NORTHERN TERRITORY DEPARTMENT OF MINES & ENERGY

Operations and Processing Report

Airborne Geophysical Survey STURT Northern Territory

13th August – 28th September 2001

FLOWN AND PROCESSED BY KEVRON GEOPHYSICS FOR AND ON BEHALF OF THE NORTHERN TERRITORY DEPARTMENT OF MINES & ENERGY

CONTENTS

2.LOGISTICS72.1OPERATION BASE AND SURVEY DATES72.2SURVEY ARCRAFT AND FIELD CREW83.SURVEY ARCRAFT AND FIELD CREW83.SURVEY EQUIPMENT, OPERATION AND QUALITY CONTROL93.1MAIOR EQUIPMENT SUMMARY93.2MAGNETOMETER AND COMPENSATOR93.3BASE STATION MAGNETOMETER93.4SPECTROMETER103.5ALTIMETERS103.6NAVIGATION AND FLIGHT PATH RECOVERY103.7FLIGHT TRACK RECORDING SYSTEM113.8DATA ACQUISITION113.9GENERAL QUALITY CONTROL113.10SAFETY MANAGEMENT124.CALIBRATIONS124.1MAGETICS124.2Pre and Post Flight Checks144.2.3Test Line144.2.4Compton Stripping Coefficients144.2.5Spectrometer Countrate Sensitivities144.3PARALLAX155.DATA PROCESSING165.1DATA VERIFICATION AND EDITING165.2FLIGHT PATH RECOVERY165.3The Line Caulting175.4Notone Lowelling175.4MICHTER PROCESSING175.4.4Airborne Radon Removal185.4.5Height Attenuation Corrections195.4.6Height Attenuation Corrections195.4.7Corrections Adore Removal185	1.	SUR	VEY AREA AND PARAMETERS	5
1.2 SURVEY PARAMETERS 6 2. LOGISTICS 7 2.1 OPERATION BASE AND SURVEY DATES 7 2.2 SURVEY AIRCRAFT AND FIELD CREW 8 3. SURVEY EQUIPMENT, OPERATION AND QUALITY CONTROL 9 3.1 MAIOR EQUIPMENT SUMMARY 9 3.2 MACINETOMETER AND COMPENSATOR 9 3.3 BASE STATION MAGNETOMETER 9 3.4 SPECTROMETER 10 3.5 ALTIMETERS 10 3.6 NAVIGATION AND FLIGHT PATH RECOVERY 10 3.7 FLIGHT TRACK RECORDING SYSTEM 11 3.8 DATA ACQUISITION 11 3.10 SAFETY MANAGEMENT 12 4.1 MAGINETICS 12 4.2 RADIOMETRICS 12 4.2 RADIOMETRICS 12 4.2 RADIOMETRICS 12 4.2 RADIOMETRICS 14 4.2.3 Test Line 14 4.2.4 Comption Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivitites 14 <th></th> <th>1.1</th> <th>SURVEY AREA</th> <th>5</th>		1.1	SURVEY AREA	5
2.1 OPERATION BASE AND SURVEY DATES 7 2.2 SURVEY AIRCRAFT AND FIELD CREW 8 3. SURVEY EQUIPMENT, OPERATION AND QUALITY CONTROL 9 3.1 MAIOR EQUIPMENT SUMMARY 9 3.2 MAGNETOMETER AND COMPENSATOR 9 3.3 BASE STATION MAGNETOMETER 10 3.4 SPECTROMETER 10 3.5 ALTIMETERS 10 3.6 NAVIGATION AND FLIGHT PATH RECOVERY 10 3.7 FLIGHT TRACK RECORDING SYSTEM 11 3.8 DATA ACQUISITION 11 3.9 GENERAL QUALITY CONTROL 11 3.10 SAFETY MANAGEMENT 12 4. CALIBRATIONS 12 4.1 MAGNETICS 12 4.2 Pre and Post Flight Checks 13 4.2.2 Pre and Post Flight Checks 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. D				6
2.2 SURVEY AIRCRAFT AND FIELD CREW 8 3. SURVEY EQUIPMENT, OPERATION AND QUALITY CONTROL 9 3.1 MAOR EQUIPMENT SUMMARY 9 3.2 MAGNETOMETER AND COMPENSATOR 9 3.3 BASE STATION MAGNETOMETER 9 3.4 SPECTROMETER 10 3.5 ALTIMETERS 10 3.6 NAVIGATION AND FLIGHT PATH RECOVERY 10 3.7 FLIGHT TRACK RECORDING SYSTEM 11 3.8 DATA ACQUISITION 11 3.9 GENERAL QUALITY CONTROL 11 3.10 SAFETY MANAGEMENT 12 4. CALIBRATIONS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 16 <td>2.</td> <td>LOG</td> <td>ISTICS</td> <td>7</td>	2.	LOG	ISTICS	7
2.2 SURVEY AIRCRAFT AND FIELD CREW 8 3. SURVEY EQUIPMENT, OPERATION AND QUALITY CONTROL 9 3.1 MAOR EQUIPMENT SUMMARY 9 3.2 MAGNETOMETER AND COMPENSATOR 9 3.3 BASE STATION MAGNETOMETER 9 3.4 SPECTROMETER 10 3.5 ALTIMETERS 10 3.6 NAVIGATION AND FLIGHT PATH RECOVERY 10 3.7 FLIGHT TRACK RECORDING SYSTEM 11 3.8 DATA ACQUISITION 11 3.9 GENERAL QUALITY CONTROL 11 3.10 SAFETY MANAGEMENT 12 4. CALIBRATIONS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 16 <td></td> <td>2.1</td> <td>OPERATION BASE AND SURVEY DATES</td> <td>7</td>		2.1	OPERATION BASE AND SURVEY DATES	7
3.1 MAJOR EQUIPMENT SUMMARY 9 3.2 MAGNETOMETER AND COMPENSATOR 9 3.3 BASE STATION MAGNETOMETER 9 3.4 SPECTROMETER 10 3.5 ALTIMETERS 10 3.6 NAVIGATION AND FLIGHT PATH RECOVERY 10 3.7 FLIGHT TRACK RECORDING SYSTEM 11 3.8 DATA ACQUISITION 11 3.9 GENERAL QUALITY CONTROL 11 3.10 SAFETY MANAGEMENT 12 4. CALIBRATIONS 12 4.1 MAGNETICS 13 4.2.2 Pre and Post Flight Checks 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.2.5 Spectrometer Countrate Sensitivities 16 5.1 DATA PROCESSING 16 5.3 MAGNETIC PROCESSING 16 5.3.1 Diumal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tice Levelling				8
3.2 MAGNETOMETER AND COMPENSATOR 9 3.3 BASE STATION MAGNETOMETER 9 3.4 SPECTROMETER 10 3.5 ALTIMETERS 10 3.6 NAVIGATION AND FLIGHT PATH RECOVERY 10 3.7 FLIGHT TRACK RECORDING SYSTEM 11 3.8 DATA ACQUISITION 11 3.9 GENERAL QUALITY CONTROL 11 3.10 SAFETY MANAGEMENT 12 4. CALIBRATIONS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 13 4.2.1 Background Correction Plots and Equations 13 4.2.2 RADIOMETRICS 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5 DATA PROCESSING 16 5.3.1 Diurnal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Te Line Levelling 17	3.	SUR	VEY EQUIPMENT, OPERATION AND QUALITY CONTROL	9
3.3 BASE STATION MAGNETOMETER 9 3.4 SPECTROMETER 10 3.5 ALTIMETERS 10 3.6 NAVIGATION AND FLIGHT PATH RECOVERY 10 3.7 FLIGHT TRACK RECORDING SYSTEM 11 3.8 DATA ACQUISITION 11 3.9 GENERAL QUALITY CONTROL 11 3.10 SAFETY MANAGEMENT 12 4. CALIBRATIONS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 13 4.2.1 Background Correction Plots and Equations 13 4.2.2 Pre and Post Flight Checks 14 4.2.3 Test Line 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3.1 Diumal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tic Line Levelling 17 </td <td></td> <td>3.1</td> <td>MAJOR EQUIPMENT SUMMARY</td> <td>9</td>		3.1	MAJOR EQUIPMENT SUMMARY	9
3.4 SPECTROMETER 10 3.5 ALTIMETERS 10 3.6 NAVIGATION AND FLIGHT PATH RECOVERY 10 3.7 FLIGHT TRACK RECORDING SYSTEM 11 3.8 DATA ACQUISITION 11 3.9 GENERAL QUALITY CONTROL 11 3.10 SAFETY MANAGEMENT 12 4. CALIBRATIONS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 13 4.2.1 Background Correction Plots and Equations 13 4.2.2 Pre and Post Flight Checks 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3 Tice Levelling 17 5.4 MAGNETIC PROCESSING 16 5.3.1 Diurnal Correction 16		3.2	MAGNETOMETER AND COMPENSATOR	9
3.5 ALTIMETERS 10 3.6 NAVIGATION AND FLIGHT PATH RECOVERY 10 3.7 FLIGHT TRACK RECORDING SYSTEM 11 3.8 DATA ACQUISITION 11 3.9 GENERAL QUALITY CONTROL 11 3.10 SAFETY MANAGEMENT 12 4. CALIBRATIONS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 13 4.2.1 Background Correction Plots and Equations 13 4.2.2 Pre and Post Flight Checks 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.3 PARALLAX 15 5. DATA VERIFICATION AND EDITING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3.1 Diumal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tic Line Levelling 17 5.4.4 RADIOMETRIC PROCESSING 17 5.4.5 Effective Altitude Calculations		3.3	BASE STATION MAGNETOMETER	9
3.6 NAVIGATION AND FLIGHT PATH RECOVERY 10 3.7 FLIGHT TRACK RECORDING SYSTEM 11 3.8 DATA ACQUISITION 11 3.9 GENERAL QUALITY CONTROL 11 3.10 SAFETY MANAGEMENT 12 4. CALIBRATIONS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 13 4.2.1 Background Correction Plots and Equations 13 4.2.2 Re and Post Flight Checks 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3 MAGNETIC PROCESSING 16 5.4 RADIOMETRIC PROCESSING 17 5.4 RADIOMETRIC PROCESSING 16 5.3.1 Diural Correction 16 5.3.2 Subtraction of the IGRF </td <td></td> <td>3.4</td> <td>SPECTROMETER</td> <td>10</td>		3.4	SPECTROMETER	10
3.7 FLIGHT TRACK RECORDING SYSTEM 11 3.8 DATA ACQUISITION 11 3.9 GENERAL QUALITY CONTROL 11 3.10 SAFETY MANAGEMENT 12 4. CALIBRATIONS 12 4. MAGNETICS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 13 4.2.1 Background Correction Plots and Equations 13 4.2.2 Te and Post Flight Checks 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3 MAGNETIC PROCESSING 16 5.3.3 Tiurnal Correction 16 5.3.4 Micro Levelling 17 5.4.1 System Deadtime and Energy Calibrations 17 5.4.2 Noise Adjusted Singular Value Decompo				10
3.8 DATA ACQUISITION 11 3.9 GENERAL QUALITY CONTROL 11 3.10 SAFETY MANAGEMENT 12 4. CALIBRATIONS 12 4. CALIBRATIONS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 13 4.2.1 Background Correction Plots and Equations 13 4.2.2 Pre and Post Flight Checks 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3.1 Diumal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tie Levelling 17 5.4.1 System Deadtime and Energy Calibrations 17 5.4.2 Noise Adjusted Singular Value Decomposition (NASVD) 18 5.4.3 Aircra				
3.9 GENERAL QUALITY CONTROL 11 3.10 SAFETY MANAGEMENT 12 4. CALIBRATIONS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 13 4.2.1 Background Correction Plots and Equations 13 4.2.2 Pre and Post Flight Checks 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3.1 Diurnal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tic Line Levelling 17 5.4 RADIOMETRIC PROCESSING 17 5.4.1 System Deadtime and Energy Calibrations 17 5.4.2 Noise Adjusted Singular Value Decomposition (NASVD) 18 5.4.3 Aircraft and Cosmic Background Removal 18 <				
3.10 SAFETY MANAGEMENT 12 4. CALIBRATIONS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 13 4.2.1 Background Correction Plots and Equations 13 4.2.2 Pre and Post Flight Checks 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3 MAGNETIC PROCESSING 16 5.3.1 Diurnal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tie Line Levelling 17 5.4 RADIOMETRIC PROCESSING 17 5.4.1 System Deadtime and Energy Calibrations 17 5.4.2 Noise Adjusted Singular Value Decomposition (NASVD) 18 5.4.3 Aircraft and Cosmic Background Removal 18				
4. CALIBRATIONS 12 4.1 MAGNETICS 12 4.2 RADIOMETRICS 13 4.2.1 Background Correction Plots and Equations 13 4.2.2 Pre and Post Flight Checks 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3 MAGNETIC PROCESSING 16 5.3.1 Diurnal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tie Lie Levelling 17 5.4 RADIOMETRIC PROCESSING 17 5.4.2 Noise Adjusted Singular Value Decomposition (NASVD) 18 5.4.3 Aircraft and Cosmic Background Removal 18 5.4.4 Airborne Radon Removal 18 5.4.5 Effective Altitude Calculations and Compton Scattering Corrections				
