the 
Tijunna Group (Wondoan Hill Formation, Stubb 
Formation) are dominated by broad irregular peaks 
with maxima in the range ca 1950–1550 Ma and closely 
resemble those of the Maiwok Subgroup. 

•	 Relative probability curves for Renner Group 
formations support their tentative correlation by Hussey 
et  al (2001) with Roper Group units. The curves for 
two older Renner Group units (Gleeson Formation, 
upper Grayling member of Baralandji Formation) are 
very similar to those of the Collara Subgroup; they are 
dominated by broad irregular peaks with maxima in 
the range 1950 –1700 Ma and more than 90% of zircon 
analyses older than 1700 Ma. The curve for the younger 
Jangirulu Formation more closely resembles those of the 
Maiwok Subgroup than the Collara Subgroup; it is most 
similar to that of the Bessie Creek Sandstone with which 
it has been correlated (Hussey et al 2001).

•	 Relative probability curves for the unnamed group 
(Jamison sandstone, Hayfield mudstone) in the Beetaloo 
Sub-basin indicate that this is a distinct sedimentary 
package, significantly younger than the Maiwok 
Subgroup. Conservative MDAs and youngest zircons 
are late Mesoproterozoic (Stenian); this supports a 
latest Mesoproterozoic to Neoproterozoic age for this 
group. An older prominent peak at ca 1595 Ma is very 
distinctive and common to all three samples. Two 
samples have relatively young prominent peaks at 
ca 1186 Ma and 1162 Ma respectively. Fewer than 12% 
of analysed zircons are older than 1700 Ma.

•	 The lower Jamison sandstone was identified by Gorter 
and Grey (2012) as probable Bukalorkmi Sandstone, a 
unit near the top of the Roper Group that is exposed to 
the north of the Beetaloo Sub-basin. However the detrital 
zircon spectrum differs significantly from that of the 
Bukalorkmi Sandstone (sampled from the type section) 
and from the typical signature of the Maiwok Subgroup 
in general. In particular, it lacks broad complex peaks 
with maxima between 1900 and 1700 Ma.

•	 Overall, detrital zircon geochronology conducted 
systematically through the sedimentary succession 
offers good potential for intrabasinal correlation with 
resolution at subgroup scale.

Provenance

The presence of older palaeoproterozoic and Archaean 
zircons throughout the Wilton package supports previous 
interpretations (Cawood and Korsch 2008, Kositcin et  al 
2013, Carson 2013, Whelan et al 2014, Kraus et al 2015) that 
rocks of these ages formed a widespread contiguous basement 
of the North Australian Craton (NAC). Older zircons tend 
to be more abundant towards the base of successions above 
significant unconformities; they were presumably derived 
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Figure  2. Simplified stratigraphic columns for Tijunna, Renner and Roper groups, showing intervals sampled for detrital zircon 
geochronology. Previously determined absolute dates are included at approximate levels sampled.
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uplifted and exposed during deformation events. The small 
cluster of older zircons at ca 3100 Ma in the Stubb Formation 
(Tijunna Group) indicates a source older than any rocks yet 
recognised in the NT, possibly the Pilbara region of Western 
Australia. The relative abundance of these Archaean zircons 
in the Tijunna Group is consistent with its geographical 

proximity to potential sources areas in Western Australia. 
Major peaks for the Collara Subgroup and Renner Group 

are present in the range 1950–1700  Ma; major peaks for 
the Maiwok Subgroup and Tijunna Group are in the range 
1950 –1550  Ma. These all form a typical NAC basement 
signature that cannot be easily refined on these data. There 
are a number of source terranes in the NAC that produced 
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Figure  3. Comparative relative probability diagram of detrital zircon data arranged in stratigraphic order for Roper Group (green 
polygons), overlying ungrouped sedimentary rocks (mauve), Renner Group (yellow) and Tijunna Group (pink). Not to scale vertically. 
Stubb Formation plot derived from tabulated data in Carson (2013: supplementary papers); upper Velkerri Formation plot derived from 
tabulated data in Fanning (2012); NTGS analyses after Munson et al (in prep). Percentage of concordant analyses (n) on right. Irregular 
dotted line (left) indicates assigned MDA for each sample; isolated younger analysed zircons also indicated where not coincident with 
the MDA. Vertical red dashed line is 1700 Ma; percentages (right) indicate proportion of analysed zircons >1700 Ma for each sample.
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magmatic zircons at these times including the Tanami Region, 
Mount Isa Province, Pine Creek Orogen, Arnhem Province, 
Aileron Province, Warumpi Province, Tennant Region and 
Musgrave Province. Sedimentological and palaeogeographic 
interpretations indicate a general, non-specific southerly to 
southeasterly source, at least for the Roper and Renner group 
successions.