4.1 MAGNETICS 12 4.2 RADIOMETRICS 13 4.2.1 Background Correction Plots and Equations 13 4.2.2 Pre and Post Flight Checks 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3 MAGNETIC PROCESSING 16 5.3.1 Diurnal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tie Line Levelling 17 5.3.4 Micro Levelling 17 5.4.2 Noise Adjusted Singular Value Decomposition (NASVD) 18 5.4.3 Aircraft and Cosmic Background Removal 18 5.4.4 Airborne Radon Removal 18 5.4.5 Effective Altitude Calculations and Compton Scattering Corrections 19 5.4.6 Height Attenuation Corre		3.10	SAFETY MANAGEMENT	12
4.2 RADIOMETRICS 13 4.2.1 Background Correction Plots and Equations 13 4.2.2 Pre and Post Flight Checks 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3 MAGNETIC PROCESSING 16 5.3.1 Diurnal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tie Line Levelling 17 5.4 RADIOMETRIC PROCESSING 17 5.4.1 System Deadtime and Energy Calibrations 17 5.4.2 Noise Adjusted Singular Value Decomposition (NASVD) 18 5.4.3 Aircraft and Cosmic Background Removal 18 5.4.4 Airborne Radon Removal 18 5.4.5 Effective Altitude Calculations and Compton Scattering Corrections 19 5.4.6 <td>4.</td> <td>CAL</td> <td>IBRATIONS</td> <td>12</td>	4.	CAL	IBRATIONS	12
4.2.1 Background Correction Plots and Equations 13 4.2.2 Pre and Post Flight Checks 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3 MAGNETIC PROCESSING 16 5.3.1 Diurnal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tic Line Levelling 17 5.4 RADIOMETRIC PROCESSING 17 5.4.1 System Deadtime and Energy Calibrations 17 5.4.2 Noise Adjusted Singular Value Decomposition (NASVD) 18 5.4.3 Aircraft and Cosmic Background Removal 18 5.4.4 Airborne Radon Removal 18 5.4.5 Effective Altitude Calculations and Compton Scattering Corrections 19 5.4.6 Height Attenuation Corrections 19 19				12
4.2.2 Pre and Post Flight Checks 14 4.2.3 Test Line 14 4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3 MAGNETIC PROCESSING 16 5.3.1 Diumal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tie Line Levelling 17 5.4 RADIOMETRIC PROCESSING 17 5.4.1 System Deadtime and Energy Calibrations 17 5.4.2 Noise Adjusted Singular Value Decomposition (NASVD) 18 5.4.3 Aircraft and Cosmic Background Removal 18 5.4.4 Airborne Radon Removal 18 5.4.5 Effective Altitude Calculations and Compton Scattering Corrections 19 5.4.6 Height Attenuation Corrections 19 5.4.7 Conversion to G		4.2		
4.2.3 Test Line 14 4.2.4 Compton Stripping Coefficients 14 4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3 MAGNETIC PROCESSING 16 5.3.1 Diurnal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tie Line Levelling 17 5.4 RADIOMETRIC PROCESSING 17 5.4.1 System Deadtime and Energy Calibrations 17 5.4.2 Noise Adjusted Singular Value Decomposition (NASVD) 18 5.4.3 Aircraft and Cosmic Background Removal 18 5.4.4 Airborne Radon Removal 18 5.4.5 Effective Altitude Calculations and Compton Scattering Corrections 19 5.4.6 Height Attenuation Corrections 19 5.4.7 Conversion to Ground Element Concentration 19 5.4.8 Levelling 19 5.5				
4.2.4Compton Stripping Coefficients144.2.5Spectrometer Countrate Sensitivities144.3PARALLAX155. DATA PROCESSING165.1DATA VERIFICATION AND EDITING165.2FLIGHT PATH RECOVERY165.3MAGNETIC PROCESSING165.3.1Diurnal Correction165.3.2Subtraction of the IGRF165.3.3Tie Line Levelling175.4RADIOMETRIC PROCESSING175.4.1System Deadtime and Energy Calibrations175.4.2Noise Adjusted Singular Value Decomposition (NASVD)185.4.3Aircraft and Cosmic Background Removal185.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21				
4.2.5 Spectrometer Countrate Sensitivities 14 4.3 PARALLAX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3 MAGNETIC PROCESSING 16 5.3.1 Diurnal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tie Line Levelling 17 5.4 RADIOMETRIC PROCESSING 17 5.4.1 System Deadtime and Energy Calibrations 17 5.4.2 Noise Adjusted Singular Value Decomposition (NASVD) 18 5.4.3 Aircraft and Cosmic Background Removal 18 5.4.4 Airborne Radon Removal 18 5.4.5 Effective Altitude Calculations and Compton Scattering Corrections 19 5.4.6 Height Attenuation Corrections 19 5.4.7 Conversion to Ground Element Concentration 19 5.4.8 Levelling 19 5.5 DIGITAL ELEVATION MODEL 20 5.6 DELIVERABLE ITEMS 21 5.7 FIN				
4.3 PARALLÅX 15 5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3 MAGNETIC PROCESSING 16 5.3.1 Diurnal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tie Line Levelling 17 5.4 Micro Levelling 17 5.4 RADIOMETRIC PROCESSING 17 5.4.1 System Deadtime and Energy Calibrations 17 5.4.2 Noise Adjusted Singular Value Decomposition (NASVD) 18 5.4.3 Aircraft and Cosmic Background Removal 18 5.4.4 Airborne Radon Removal 18 5.4.5 Effective Altitude Calculations and Compton Scattering Corrections 19 5.4.6 Height Attenuation Corrections 19 5.4.8 Levelling 19 5.5 DIGITAL ELEVATION MODEL 20 5.6 DELIVERABLE ITEMS 21 5.7 FINAL PRODUCTS 21				
5. DATA PROCESSING 16 5.1 DATA VERIFICATION AND EDITING 16 5.2 FLIGHT PATH RECOVERY 16 5.3 MAGNETIC PROCESSING 16 5.3.1 Diurnal Correction 16 5.3.2 Subtraction of the IGRF 16 5.3.3 Tie Line Levelling 17 5.3.4 Micro Levelling 17 5.4.1 System Deadtime and Energy Calibrations 17 5.4.2 Noise Adjusted Singular Value Decomposition (NASVD) 18 5.4.3 Aircraft and Cosmic Background Removal 18 5.4.4 Airborne Radon Removal 18 5.4.5 Effective Altitude Calculations and Compton Scattering Corrections 19 5.4.6 Height Attenuation Corrections 19 5.4.7 Conversion to Ground Element Concentration 19 5.4.8 Levelling 19 5.5 DIGITAL ELEVATION MODEL 20 5.6 DELIVERABLE ITEMS 21 5.7 FINAL PRODUCTS 21		4.0	1	
5.1DATA VERIFICATION AND EDITING165.2FLIGHT PATH RECOVERY165.3MAGNETIC PROCESSING165.3.1Diurnal Correction165.3.2Subtraction of the IGRF165.3.3Tie Line Levelling175.4RADIOMETRIC PROCESSING175.4.1System Deadtime and Energy Calibrations175.4.2Noise Adjusted Singular Value Decomposition (NASVD)185.4.3Aircraft and Cosmic Background Removal185.4.4Airborne Radon Removal185.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21		4.3	PARALLAX	15
5.2FLIGHT PATH RECOVERY165.3MAGNETIC PROCESSING165.3.1Diurnal Correction165.3.2Subtraction of the IGRF165.3.3Tie Line Levelling175.3.4Micro Levelling175.4RADIOMETRIC PROCESSING175.4.1System Deadtime and Energy Calibrations175.4.2Noise Adjusted Singular Value Decomposition (NASVD)185.4.3Aircraft and Cosmic Background Removal185.4.4Airborne Radon Removal185.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21	5.	DAT	A PROCESSING	16
5.3MAGNETIC PROCESSING165.3.1Diurnal Correction165.3.2Subtraction of the IGRF165.3.3Tie Line Levelling175.3.4Micro Levelling175.4RADIOMETRIC PROCESSING175.4.1System Deadtime and Energy Calibrations175.4.2Noise Adjusted Singular Value Decomposition (NASVD)185.4.3Aircraft and Cosmic Background Removal185.4.4Airborne Radon Removal185.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21				16
5.3.1Diurnal Correction165.3.2Subtraction of the IGRF165.3.3Tie Line Levelling175.3.4Micro Levelling175.4RADIOMETRIC PROCESSING175.4.1System Deadtime and Energy Calibrations175.4.2Noise Adjusted Singular Value Decomposition (NASVD)185.4.3Aircraft and Cosmic Background Removal185.4.4Airborne Radon Removal185.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21		5.2		16
5.3.2Subtraction of the IGRF165.3.3Tie Line Levelling175.3.4Micro Levelling175.4RADIOMETRIC PROCESSING175.4.1System Deadtime and Energy Calibrations175.4.2Noise Adjusted Singular Value Decomposition (NASVD)185.4.3Aircraft and Cosmic Background Removal185.4.4Airborne Radon Removal185.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21		5.3		
5.3.3Tie Line Levelling175.3.4Micro Levelling175.4RADIOMETRIC PROCESSING175.4.1System Deadtime and Energy Calibrations175.4.2Noise Adjusted Singular Value Decomposition (NASVD)185.4.3Aircraft and Cosmic Background Removal185.4.4Airborne Radon Removal185.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21				
5.3.4Micro Levelling175.4RADIOMETRIC PROCESSING175.4.1System Deadtime and Energy Calibrations175.4.2Noise Adjusted Singular Value Decomposition (NASVD)185.4.3Aircraft and Cosmic Background Removal185.4.4Airborne Radon Removal185.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21				
5.4RADIOMETRIC PROCESSING175.4.1System Deadtime and Energy Calibrations175.4.2Noise Adjusted Singular Value Decomposition (NASVD)185.4.3Aircraft and Cosmic Background Removal185.4.4Airborne Radon Removal185.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21			6	
5.4.1System Deadtime and Energy Calibrations175.4.2Noise Adjusted Singular Value Decomposition (NASVD)185.4.3Aircraft and Cosmic Background Removal185.4.4Airborne Radon Removal185.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21		5 4	e	
5.4.2Noise Adjusted Singular Value Decomposition (NASVD)185.4.3Aircraft and Cosmic Background Removal185.4.4Airborne Radon Removal185.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21		5.4		
5.4.3Aircraft and Cosmic Background Removal185.4.4Airborne Radon Removal185.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21				
5.4.4Airborne Radon Removal185.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21			J U I	
5.4.5Effective Altitude Calculations and Compton Scattering Corrections195.4.6Height Attenuation Corrections195.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21			6	
5.4.6Height Attenuation Corrections195.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21				
5.4.7Conversion to Ground Element Concentration195.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21			1 0	
5.4.8Levelling195.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21				
5.5DIGITAL ELEVATION MODEL205.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21				
5.6DELIVERABLE ITEMS215.7FINAL PRODUCTS21		5.5	e	
5.7 FINAL PRODUCTS 21				21
				21
				23

APPENDICES

- 1. SURVEY AREAS
- 2. MAGNETOMETER BASE STATION LOCATION
- 3. FLIGHT LOGS AND SUMMARY LINE LISTING
- 4. WEEKLY PRODUCTION SUMMARIES
- 5. RADIOMETRIC CALIBRATIONS AND TEST RESULTS
- 6. LOCATED DATA TAPE FORMAT
- 7. OHS AND ENVIRONMENT POLICIES

INTRODUCTION

The STURT airborne geophysical survey lies on 1:250,000 maps Larrimah (SE53-13) and Daly Waters (SE53-01). A total of 33,476 line kilometres of magnetic, radiometric and digital elevation data were acquired and processed. It is intended that the acquired geophysical data will constitute a major addition to the fundamental geological database of the Northern Territory and will stimulate mineral exploration activity with a view to possible discovery and development of economic mineral deposits.

The project was managed by the Northern Territory Department of Mines & Energy under the supervision of the Chief Geophysicist Mr. Richard Brecianini. The data acquisition, quality control, data processing and mapping were carried out by Kevron Geophysics Pty Ltd of 10 Compass Road, Jandakot Airport, Western Australia.

Katherine (Tindal) was used as the base of operations for the duration of the Sturt survey. Mobilisation of crew commenced on Tuesday 13th August 2001 and all crew members were on site on Wednesday 14th August 2001. Production commenced on Tuesday 13th August and was completed on 28th September 2001. A total of 41 sorties were flown.

Acquisition was undertaken using a twin engine Aero Commander 'Shrike' 500s aircraft, registration VH KAC. Periodic maintenance was performed by Kevron Aviation staff in both Kununurra and Alice Springs.

The fixed wing traverse lines were flown at an interline spacing of 400 m, with a tie line spacing of 4000m. Traverse lines were oriented north-south and tie lines east-west respectively. An average ground clearance of 80m was specified for both magnetic and radiometric sensors.

In field data verification and quality control was undertaken on a post flight basis onsite using a combination of Kevron proprietary software and ChrisDBF. QC products produced in the field included magnetometer 4th difference noise plots, flight path deviation plots of cross-track and elevation and radiometric summed spectra plots. Diurnal plots of the Cs vapour base station magnetometer were plotted and assessed to ensure contract compliance. Some reflights were necessary due to excessive magnetic variation. Back-ups of all field data were written to compact disk and an additional copy sent to Kevron's data processing center in Perth where further QC products were produced and data processing undertaken.

1. SURVEY AREAS AND PARAMETERS

1.1 SURVEY AREA

Total line kilometres for the Sturt Area was calculated to be 33,476 inclusive of tie lines and boundary overlap. A breakdown of the survey follows:

	Direction	Spacing	Shortest	Longest	Lines	Total
Traverse	0 – 180°	400 m	6.6 km	120.6 km	548	30,472
Lines	Lines					
Tie	90 –270°	4000m	9.1 km	112.2 km	52	3,004
Lines	Lines					
Total Line Kilometres						33,476

The Sturt survey is located South of Katherine between Longitude 132° and 133° and Latitude 15° S and 16° 30' S. The area is characterised by sand dunes, low scrub and spinifex with very little topographical relief. Mean daily maximum temperatures from July to September is 30.5°. Mean daily minimum temperatures for the same period is 12.6°.

The following geographic coordinates based on the GDA94 datum and spheroid define the survey boundary.

	Latitude	Longitude	Easting	Northing
1	15° 13' 54" S	131° 59' 32" E	176855	8313811
2	15° 18' 16" S	132° 05' 46" E	188130	8305917
3	15° 18' 20" S	132° 11' 23" E	198203	8305917
4	15° 20' 07" S	132° 11' 21" E	198181	8302641
5	15° 26' 52" S	132° 15' 07" E	205099	8290264
6	15° 26' 47" S	132° 16' 22" E	207321	8290454
7	15° 29' 40" S	132° 16' 24" E	207448	8285123
8	15° 29' 46" S	132° 29' 57" E	231693	8285250
9	15° 27' 48" S	132° 30' 03" E	231820	8288868
10	15° 27' 47" S	132° 31' 26" E	234295	8288931
11	15° 20' 26" S	132° 39' 46" E	249084	8302641
12	15° 13' 33" S	132° 39' 42" E	248830	8315335
13	15° 02' 57" S	132° 29' 40" E	230614	8334693
14	14° 59' 17" S	132° 29' 47" E	230741	8341484
15	14° 59' 16" S	132° 48' 30" E	264316	8341865
16	15° 10' 53" S	132° 48' 22" E	264280	8320422
17	15° 11' 01" S	133° 00' 57" E	286848	8320412
18	15° 11' 01" S	133° 01' 02" E	286975	8174115
19	16° 30' 24" S	132° 29' 07" E	231566	8173353
20	16° 00' 50" S	132° 29' 49" E	232137	8227900

Geophysics Pty Ltd

Flown and Processed for

Northern Territory Department Of Mines & Energy

Job No. 1592B Page 5

21	16° 00' 27" S	131° 59' 21" E	177744	8227900
22	15° 13' 54" S	131° 59' 32" E	176855	8313811

The survey areas cover portions of the following 1:250,000 map sheets.

1:250,000 Sheet Reference:

Larrimah	SE 53-13
Daly Waters	SE 53-01

Refer to Appendix 1 for survey area location diagram.

1.2 SURVEY PARAMETERS

Flight line direction	0° - 180°
Flight line spacing	400 metres
Tie line direction	90° - 270°
Tie line spacing	4000 metres
Mean Terrain Clearance	80 metres

Time Base and approximate sampling interval (in still air):

- Magnetics
- Radar altimeter
- Radiometrics
- GPS system

- 0.1 second (7 metres approx.)
- 0.1 second (7 metres approx)
- 1.0 second (70 metres approx.)
- 1.0 second (70 metres approx.)

2. LOGISTICS

2.1 OPERATIONS BASE AND SURVEY DATES

Base Airfield	Latitude	Longitude	Elevation
Tindal	14° 31.3' S	132° 22.7' E	443 ft

Tindal was selected as the preferred operating base as it provided all the facilities required for the safe operation of an airborne geophysical survey.

The township of Katherine offers comfortable accommodation and eating establishments, important for crew morale on large projects. A regular service by Commercial airlines allowed for the rapid dispatch of data to the DPC in Perth and the ability to rotate crews smoothly with little or no loss of production. Down time due to instrument failure was also minimised as replacement components could be despatched and delivered the following day.

Tindal airport is located 15km ESE of the township of Katherine and has a single bitumen runway (14/32) 2,744m in length. Navigation aids include a VOR (TN 112.3), NDB (TN 356) and ILS (ITN 110.7 for runway 14). AVGAS is readily available from Tindal Refuelling Services who stock both Shell and BP products.

<u>Crew Accommodation:</u> Katherine

Pine Tree Motor Inn Katherine, NT

Survey Dates and Production Summary

Refer to APPENDIX 4 for detailed production summary.

Mobilisation	13 th August 2001
Production flying commenced	14 th August 2001
Production flying completed	27 th September 2001
Demobilisation	28 th September 2001
Total days on job	47
Total number of flights	41
Total production days	40
Total days lost due to weather	0
Total days lost due to aircraft maintenance	24.5
Total days lost due to Mag storms	0
Total days lost due to other causes	0
Total kilometres flown	33,476 km
Average acquisition rate - km per flight	732 km
km per production day	1,566 km

2.2 SURVEY AIRCRAFT AND FIELD CREW

Aircraft

Two twin engine Rockwell Aero Commander 500S 'Shrike': Registration VH KAC

Field Crew	<u>Pilots</u>	Operators
	Rad Jamieson Dave Chappell	Ross Rackham Mark Devenish
	Ivan Hussein	Leith Gardiner
	Mark Rooney	Brett Archer
	Max Eichorn	Kevin Cahill
		Rob Deopel

Crew Leader & Field QC

Ross Rackham

3. SURVEY EQUIPMENT, OPERATION AND QUALITY CONTROL

3.1 MAJOR EQUIPMENT SUMMARY

Aircraft Magnetometer	Geometrics G-822A Caesium vapour
Magnetic Compensator	RMS Instruments Automatic Aeromagnetic Digital
	Compensator (AADC)
Base station magnetometer	Geometrics G856 proton precession
Gamma-ray spectrometer	Exploranium GR820D, 256 channels
Gamma-ray detector	NaI(T1) crystals; 33.6L down;
Altimeter	Sperry AA-210 radio altimeter
Barometer	Rosemount 1241m
Thermometer	Rosemount Model 22000 temperature sensor
Navigation system	Fugro Omnistar in VBS (Virtual Base Station)
	mode, Ashtech G12 GPS receiver
Flight Track Recording	VHS video tracking camera with wide-angle lens
Data acquisition system	RMS Instruments DAS-8 digital acquisition system

3.2 MAGNETOMETER AND COMPENSATOR

A Geometrics G-822A optically pumped caesium vapour magnetometer was used for the survey with the sensor mounted in a tail stinger of the aircraft. The magnetometer sensor was coupled to a RMS Instruments Automatic Aeromagnetic Digital Compensator (AADC) to produce real time compensation for the effects of the aircraft's motion, changes in attitude and heading. The AADC interference coefficients were calculated from compensation flights carried out before the survey commenced and after aircraft maintenance. The AADC output data, with a resolution and sensitivity of 0.001 nT at a sampling rate of ten (10) times per second, were recorded digitally. The noise envelope for compensated magnetometer readings was less than 0.1 nT

3.3 BASE STATION MAGNETOMETER

A GR823B caesium vapour base station magnetometer was used to measure the daily variations of the Earth's magnetic field. The base station was established in an area of low gradient, away from cultural influences. These data were displayed and recorded on a Libretto laptop computer. The base station was run continuously throughout the survey flying period with a sampling interval of 1 seconds and a sensitivity of 0.01 nT.

In addition to the caesium vapour base station, a Geometrics G856 proton precession magnetometer base station recording at 5 second intervals was established at Tindal airport primarily as a storm monitor.

The base station data were closely examined after each days production flying to determine if any data had been acquired during periods of out-of-specification diurnal variation.

3.4 SPECTROMETER

An Exploranium GR-820, 256-channel gamma ray spectrometer with automatic crystal gain was used to record 256 channels of data in addition to the data from pre-set spectral windows. Total downward crystal array volume was 33.6 litres. System sample time and live time were also recorded. The digital were recorded once per second.