There is a conspicuous lack of older Palaeoproterozoic 
and Archaean zircons in the ungrouped units in the Beetaloo 
Sub‑basin; this indicates a significant shift in provenance 
for this younger sedimentary package through a change 
in sediment pathways and/or burial of older source areas. 
Major peaks for the ungrouped units overlying the Roper 
Group in the Beetaloo Sub-basin occur at ca  1590  Ma and 
ca 1090 –1160 Ma. The most likely provenances for zircons 
of these ages are the Musgrave Province (see Pell et al 1997) 
and possibly the central-southern Arunta Region (see Wong 
et al 2015). 

Palaeogeography

The Wilton package was deposited in a vast anorogenic 
intracratonic basin (Figure 2) floored entirely by Archaean–
Palaeoproterozoic rocks of the NAC. Evidence for a marine 
setting includes the presence of glauconite and marine 
microfossils at numerous stratigraphic levels, the high 
compositional maturity of the sandstones, and the lateral 
extensiveness of this facies. The various successions are 
characterised by: (1) a repetitive alternation of fine- and 
coarse-grained intervals; (2) deposition in a relatively 
narrow range of environments from marine shelf to shoreline 
to, rarely, continental or fluvial; and (3) lateral continuity 
of units over hundreds to thousands of square kilometres. 
There is no evidence for continental slope or deep basin 
deposits as are typical outboard of present-day open-marine 
continental shelves. In the Beetaloo Sub-basin, a greater 
rate of subsidence is indicated by greater thicknesses of 
strata, but the succession of facies is the same as in other 
areas of deposition indicating that rates of deposition were 
generally equivalent to rates of subsidence. 

The depositional limits of the package are unclear. 
Marginal facies (eg shoreline, emergent) are recognised in 
the vertical succession, but do not generally form mappable 
areas that delineate palaeoshorelines from laterally more 
distal facies for any particular time period. Marginal facies 
are more abundant in the Renner Group than elsewhere 
in the basin suggesting that more of this succession was 
deposited at or closer to palaeoshorelines than other parts of 
the exposed Wilton package.

In a large-scale regional sense, the Wilton package is 
broadly wedge-shaped, with the thickest sections in the 
southeast and south, thinning slightly into the Beetaloo 
Sub‑basin in more central areas, then thinning further to west, 
north and east. The Renner Group in the central‑south has a 
maximum (composite) thickness of greater than ca  3500  m 
(Hussey et  al 2001). Thickness decreases northwards to 
ca  3000  m in the central areas of the Beetaloo Sub-basin 
(Silverman et al 2007), to nearly 1800 m in central areas of the 
McArthur Basin (Abbott et al 2001), and to ca 900 m further 
to the north (Rawlings et al 1997, Sweet et al 1999) where 

the top of the group is truncated from either erosion or non-
deposition. To the west, the Wilton package thins to less than 
300 m in the Birrindudu Basin (Tijunna Group). To the east of 
the Beetaloo Sub-basin, the thickness of the package decreases 
under cover to about 1000 m at the limits of seismic coverage 
in the eastern McArthur Basin (Rawlings et al 2004). 

Depositional model

A restricted or partly restricted, or anoxic depositional 
environment with fluctuating salinities is indicated by 
geochemical studies (Donnelly and Crick 1988, Lambert 
and Donnelly 1992, Revie 2015a, b) and by the presence 
of synaeresis cracks at numerous stratigraphic levels. 
This is indicative of an enclosed marine basin, physically 
restricted to some extent by land or by chains of islands 
while retaining some connection with the open ocean (see 
Allen and Allen 2013). In this model, inflow and outflow 
of freshwater from rivers and seawater would have resulted 
in fluctuating salinities and would have largely determined 
whether the enclosed basin was oxic or anoxic at various 
times. If outflow of freshwater as a surface layer exceeded 
the inflow of deeper saline water, water stratification would 
have been likely, leading to anoxic conditions; present-day 
examples of anoxic enclosed basins include the Baltic and 
Black seas. If inflow of seawater exceeded the outflow of 
freshwater, water stratification is less likely to develop and 
oxic conditions would have resulted; present-day examples 
of oxic enclosed basins include the Red Sea, Mediterranean 
Sea and Persian Gulf. An analogous Australian example 
of an enclosed basin is the Neoproterozoic Centralian  A 
Superbasin (Walter et  al 1995, Munson et  al 2013) that 
partially geographically overlaps the Wilton package; it had 
a similar vast areal extent, relatively shallow interpreted 
depths and a restricted connection to open ocean waters.

A shoreline–shelf depositional model similar to that 
characterising most modern shelfal systems (see Patruno 
et al 2015) can be applied to the Wilton package whereby 
overall aggradation of shelfal strata was generated by the 
vertical stacking of successive shoreline and subaqueous 
clinothem sets. Progradation of the successions resulted 
from the repeated, regressive–transgressive transit of deltas 
and shorelines across the shallow-marine shelf. Figure  4 
shows typical cross-sectional morphology and geometry 
of present-day subaerial and subaqueous delta clinothems, 
and summarises the oceanographic environmental features 
controlling their development. 
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