The pre-set spectral window limits were:

Spectrometer channel number			Equivalent energy levels (keV)		
Window	Lower	Upper	Lower	Upper	
Total Count	34	237	410	2.810	
K-40	116	132	1 370	1 570	
Bi-141	141	157	1 660	1 860	
T1-208	204	237	2 410	2 810	
Cosmic	255	255	4 000	∝ ≥4 meV	

3.5 ALTIMETERS

A Sperry AA-210 Radio Altimeter system was used to measure ground clearance. The radio altimeter indicator provides an absolute altitude display from 0 - 750 metres (0 - 2,500 feet) with a sensitivity of 4 mV/ft.

A Rosemount 1241m barometer, with an output sensitivity of 0.666 mV/ft, was used to measure barometric altitude of the aircraft.

The radar altimeter system was checked prior to commencement of production flying. This involved flying the aircraft at 30 metre height intervals, up to a height of 300 metres over the base of operations airstrip using the aircraft's barometric altimeter as the height reference. Radar altimeter and GPS height data were recorded for each flight interval flown. A comparison of these data with the aircraft's barometric altimeter verified that the system was operating satisfactorily.

Altimeter data (radar and barometric) were digitally recorded every 0.1 seconds.

3.6 NAVIGATION AND FLIGHT PATH RECOVERY

Aircraft navigation was controlled by real-time differential GPS using an Ashtech G12 receiver in the aircraft with pseudo range corrections obtained through the commercial FUGRO VBS system transmitting via the OPTUS B satellite.

The position of the aircraft was fixed and recorded once per second and the onboard pilot guidance steering signal updated once every half second.

The flight path data were inspected after each flight for any deviations of flight path from specifications and for any gaps caused by momentary loss of satellites. Flight path quality was confirmed at Kevron's processing centre by plotting flight path maps at an appropriate scale, highlighting any portions of lines which exceeded the specified horizontal and altitude tolerances.

3.7 FLIGHT TRACK RECORDING SYSTEM

The flight path of the aircraft was recorded with a National CCD colour video camera and a VHS video recorder. Line and fiducial numbers were recorded on the video image.

3.8 DATA ACQUISITION

A RMS Instruments DAS-8 Data Acquisition System was used to record all data in digital format onto a 10 gigabyte hard disk drive.

3.9 GENERAL QUALITY CONTROL

Rigorous in-field quality control was undertaken on-site and various QC products were produced in the field using a combination of Kevron proprietary software, ChrisDBF software and AGSO software. QC plots were produced for each flight and included:

- Flight path maps displaying cross track and height deviations.
- Magnetic 4th difference noise plots
- Radiometric Summed spectra plots
- Diurnal plots

Lines selected at random from each flight were subjected to further QC checks. Profiles were generated for all variables recorded and inspected for data quality. Any lines found to be outside the specified tolerances were identified and reflown.

A running log of each flight was maintained recording details of all lines flown. Transcribed flight logs and a complete flight line listing are included in *APPENDIX 3*. Equipment tests and calibrations are described in Section 4 and tabulations of the calibration and test flight data are in *APPENDIX 5*.

Field data were sent to Kevron's processing centre in Perth where they were further

inspected for data quality and conformance to specifications before commencing processing.

3.10 SAFETY MANAGEMENT

Kevron Geophysics Pty Ltd are an accredited active member of IAGSA and thus has a commitment, as far as practicable, to eliminate or control all risks and hazards to its staff that may arise in the work environment.

A revision of Kevron's Occupational Health, Safety and Environment was undertaken in January 2001 and a comprehensive Safety Management System was implemented in February 2001. The Safety Management System includes Risk Evaluation Processes and Procedures and Occupational Health Safety & Environment Policies for the entire Kevron Group of Companies.

Copies of Kevron's Occupational Health, Safety and Environment Polices are provided in *APPENDIX* 7.

All aircraft operations, including pilot flying hours and aircraft maintenance, complied with the requirements of the Federal Civil Aviation Safety Authority (CASA) and the CASA-approved procedures set out in Kevron's Aircraft Operations Manual.

An integral part of the Safety Management System provides for the installation of a Flight Following System that transmits a position via satellite at pre determined intervals. The Fugro EagleStar Flight Following System is fitted to all Kevron aircraft and for the Sturt survey, position information was transmitted every 4 minutes to FUGRO's premises in Perth. This information can be monitored by accessing the FUGRO web page where the updated flight path is displayed. In the event that positional information from the aircraft is lost for a period exceeding 12 minutes or three consecutive transmissions, an alarm is raised and a SMS text message sent to nominated contacts and the Emergency Response plan implemented.

4. CALIBRATIONS

4.1 MAGNETICS

Compensation coefficients for the AADC were established by flying a "compensation box" test (a series of pitch, roll and yaw manoeuvres in each of the four cardinal headings) before survey production commenced, and again after aircraft servicing where components were changed that may effect the magnetic field of the aircraft.

Compensation flights were flown in an area of low gradient near Katherine at an altitude of 8000 to 10000 feet above mean sea level.

The AADC calculates basic statistics, which reflect the degree of merit of the compensation. These include the standard deviation of the recorded data without corrections applied, the standard deviation with the correction applied, the improvement ratio (the ratio of the standard deviation of the data without and with corrections applied) and the vector norm (the degree of difficulty in calculating the corrections. The table below shows statistics recorded from compensation flights with the aircraft in survey configuration, ie Air conditioner on, Transponder off, DME off, HF on, ADF on, #1 COM on, #2 NAV/Com on .

Comp Box Test Date	Aircraft
21 st August 2001	KAC

4.2 RADIOMETRICS

4.2.1. Background Correction Plots and Equations

The following procedure was used to determine the aircraft background radiation was determined following the procedures outlined in AGSO Record 1995/60. There were no changes to the system between the date of this test and the survey.

The measured 256 channel spectra are each the sum of the aircraft component (constant) and the cosmic component. The measured spectra are used to calculate the aircraft gamma energy spectrum and the normalised cosmic gamma energy spectrum.

Aircraft and Cosmic background spectra are estimated as follows:

$$N_i = a_i + b_i N_{cos}$$

Where:

N_i	=	aircraft + cosmic background count rate in the (i)th channel
N cos	=	cosmic window count rate
a_i	=	aircraft background in the (i)th channel
b _i	=	cosmic background in the (<i>i</i>)th channel normalized top unit counts in the cosmic window.

A linear regression of the cosmic window count rate on any channel gives the cosmic sensitivity (slope of regression line) and aircraft background (zero intercept) for that channel.

The aircraft and cosmic background spectra are subtracted from the dead-time corrected and energy calibrated observed spectra, The conventional radiometric windows are extracted from the 256 channel data.

4.2.2 Pre and Post Flight Checks

Hand sample checks, using thorium, uranium and caesium-137 samples, were carried out before and after flights.

4.2.3 <u>Test Line</u>

A test line approximately 8 kilometres long was chosen NE of Tennant Creek along a cleared line. The start and end co-ordinates are as follows;

	Latitude (°S)	Longitude (°E)
South End	15° 34.9043'	128° 49.9366'
North End	15° 40.3951'	128° 45.2548'

4.2.4 Compton Stripping Coefficients

The following Compton stripping coefficients, derived from calibrations over test pads in Perth were used in subsequent processing:

VH KAC	alpha (Tl-208 into Bi-214)	0.265020
	beta (Tl-208 into K-40)	0.433140
	gamma (Bi-214 into K-40)	0.805216

4.2.5 <u>Spectrometer Countrate Sensitivities</u>

Broad source sensitivities for each of the radio-element windows were obtained from a flight line flown at a height of 80 m over the Carnamah Test Range and a corresponding line on the ground surveyed with a calibrated hand-held spectrometer supplied by Tesla Geoscience. The Carnamah Test Range is located approximately 10 kilometres east of Carnamah, 200 kilometres north of Perth, on the Carnamah-Belvoir Road. The Test Range follows the power line south for eight kilometres crossing undulating wheat crops and rocky scrub covered hills.

The aircraft acquisition system was not changed between the date of the calibration flight and the survey dates. The following values were obtained:

VH KAC

Element	Corrected mean countrate (cps)	Average ground concentration	Countrate sensitivity
Potassium	<mark>357.1473589</mark>	<mark>2.71 %K</mark>	<mark>131.847 cps/%K</mark>
Uranium	<mark>36.86961332</mark>	<mark>3.93 ppm eU</mark>	<mark>9.375 cps/ppm eU</mark>
Thorium	<mark>204.0701113</mark>	<mark>32.39 ppm eTh</mark>	6.301 cps/ppm
			eTh
Total Count	<mark>4422.491351</mark>	143.95 nG/h (nGh ⁻¹)	30.72 cps/nGh

26th May, 2001

4.3 PARALLAX

The parallax error was established immediately after completion of the survey by flying over a suitable anomaly in opposite directions. The parallax for each aircraft system was resolved to following:

Magnetics7 fiducials(all flights)RadiometricsNo parallax correction was applied to the radiometrics

5. DATA PROCESSING

5.1 DATA VERIFICATION AND EDITING

The field data were sent regularly to Kevron's processing centre in Perth for verification and editing with in-house software installed on Sun Sparc 20 workstations.

The data were loaded into a database and a statistical report generated for each variable on a line by line basis. The data were then edited for scrubbed or duplicate lines and checked for spikes, steps or high noise levels. Lines with any out-of-specification data were flagged for reflight.

5.2 FLIGHT PATH RECOVERY

The differentially corrected GPS data were converted to Universal Transverse Mercator coordinates using the Australian National Spheroid GDA94

The survey area is in grid UTM Zone 53 with a central meridian of 135° East.

Flight path maps were generated to verify the off-line tolerances and to ensure all necessary data had been loaded into the geophysical data base.

5.3 MAGNETIC PROCESSING

After correcting the magnetic data for diurnal variations, the International Geomagnetic Reference Field (IGRF) was subtracted and the data were tie line levelled.

These processes are described more fully below.

5.3.1 Diurnal Correction

The diurnal data were edited to keep only those readings taken during flight time. The data were visually checked on the computer screen for spikes, noise and any apparent cultural magnetic events.

After editing, the data were low pass filtered using a twenty-term, spatial domain filter, which removed periods of less than thirty seconds. The data were again checked visually for integrity after the filtering process.

The filtered data were synchronised with the airborne data, interpolated and subtracted from the airborne data, one sample at a time. After subtraction, the mean diurnal value was added back to the airborne data for each line to produce diurnally corrected data.

5.3.2 Subtraction of the IGRF

The International Geomagnetic Reference Field (IGRF) was removed from the diurnally-corrected data by fitting a second order polynomial surface to thirteen coefficients computed from the IGRF model and then subtracting the IGRF values

on a sample by sample basis.

The IGRF 2000 model updated to the survey date was used with the following values:

IGRF updated to	<mark>2001.6</mark>
Magnetic Declination	<mark>4.25 °</mark>
Magnetic Inclination	- <mark>46.3 °</mark>
Total Field Strength	47986 nT

5.3.3 <u>Tie Line Levelling</u>

The diurnally corrected and IGRF-removed data were processed by a Kevron proprietary levelling program.

The program compares the magnetic differences at intersections of the flight lines and tie lines and calculates individual magnetic field biases for each flight line based on the tie line intersection. The miss-ties are minimised in a least-squares sense for all intersections. The biases are manually evaluated and selectively applied. Further reduction of the miss-ties can be removed by fitting a polynomial to produce levelled magnetic data.

The levelled data were then gridded on a 100 x 100 metre mesh using a minimum curvature algorithm based on Briggs (1974). The gridded data were displayed on an image processor to check data integrity and data levelling.

5.3.4 <u>Micro Levelling</u>

The data were microlevelled using Kevron in-house proprietary software. Kevron's micro-levelling process is line based rather than grid based. Pseudo lines are extracted perpendicular to the traverse line direction. These are low pass filtered and mis-tied to the traverse lines using the tie line levelling software.

The mis-tie values are bounded spatially by a series of polygons edited through ER Mapper.

5.4 RADIOMETRIC PROCESSING

5.4.1 System Deadtime and Energy Calibrations

Following correction for system deadtime, the 256 channel spectrometer data were energy calibrated using the following procedure:

For each line, the individual 256 channel data from each sample point were stacked to produce a single spectrum. The peak positions of the standard potassium and thorium windows were found by performing a gaussian fit to the spectral data for the energy range of each window after first removing the Compton continuum slope. If the measured peak positions were shifted by more than one channels for

the thorium peak or 0.5 channels for the potassium peak, an energy recalibration was performed to obtain the correct spectral channel positions for the lower and upper bounds of each of the required windows. Using these corrected channel limits, new window counts were then extracted from the 256 channel data for each 1 second data sample on the line.

5.4.2 <u>Noise Adjusted Singular Value Decomposition (NASVD)</u>

The raw gamma-ray spectra was smoothed using the Noise Adjusted Singular Value Decomposition (NASVD – Hovgaard and Grasty, 1997) spectral smoothing technique. This technique is a spectral component analysis procedure for the removal of noise from gamma-ray spectra. The observed spectra were transformed into orthogonal spectral components in which lower order components represent the signal and higher order components represent noise. Noise was removed from the observed spectra by rejecting the noise components and reconstructing the spectra using the first five principal components.

5.4.3 Aircraft and Cosmic Background Removal

Aircraft and cosmic background were removed from the data using the normalised 256 channel cosmic spectrum for the aircraft, and the aircraft 256 channel background spectrum.

Aircraft Background Coefficients		
Total Count	<mark>52.26</mark>	
Potassium	<mark>7.4</mark>	
Uranium	<mark>1.2</mark>	
Thorium	<mark>0</mark>	

Aircraft CosmicCoefficients		
Total Count	<mark>0.718991</mark>	
Potassium	<mark>0.039252</mark>	
Uranium	<mark>0.033910</mark>	
Thorium	<mark>0.035575</mark>	

5.4.4 <u>Airborne radon removal</u>

Data were corrected for airborne radon using Minty (1996 – Alt Method B) two component spectral ratio method. Calibration constants for Method B derived directly from observed radon and ground spectra at a height of 80m STP. $C_{I_{,}}$ and $C_{2_{,}}$ are the ratios between the 0.609 MeV peak count rate and the conventional U window count rate for a radon spectrum and a composite K, U and Th ground spectrum respectively.

Calibration Constants for Method B		
C1	<mark>1.944</mark>	
C2	<mark>0.859</mark>	

5.4.5 Effective Altitude Calculations and Compton Scattering Corrections

At this point, the conventional radiometric windows are extracted from the 256 channel data and all further gamma-ray corrections are performed using three-window radiometric data processing.

Following reduction of the altitude data to effective altitude at standard temperature and pressure as described in Grasty and Minty (1995), Compton scattering stripping was carried out on the background corrected count rates in the potassium, uranium and thorium channel data using the appropriate coefficients listed in Section 4.2.4.

5.4.6 <u>Height attenuation corrections</u>

A height attenuation factor was applied to reduce the data for each channel to a nominal datum of 80 m above ground level. The program used limits corrections to data at terrain clearances between 30m and 250m. Data recorded at terrain clearances outside these limits are corrected assuming they are at these limits.

The attenuation factors used are listed below and were determined from tests carried out over the Carnamah Test Range. (APPENDIX 5).

Total Count	Potassium	Uranium	Thorium
<mark>-0.0074</mark>	<mark>-0.0094</mark>	<mark>-0.0084</mark>	<mark>-0.0074</mark>

5.4.7 <u>Conversion to Ground Element Concentrations</u>

Data were converted to equivalent ground concentrations using the method described in Grasty and Minty (1995) using, for each window, the equation:

$$C_i = N_i / S_i$$

where C_i = ground concentration of radio-element "i" (%K, ppm eU or ppm eTh);

 N_i = corrected count rate for window "i"; and

 S_i = broad source sensitivity for window "i" as tabled in Section 4.2.5.

5.4.8 <u>Levelling</u>

The corrected and reduced radiometric data were tie-line levelled and microlevelled using the procedure described above for the magnetic data.

5.5 DIGITAL ELEVATION MODEL

A digital elevation model (DEM) was computed by subtracting the terrain clearance measured by the radar altimeter from the GPS measured aircraft altitude to obtain a nominal ground elevation. The nominal ground elevation data were tie-line levelled and micro-levelled using the same technique described for the levelling of the magnetic data.

Allowance was made for the constant 3.9 m elevation difference between the radar altimeter and the GPS antenna.

A set of geoid-ellipsoid separation values were obtained from AUSLIG, gridded and values interpolated for each point along the survey lines. The interpolated separation values were subtracted from the nominal ground elevation to produce the final located DEM.

The DEM data were tie line levelled and micro-levelled using the procedure described above for the magnetic and radiometric data.

5.6 DELIVERABLE ITEMS

The following survey data items were produced and delivered:

1.	Survey location diagram .	(APPENDIX 1)
2.	Magnetometer Base station location diagram.	(APPENDIX 2)
3.	Flight logs and flight summary - line listing	(APPENDIX 3)
4.	Production summaries week by week for each aircraft.	(APPENDIX 4)
5.	Tabulations of calibration and test flight data	(APPENDIX 5)
6.	Located digital records in the specified format	(APPENDIX 6)
7.	OHS and Environment Policies	(APPENDIX 7)

5.7 FINAL PRODUCTS

The following files containing digital ASCII located data and grids were delivered on CD.

<u>Sturt</u>

CD#1

README DATA:	- Text file describing content of CD
Sturt_256.DAT Sturt_256.DES Sturt_256.DFN	 - 1 sec 256 Channel Radiometric ASCII Located Data - Description file - Definition file

CD#2

README	- Text file describing content of CD
DATA:	
Sturt_Mag.DAT	- Magnetics .1 second ASCII located data
Sturt_Mag.DES	- Description file
Sturt_Mag.DFN	- Definition file

GRIDS:

Sturt_1VD_GDA94_MGA53
Sturt_1VD_GDA94_MGA53.ers
Sturt_AGC_1VD_GDA94_MGA53
Sturt_AGC_1VD_GDA94_MGA53.ers
Sturt_DTM_GDA94_MGA53
Sturt_DTM_GDA94_MGA53.ers
Sturt_1VD_RTP_GDA94_MGA53
Sturt_1VD_RTP_GDA94_MGA53.ers
Sturt_RTP_GDA94_MGA53
Sturt_RTP_GDA94_MGA53.ers
Sturt_TMI_GDA94_MGA53
Sturt_TMI_GDA94_MGA53.ers

- First Vertical Derivative Erampper
- AGC of First Vertical Derivative Ermapper Grid
- DTM Ermapper Grid
- First Vertical Derivative of RTP Ermapper Grid
- Reduced to Pole Ermapper Grid
- TMI Ermapper Grid

CD#3

README DATA:	- Text file describing content of CD
Sturt_Spec.DAT	- 1 second Radiometric ASCII Located
Sturt_Spec.DES	- Description file
Sturt_Spec.DFN	- Definition file
GRIDS:	
Sturt_DTM_GDA94_MGA53	
Sturt_DTM_GDA94_MGA53.ers	- DTM Ermapper Grid
Sturt_K_GDA94_MGA53	
Sturt_K_GDA94_MGA53.ers	- Potassium % Ermapper Grid
Sturt_TC_GDA94_MGA53	
Sturt_TC_GDA94_MGA53.ers	- Total Count nGy/hr Ermapper Grid
Sturt_Th_GDA94_MGA53	
Sturt_Th_GDA94_MGA53.ers	- Thorium ppm Ermapper Grid
Sturt_U_GDA94_MGA53	
Sturt_U_GDA94_MGA53.ers	- Uranium ppm Ermapper Grid
Sturt_KThU_RGB_GDA94_MGA53	
Sturt_KThU_RGB_GDA94_MGA53.ers	- Potassium Thorium Uranium (RGB) composite Ermapper Grid
GRIDS: Sturt_DTM_GDA94_MGA53 Sturt_DTM_GDA94_MGA53 Sturt_K_GDA94_MGA53 Sturt_K_GDA94_MGA53 Sturt_TC_GDA94_MGA53 Sturt_TC_GDA94_MGA53 Sturt_Th_GDA94_MGA53 Sturt_Th_GDA94_MGA53 Sturt_U_GDA94_MGA53 Sturt_U_GDA94_MGA53 Sturt_U_GDA94_MGA53	 DTM Ermapper Grid Potassium % Ermapper Grid Total Count nGy/hr Ermapper Grid Thorium ppm Ermapper Grid Uranium ppm Ermapper Grid Potassium Thorium Uranium (RGB) composite

Note : For each original CD delivered, 1 copy was also delivered. Total of 6 CDs were delivered for **Sturt** (3 originals + 3 copies)

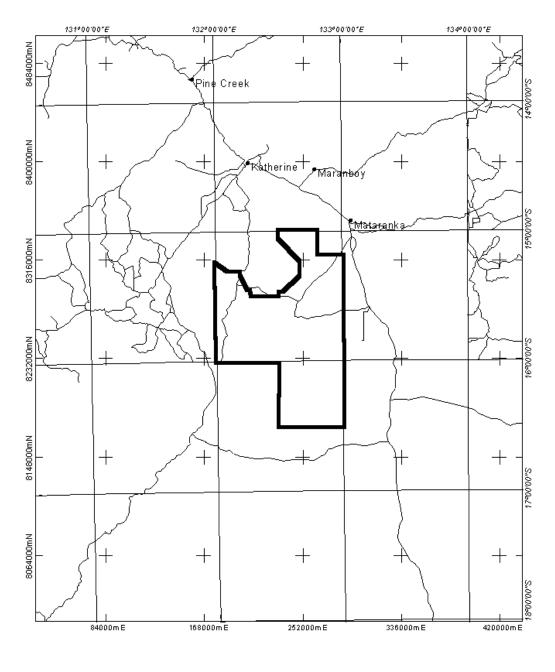
REFERENCES

Briggs, I.C., 1974. Machine Contouring Using Minimum Curvature. Geophysics, v.39: p. 39 - 48.

Grasty, R.L., Wilkes, P.G.; and Kooyman, R., 1988. Background Measurements in Gamma-ray Surveys. Geological Survey of Canada Paper 88-11.

R.L. Grasty and B.R.S Minty, 1995: A Guide To The Technical Specifications For a Airborne Gamma-Ray Survey. AGSO Record 1995/60.

Hovgaard, J., (1997). A new processing technique for airborne gamma-ray spectrometer data (Noise Adjusted Singular Value Decomposition). Danish Emergency Management Agency.

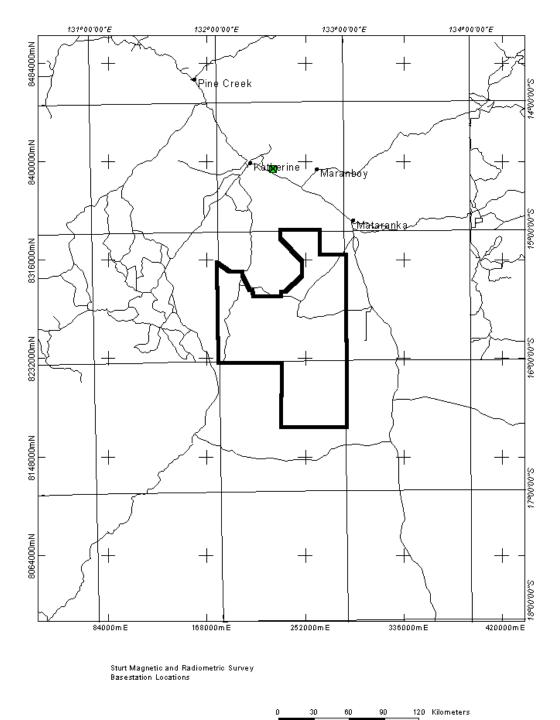

Hovgaard, J. and Grasty, R.L, (1997). Reducing noise in airborne gamma-ray data through spectral component analysis. Exploration 97, Ontario Geological Survey.

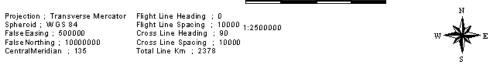
Minty, B.R.S., 1996. The analysis of multichannel airborne gamma-ray spectra. PhD Thesis, Australian National University.

APPENDIX 1

Survey Area

Sturt Magnetic and Radiometric Survey




APPENDIX 2

Magnetometer Base Position

Base Magnetometer Location Diagram

APPENDIX 3

Operators Flight Reports And Line Listing

Flight Line Listing Summary

Line	Flight	Date	Start Fid	End Fid	Line	Flight	Date	Start Fid	End Fid
10010	4	20010818	1710	9700	20190	33	20010922	94260	98040
10020	4	20010818	17590	25520	20200	33	20010922	101770	105560
10030	4	20010818	33360	41250	20210	33	20010922	109300	112950
10040	4	20010818	9710	17580	20220	33	20010922	116380	120170
10050	4	20010818	25540	33350	20230	33	20010922	123650	127160
10060	4	20010818	41260	49170	20240	33	20010922	112960	116370
10070	4	20010818	57240	65190	20250	33	20010922	120180	123630
10080	4	20010818	73120	81130	20260	33	20010922	127170	130580
10090	4	20010818	49180	57230	20270	34	20010922	10	3330
10100	4	20010818	65200	73110	20280	34	20010922	6600	9850
10110	4	20010818	81150	89040	20290	33	20010922	130600	133990
10120	4	20010818	96970	104800	20300	34	20010922	3340	6590
10130	4	20010818	112680	120490	20310	34	20010922	9870	13120
10140	4	20010818	89060	96950	20320	34	20010922	16370	19600
10150	4	20010818	104820	112670	20330	34	20010922	22870	26080
10160	4	20010818	120500	128310	20340	34	20010922	13140	16350
10170	4	20010818	136160	143990	20350	34	20010922	19620	22850
10180	7	20010822	9630	17440	20360	34	20010922	26090	29300
10190	4	20010818	128330	136140	20370	34	20010922	32530	35740
10200	7	20010822	1670	9620	20380	34	20010922	38950	42160
10210	7	20010822	17460	25390	20390	34	20010922	29310	32520
10220	7	20010822	33210	41080	20400	34	20010922	35750	38940
10230	7	20010822	48990	56840	20410	34	20010922	42170	45380
10240	7	20010822	25400	33190	20420	34	20010922	48660	51890
10250	7	20010822	41090	48980	20430	34	20010922	55190	58400
10260	7	20010822	56850	64720	20440	34	20010922	45400	48650
10270	7	20010822	10	7950	20450	34	20010922	51900	55170
10280	7	20010822	15840	23610	20460	34	20010922	58410	61580
10290	7	20010822	64740	72590	20470	34	20010922	64780	67990
10300	7	20010822	7970	15820	20480	34	20010922	71240	74430
10310	7	20010822	23620	31510	20490	34	20010922	61600	64770
10320	7	20010822	39360	47350	20500	34	20010922	68010	71220
10330	7	20010822	55160	63110	20510	34	20010922	74450	77680
10340	7	20010822	31530	39340	20520	34	20010922	80930	84140
10350	7	20010822	47360	55150	20530	34	20010922	77700	80910
10360	7	20010822	63120	70910	20540	34	20010922	84150	87340
10370	8	20010823	1690	9780	20550	34	20010922	89820	92410
10380	8	20010823	17660	26030	20560	34	20010922	94800	97310
10390	8	20010823	34030	41940	20570	34	20010922	87360	89810
10400	8	20010823	9800	17650	20580	34	20010922	92420	94790
10410	8	20010823	26040	34010	20590	34	20010922	97320	99550
10420	8	20010823	41960	49810	20600	34	20010922	101540	103730
10430	8	20010823	57800	65610	20610	34	20010922	105630	107760
10440	8	20010823	73630	81440	20620	34	20010922	99560	101530
10450	8	20010823	49820	57790	20630	34	20010922	103750	105620
10460	8	20010823	65620	73610	20640	34	20010922	107770	109560
10470	8	20010823	81450	89700	20650	34	20010922	111130	112840
10480	8	20010823	97620	105470	20660	34	20010922	114280	116350
10490	8	20010823	89720	97610	20670	34	20010922	109570	111120
10500	1	20010814	46790	54760	20680	34	20010922	112860	114270
10510	1	20010814	62580	70490	20690	34	20010922	116370	117720
10520	1	20010814	78250	86340	20700	34	20010922	118820	120090
10530	1	20010814	54780	62570	20710	34	20010922	121100	122250

Geophysics Pty Ltd

Kevron

Job No. 1592B **Page** 2

Flown and Processed for Northern Territory Department Of Mines & Energy

10540	1	20010814	70510	78240	20720	34	20010922	117730	118800
10550	1	20010814	86360	94170	20730	34	20010922	120100	121090
10560	1	20010814	102100	109930	20740	34	20010922	122270	123260
10570	1	20010814	117840	125650	20750	34	20010922	124330	125340
10580	1	20010814	94180	102090	20760	34	20010922	125350	126410
10590	1	20010814	109940	117830	20770	34	20010922	123270	124320
10600	2	20010815	59000	66930	30020	34	20010922	127720	128910
10610	2	20010815	74880	82950	30030	34	20010922	128930	130100
10620	2	20010815	90790	98800	30040	37	20010924	144240	145210
10630	2	20010815	66940	74870	30051	34	20010922	130120	131450
10640	2	20010815	82960	90770	30060	37	20010924	146140	147110
10650	2	20010815	98810	106760	30070	34	20010922	131470	132820
10660	2	20010815	114660	122630	30080	37	20010924	145220	146130
10670	8	20010823	105490	113360	30090	34	20010922	132830	134220
10680	2 2	20010815	106780	114650	30100	37	20010924	143290	144220
10690		20010815	122650	130460	30110	34	20010922	134240	135670 142260
10700	8	20010823	113370	121240	30121	37	20010924	141330	
10710	8	20010823	129080	137010	30130	34	20010922	135690	137220
10720 10730	9 8	20010824 20010823	1670 121250	9540 129060	30140	37 34	20010924 20010922	138590 137240	139500 138810
	о 8	20010823	137020	129060	30150	34 37	20010922	142280	143270
10740 10750	о 9	20010823	9550	17360	30160 30171	35	20010924	142260	3470
10750	9	20010824	25190	33120	30171	37	20010923	139510	140480
10780	9	20010824	40900	48750	30180	35	20010924	5370	7040
10780	9	20010824	40900 17370	25180	30190	37	20010923	137520	138570
10780	9	20010824	33140	40890	30200	35	20010924	8930	10680
10790	9	20010824	48760	40090 56550	30210	37	20010923	135170	136300
10800	9	20010824	64480	72270	30220	35	20010924	3480	5350
10820	9	20010824	80090	87940	30230	37	20010924	132670	133880
10820	9	20010824	56560	64470	30250	35	20010923	7060	8910
10840	9	20010824	72280	80070	30260	37	20010924	136320	137510
10850	9	20010824	87960	95830	30270	35	20010923	10700	12590
10860	9	20010824	103700	111590	30280	37	20010924	133900	135150
10870	9	20010824	119370	127400	30290	35	20010923	14690	16640
10880	9	20010824	95850	103680	30300	37	20010924	131350	132660
10890	9	20010824	111610	119360	30310	35	20010923	18820	20850
10901	30	20010912	1600	9350	30320	37	20010924	128370	129760
10911	30	20010912	17250	25060	30330	35	20010923	12600	14670
10921	30	20010912	33020	40790	30340	37	20010924	125190	126720
10931	30	20010912	9370	17240	30350	35	20010923	16650	18800
10941	30	20010912	25080	33010	30360	37	20010924	129780	131330
10951	30	20010912	40800	48710	30370	35	20010923	20870	23040
10961	30	20010912	56540	64410	30380	37	20010924	126740	128350
10971	30	20010912	72280	80190	30390	35	20010923	25390	27640
10981	30	20010912	48730	56520	30400	37	20010924	123480	125170
10991	30	20010912	64420	72270	30411	35	20010923	30060	32330
11001	30	20010912	80210	88000	30420	37	20010924	119930	121640
11011	30	20010912	95860	103710	30430	35	20010923	23050	25380
11021	30	20010912	111540	119390	30441	39	20010925	33840	35570
11031	30	20010912	88010	95840	30450	35	20010923	27660	30050
11041	30	20010912	103720	111530	30460	37	20010924	121660	123470
11052	30	20010912	137760	145650	30470	35	20010923	32350	34800
11061	30	20010912	129860	137750	30480	37	20010924	118170	119920
11070	11	20010831	10	8390	30490	35	20010923	37440	39930
11081	30	20010912	120570	128220	30501	39	20010925	32060	33830
11082	30	20010912	128230	129840	30511	35	20010923	42610	45260
11090	11	20010831	25460	34010	30520	37	20010924	110670	112500
11100	11	20010831	8410	17040	30530	35	20010923	34810	37420
		-					-		-

Kevron Geophysics Pty Ltd

Job No. 1592B Page 3

Flown and Processed for Northern Territory Department Of Mines & Energy

11110	11	20010831	42460	50970	30540	37	20010924	106770	108600
11120	11	20010831	59440	67990	30541	39	20010925	30240	32050
11130	11	20010831	17060	25450	30550	35	20010923	39950	42600
11140	11	20010831	34030	42440	30560	37	20010924	112510	114460
11150	11	20010831	50990	59420	30570	37	20010924	1750	4620
11160	11	20010831	68010	76480	30581	39	20010925	26380	28290
11170	11	20010831	85000	93450	30590	37	20010924	7730	10640
11180	11	20010831	101950	110440	30601	39	20010925	28310	30220
11190	11	20010831	76490	84980	30610	37	20010924	13850	16780
11200	11	20010831	93470	101940	30620	37	20010924	100430	102600
11210	11	20010831	110460	118890	30621	39	20010925	24370	26360
11220	11	20010831	126940	135050	30630	37	20010924	4630	7720
11230	12	20010901	1790	10440	30640	37	20010924	96010	98220
11240	11	20010831	118910	126920	30650	37	20010924	10700	13830
11250	12	20010901	10460	18290	30661	39	20010925	19960	22090
11260	12	20010901	26870	34820	30670	37	20010924	16800	19970
11270	12	20010901	43360	51350	30680	37	20010924	98230	100420
11280	12	20010901	18310	26860	30681	39	20010925	22100	24350
11290	12	20010901	34840	43350	30690	37	20010924	23310	26580
11300	12	20010901	51360	59950	30700	37	20010924	93750	96000
11310	12	20010901	67970	76580	30700	39	20010925	17680	19950
11320	12	20010901	84520	93070	30710	37	20010923	29960	33270
11320	12	20010901	59970	67960	30720	37	20010924	29900 88910	91220
11330	12	20010901	76590	84500	30720	39	20010924	12920	15290
11340	12	20010901	93090	100920	30721	39 37	20010925	12920	23290
		20010901	100930			37	20010924		
11360	12			109320	30740			83880	86250
11370	12	20010901 20010901	109340 125450	125430	30750	37 39	20010924	26600	29950
11380	12			140680	30761		20010925	15300	17670
11390	13	20010901	10	15490	30770	37	20010924	33290	36680
11400	13	20010901	15510	30800	30780	37	20010924	86270	88900
11410	13	20010901	46690	61900	30781	39	20010925	10500	12910
11420	13	20010901	77460	92710	30790	37	20010924	40350	43780
11430	13	20010901	30810	46680	30800	37	20010924	81050	83860
11440	13	20010901	61920	77450	30810	37	20010924	47520	50990
11450	13	20010901	92730	107880	30821	39	20010925	7830	10480
11460	13	20010901	123120	138230	30830	37	20010924	36700	40330
11470	15	20010902	10	15670	30840	37	20010924	70270	73000
11480	15	20010902	31220	46710	30850	37	20010924	43790	47500
11490	15	20010902	62130	77420	30861	39	20010925	5220	7810
11500	15	20010902	15690	31200	30870	37	20010924	51000	54730
11510	15	20010902	46730	62120	30880	37	20010924	73010	75740
11520	15	20010902	77440	92570	30891	37	20010924	58520	62330
11530	15	20010902	107850	122980	30910	37	20010924	54750	58500
11540	15	20010902	131600	139970	30920	38	20010924	10	7850
11541	19	20010904	15440	24030	30930	38	20010924	15720	23530
11550	15	20010902	92580	107830	30940	38	20010924	31340	39170
11560	15	20010902	122990	131580	30950	38	20010924	7870	15700
11561	19	20010904	24050	32520	30960	38	20010924	23540	31330
11570	19	20010904	10	15420	30970	38	20010924	39180	47010
11580	19	20010904	32540	48450	30980	38	20010924	54850	62680
11590	19	20010904	48460	63770	30990	38	20010924	70540	78250
11600	17	20010903	10	15320	31000	38	20010924	47030	54840
11610	17	20010903	77300	92710	31010	38	20010924	62690	70520
11620	17	20010903	92730	108040	31020	38	20010924	78270	86000
11630	18	20010904	1670	16820	31030	38	20010924	93740	101610
11640	17	20010903	108050	123260	31040	38	20010924	109400	117190
11650	18	20010904	16830	32620	31050	38	20010924	86010	93720
11660	18	20010904	48080	63210	31060	38	20010924	101630	109380
				~ ~				NI 1500T	_

Kevron Geophysics Pty Ltd

Job No. 1592B Page 4

Flown and Processed for Northern Territory Department Of Mines & Energy

11670	18	20010904	78370	93600	31070	38	20010924	117200	124930
11680	18	20010904	32640	48070	31080	38	20010924	132760	140530
11690	18	20010904	63220	78350	31090	39	20010925	43380	51210
11700 11701	18 18	20010904 20010904	93620 97400	97390 110310	31100	38 39	20010924 20010925	124950 51230	132740 59200
11701	18	20010904	97400 125530	133600	31110 31120	39 35	20010923	135930	143740
11711	19	20010904	72160	80470	31120	35	20010923	143750	151580
11720	18	20010904	133620	141750	31140	35	20010923	128050	135920
11721	19	20010904	63780	72150	31150	31	20010921	1530	9300
11730	18	20010904	110320	125510	31160	31	20010921	54720	62510
11740	19	20010904	80490	96180	31170	32	20010921	10	7850
11750	19	20010904	111690	127280	31180	32	20010921	15820	23670
11760	19	20010904	142800	158530	31194	42	20010928	11450	19520
11770	19	20010904	96190	111680	31200	32	20010921	7870	15800
11780	19	20010904	127300	142790	31210	32	20010921	23690	31620
11790	24	20010908	1640	17250	31220	36	20010923	10	8100
11800	24	20010908	33030	48480	31230	36	20010923	16290	24460
11810	24	20010908	64230	79800	31240	36	20010923	32550	40760
11820	24	20010908	17260	33010	31250	36	20010923	8110	16280
11830	24	20010908	48500	64210	31260	36	20010923	24480	32530
11840	24	20010908	79810	95320	31270	36	20010923	40770	48700
11850	24	20010908	110760 141690	126310	31280	36	20010923 20010923	48720	56970
11860 11870	24 24	20010908 20010908	95340	157200 110750	31290 31300	36 36	20010923	56990 64980	64960 70190
11870	24 24	20010908	95340 126320	141670	31300	36 36	20010923	75210	80500
11890	24	20010908	1580	4950	31320	36	20010923	85520	90770
11891	25	20010909	4960	20890	31330	36	20010923	70200	75190
11900	25	20010909	37010	52580	31340	36	20010923	80510	85500
11910	25	20010909	69010	84600	31350	36	20010923	90780	95710
11920	25	20010909	20910	37000	31360	36	20010923	100990	105940
11930	25	20010909	52590	69000	31370	36	20010923	111210	116300
11940	23	20010907	122850	138020	31380	36	20010923	95720	100970
11950	23	20010907	92350	107580	31390	36	20010923	105950	111200
11960	23	20010907	138030	153240	31400	36	20010923	116320	121550
11970	23	20010907	107600	122830	31410	36	20010923	126520	131630
11980	23	20010907	77170	92340	31420	39	20010923	59220	64150
11990	23	20010907	46650	61900	31430	36	20010923	121560	126510
12000	23	20010907	16190	31420	31440	36	20010923	131650	136620
12010	23	20010907 20010907	61910 31430	77160 46640	31450	39 39	20010925 20010925	64170 74120	69120 79130
12020 12030	23 23	20010907 20010907	10	46640 16170	31460 31470	39 39	20010925	84130	89160
12030	22	20010907	127920	143230	31470	39	20010925	69140	74110
12050	22	20010907	96610	112080	31490	39	20010925	79150	84120
12060	22	20010907	143250	158720	31500	39	20010925	89180	94130
12070	22	20010907	112090	127900	31510	39	20010925	99190	104160
12080	22	20010907	80730	96600	31520	39	20010925	109220	114150
12090	22	20010907	49040	65070	31530	39	20010925	94140	99170
12100	22	20010907	17000	33170	31540	39	20010925	104180	109210
12111	22	20010907	65090	80720	31550	39	20010925	114160	119170
12120	22	20010907	33190	49020	31560	39	20010925	124160	129190
12130	21	20010906	1610	16980	31570	39	20010925	134150	139120
12140	21	20010906	46480	62430	31580	39	20010925	119180	124150
12150	21	20010906	15380	31330	31590	39	20010925	129200	134130
12160	21	20010906	16880	32810	31600	40	20010925	10	5270
12170	21	20010906	31350	46460	31610	40	20010925	10410	15680
12180	21	20010906	10 1640	15370	31620	40	20010925	20800	26090
12190	21 20	20010906 20010905	1640 1600	16870 17010	31630 21650	40 40	20010925 20010925	5280 26110	10390 31200
12200	20	20010903	1000	17010	31650	40	20010920	20110	_

Kevron Geophysics Pty Ltd

Job No. 1592B

Flown and Processed for Northern Territory Department Of Mines & Energy

Page 5

12210	20	20010905	32440	47750	31660	40	20010925	36630	41740
12220	20	20010905	63200	78550	31670	40	20010925	47180	52270
12230	20	20010905	17020	32430	31680	40	20010925	15690	20780
12240	20 20	20010905 20010905	47770 78570	63180 94020	31681	40 40	20010925 20010925	31220 41750	36610 47160
12250 12260	20	20010905	109210	94020 124540	31690 31701	40 40	20010925	1770	6800
12200	20	20010905	139700	154890	31701	41	20010925	11790	16760
12280	20	20010905	94030	109200	31720	41	20010927	21740	26750
12290	20	20010905	124550	139680	31730	40	20010925	6810	11780
12300	25	20010909	84620	101070	31740	41	20010927	16770	21720
12310	26	20010909	10	15030	31750	41	20010927	26770	31680
12320	26	20010909	30660	45950	31760	41	20010927	36720	41670
12330	25	20010909	101080	114730	31770	41	20010927	46640	51610
12332	25	20010909	10	15950	31780	41	20010927	31700	36710
12340	26	20010909	15050	30640	31790	41	20010927	41680	46630
12350	26	20010909	45960	61330	31800	41	20010927	51630	56560
12360	26	20010909	76510	91700	31810	41	20010927	61860	66870
12370	26	20010909	106810	122020	31820	41	20010927	71840	76710
12380	26	20010909	61350	76500	31830	41	20010927	56570	61840
12390	26	20010909	91710	106800	31840	41	20010927	66890	71820
12400	26 27	20010909	122030 1580	137160	31900	39	20010925	35590	43360 16570
12410 12420	27	20010910 20010910	31960	16630 46950	90010 90020	1 1	20010814 20010814	1780 16590	31560
12420	26	20010910	137180	40950 156450	90020 90030	1	20010814	31580	46770
12430	20	20010909	16640	31950	90030 90040	2	20010814	10	15090
12450	27	20010910	46970	62300	90050	2	20010815	15100	29770
12460	27	20010910	77290	92780	90060	2	20010815	29780	44430
12470	27	20010910	107770	123180	90070	2	20010815	44440	58990
12480	27	20010910	62310	77280	90080	3	20010816	2040	16790
12490	27	20010910	92790	107760	90090	3	20010816	16800	31670
12500	27	20010910	123200	138190	90100	3	20010816	31680	46390
12510	28	20010910	10	15340	90110	3	20010816	46400	61470
12520	28	20010910	31440	46970	90120	3	20010816	61490	76180
12530	27	20010910	138200	153490	90130	3	20010816	76190	91220
12540	28	20010910	15350	31420	90140	3	20010816	91230	105760
12550	28	20010910	46980	62930	90150	3	20010816	105770	113740
12560	28	20010910	78390	94360	90160	3	20010816	113750	121700
12570	28 28	20010910 20010910	109830 62950	125800 78380	90170	3 3	20010816 20010816	121710 129500	129480 137450
12580 12590	20 28	20010910	94380	109810	90180 90190	3 14	20010818	129500	9300
12590	29	20010910	1710	17260	90190 90200	17	20010902	69570	77280
12610	29	20010911	33940	49870	90210	17	20010903	62010	69560
12620	29	20010911	66240	81990	90220	17	20010903	54340	61990
12630	29	20010911	17280	33930	90230	17	20010903	46360	54330
12640	29	20010911	49890	66220	90240	17	20010903	38650	46340
12650	29	20010911	82010	97860	90250	17	20010903	30790	38640
12660	29	20010911	113710	129540	90260	17	20010903	23070	30780
12670	29	20010911	145380	161330	90270	17	20010903	15340	23050
12680	29	20010911	97870	113700	90280	13	20010901	115530	123100
12690	29	20010911	129560	145370	90290	13	20010901	107900	115510
12700	29	20010911	161340	177050	92010	35	20010923	45270	50080
12710	31	20010921	9320	24390	92020	33	20010922	2310	3600
12720	31	20010921	39650	54700 102620	92021	35	20010923	50090	54960
12730 12740	29 31	20010911 20010921	177070 24410	192620 39640	92030 92031	33 35	20010922 20010923	3610 54970	6880 59520
20010	33	20010921 20010922	24410 26890	39640 31460	92031 92040	33	20010923	54970 6900	59520 10250
20010	33 33	20010922	26890 35830	40320	92040 92041	35 35	20010922	59530	63460
20020	33	20010922	44640	49090	92041 92050	33	20010923	10260	13970
20000	50		1 10-10	10000	52030	00	20010022	10200	

 Kevron
 Flown and Processed for

 Geophysics PtyLtd
 Northern Territory Department Of Mines & Energy

Job No. 1592B Page 6

20040	33	20010922	31470	35820	92051	35	20010923	63470	66900
20050	33	20010922	40340	44630	92060	33	20010922	13980	17850
20060	33	20010922	49100	53390	92061	35	20010923	66910	69800
20070	33	20010922	57600	61710	92070	33	20010922	17870	22440
20080	33	20010922	65890	69960	92071	35	20010923	69810	73160
20090	33	20010922	53410	57580	92080	33	20010922	22450	26880
20100	33	20010922	61720	65870	92081	35	20010923	73170	78380
20110	33	20010922	69970	74500	92091	35	20010923	78400	83630
20120	33	20010922	78410	82520	92101	35	20010923	83650	88900
20130	33	20010922	86380	90450	92110	35	20010923	88910	94140
20140	33	20010922	74510	78400	92120	35	20010923	94150	99920
20150	33	20010922	82540	86370	92130	35	20010923	99940	105990
20160	33	20010922	90470	94240	92140	35	20010923	106010	112860
20170	33	20010922	98050	101760	92150	35	20010923	112870	120540
20180	33	20010922	105570	109280	92160	35	20010923	120550	128040

APPENDIX 4

Weekly Production Reports

KEVRON GEOPHYSICS PTY LTD: Production Summary

Job No: 1592B						
Company Name:	NT DEPARTMENT OF MINES AND ENERGY	Company Address:	CENTREPOINT TOWER BUILDING			
Contact Name	RICHARD BRESCIANINI		SMITH STREET MALL			
			DARWIN NT 0828			
Project Name:	STURT RIVER SURVEY	(08) 8999 5511				
Date Awarded:	Demobilisation Date:	28/09/01	DIRECT PHONE: (08) 8999 5389			
Total Estimated Value:	\$0 Budgeted Line Kms:	25,710.0				
Mobilisation Date:	13/08/01 Budgeted Flying Hours:	0	Date Completed: 28/09/01			

Aircraft	On Line Hours	Other Flying Hours	Total Flying Hours	Total Line Kms	Total Reflown Km	Total Kms Flown	Total Fuel	Start Date	Last Date	Last Flt No	Tot. Standby Time	Total Lost Days	
KAC	151.4	74.3	225.7	33,669.9	1,353.9	35,023.8	20939	13/08/01	28/09/01	41	0	24.5	
Total:	151.4	74.3	225.7	33,669.9	1,353.9	35,023.8	20939	13/08/01	28/09/01	41	0	24.5	

Average Production Rate Kms/On Line Hours	222.4	Average Daily Production (production days only)	1,566.0	Litres per Hour	92.1
Average Production Rate (Kms/Total Hours)	149.2	OFFLINE Hours as % of Total Hours	32.9%	Total Days On Job	46.5
Average Daily Production over survey period	732.0	Reflight as % of Km Flown	3.9%	Total Production Days	21.0

WEEK COMMENCING MONDAY 06/08/2001

AIRCRAFT: VH-KAC

CREW: PILOTS: Rod Jamieson, Dave Chappell

DAY/ DATE	FLIGHT No.		TAKE OFF	"ON LINE" FLIGHT	ALL OTHER FLIGHT	FUEL	JEL OIL KM FLOWN			KM REFLOWN	CR	EW	COMMENTS (Routes Flown, Wx, Equipmen		
DAIL	110.	No.							I LO WIN	KEI LO WIX			(Rout		
			TIME	HOURS	HOURS		L	R			PLT	OR		A/C Servicabili	ty etc)
MON.															
06/08															
TUES															
07/08															
WEDS															
08/08															
THU.															
09/08															
FRI.															
10/08															
SAT															
11/08	-	1592B	-	-	-	-			-	-			IN KUN	JUNURRA	
SUN.	-	1592B	-	-	-	-			-	-			IN KUN	JUNURRA	
12/08	-	1592B	-	-	-	-			-	-			IN KUN	JUNURRA	
		TOTALS	5												
	_														TALS
SUMM	IARY	FUEL USAG	E		Ltrs/Hr]	PILOT SU	JMM	ARY:	NAM	IE 'OI	N LINE'		THER HRS	HOURS	LINE KM
		OIL USAGE	L:		Ltrs/Hr										
	_	DDODUCTIC	R:		Ltrs/Hr							_			
	L	PRODUCTIO	ON RATE		Km/Hr						GRANI		15		
HOUR	S TO 120 I	HOURLY:	51.4	ΤΟΤΑ	L A/C HOURS:	26,078.3					GRANL	J 101 A		<u> </u>	<u> </u>
		L							11 7804-	-					
	- K e			l Processed for Ferritory Depart	mont Of Minos	& Fnorm		Job	No. 1592B Page 2						
F	Geoph	ysics PtyLtd ¹		ernory Depuri	inchi Oj mines	almer sy			I uge 2						

WEEK COMMENCING MONDAY 13/08/2001

AIRCRAFT: VH-KAC

CREW: PILOTS: Dave Chappell

DAY/ DATE	FLIGHT No.	JOB No.	TAKE OFF	"ON LINE" FLIGHT	ALL OTHER FLIGHT	FUEL	0	IL	KM FLOWN	KM REFLOWN	CRI	EW	(Rou	COMMEN tes Flown, Wx, 1	
			TIME	HOURS	HOURS		L	R			PLT	OR		A/C Servicabil	
MON.	-	1592B	10.00	-	2.3	-	-	-	-	-	DC	-	FERRY	KUNUNURRA	A – TINDALL
13/08	-	1592B	-	-	-	-	-	-	-	-	-	-	NO FL	IGHT DUE ONI	LY 1 PILOT
TUES	1	1592B	14.00	-	2.5	192	1	2	-	-	DC	LG	FLIGH	T OK	
14/08	-	1592B	-	-	-	-	-	-	-	-	-	-	NO FL	IGHT DUE ONI	LY 1 PILOT
WEDS	2	1592B	7.02	3.9	1.3	530	-	1	902.7	-	DC	MD	FLIGH	T OK	
15/08	-	1592B	-	-	-	-	-	-	-	-	-	-	NO FL	IGHT DUE ONI	LY 1 PILOT
THU.	3	1592B	6.55	1.1	1.4	567	1	1	953.8	-	DC	LG	FLIGH	T OK	
16/08	-	1592B	-	-	-	-	-	-	-	-	-	-	NO FL	IGHT DUE ONI	LY 1 PILOT
FRI.	-	1592B	-	-	-	-	-	-	-	-	-	-			
17/08	-	1592B	-	-	-	-	-	-	-	-	-	-			
SAT	4	1592B	9.50	4.1	1.5	606	2	2	982.8	-	DC	MD	FLIGH	T OK	
18/08	-	1592B	-	-	-	-	-	-	-	-	-	-	NO FL	IGHT DUE ONI	LY 1 PILOT
SUN.	5	1592B	7.03	4.2	1.2	584	1	2	1036.3	-	DC	MD	FLIGH	T OK	
19/08	-	1592B	-	-	-	-	-	-	-	-	-	-	NO FL	IGHT DUE ONI	LY 1 PILOT
		TOTALS	5	16.3	10.2	2479	5	8	3875.6	-	-	-			
	_				·								-		TALS
SUMM	IARY I	FUEL USAG	E	93.55	Ltrs/Hr P	PILOT SU	MM	ARY:	NAM	AE 'ON	I LINE'		THER HRS	HOURS	LINE KM
	(OIL USAGE	L:	0.19	Ltrs/Hr				Dave Chap	ppell 16.3		10.2		26.5	3875.6
			R:	0.31	Ltrs/Hr										
	1	PRODUCTIC	ON RATE	146.2	Km/Hr										
UOUD	S TO 120 U	OURLY:	7 5		L A/C HOURS:	26,104.8					GRAND	ТОТА	ALS	26.5	3875.6
HUUK	5 10 120 H	OUKLI: 2	1.5	– 101AI	LAIC HOUKS:	20,104.8									

WEEK COMMENCING MONDAY 20/08/2001

AIRCRAFT: VH-KAC

CREW: PILOTS: Dave Chappell

OPERATORS: Mark Devenish

DAY/	FLIGHT	JOB	TAKE	"ON LINE"	ALL OTHER	FUEL	0	IL	KM	KM	CR	EW		COMMEN	TS
DATE	No.	No.	OFF	FLIGHT	FLIGHT				FLOWN	REFLOWN			(Rou	tes Flown, Wx,	Equipment &
			TIME	HOURS	HOURS		L	R			PLT	OR		A/C Servicabil	ity etc)
MON.	-	1592B	06.35	-	1.4	150	1	2	-	-	DC	MD	AADC	U/S	
20/08	-	1592B	-	-	-	-	-	-	-	-	-	-			
TUES	6	1592B	15.00	-	2.0	285	-	-	-	-	DC	MD	COMP	BOX U/S	
21/08	-	1592B	-	-	-	-	-	-	-	-	-	-	-		
WEDS	7	1592B	06.58	4.8	1.0	578	1	1	1036.1	-	DC	MD	FLIGH	T OK	
22/08	-	1592B	-	-	-	-	-	-	-	-	-	-	NO PM	I FLIGHT DUE	1 PILOT
THU.	8	1592B	07.22	4.3	1.1	588	1	1	1036.0	-	DC	MD	FLIGH	T OK	
23/08	-	1592B	-	-	-	-	-	-	-	-	-	-	NO PM	I FLIGHT DUE	1 PILOT
FRI.	9	1592B	07.00	3.7	1.0	-	2	2	920.7	-	DC	MD	FLIGH	T OK	
24/08	-	1592B	-	-	-	-	-	-	-	-	-	-	NO PM	I FLIGHT DUE	1 PILOT
SAT	-	1593	06.50	-	1.5	378	-	1	-	-	DC	-	FERRY	TO KUNUNU	RRA
25/08	-	1593	-	-	-	-	-	-	-	-	-	-	100 HC	DURLY	
SUN.	-	1593	-	-	-	-	-	-	-	-	-	-	100 HC	DURLY	
26/08	-	1593	-	-	-	-	-	-	-	-	-	-	100 HC	DURLY	
		TOTALS	5	12.8	8	1979	5	7	2992.8	-	-	-			
					1						•		-		FALS
SUMM	IARY	FUEL USAG	E	95.1	Ltrs/Hr I	PILOT SU	JMM	ARY:	NAN	AE 'O	N LINE'		THER HRS	HOURS	LINE KM
		OIL USAGE	L:	0.24	Ltrs/Hr				Dave Chap	pell 12.8	3	8		20.8	2992.8
			R:	033	Ltrs/Hr					<u> </u>					
]	PRODUCTIC	ON RATE	143.8	Km/Hr										
HOUSE	G TEO 400 T						_				GRANE) TOT A	ALS	20.8	2992.8
HOUR	S TO 120 H				L A/C HOURS:										

WEEK COMMENCING MONDAY 27/08/2001

AIRCRAFT: VH-KAC

CREW: PILOTS: Dave Chappell, Ivan Hussein

DAY/	FLIGHT	JOB	TAKE	"ON LINE"	ALL OTHER	FUEL	0	IL	KM	KN		CRE	EW		COMMEN	ITS
DATE	No.	No.	OFF	FLIGHT	FLIGHT				FLOWN	REFLO	OWN			(Rout	tes Flown, Wx,	Equipment &
			TIME	HOURS	HOURS		L	R				PLT	OR		A/C Servicabil	ity etc)
MON.	-	1592B	-	-	-	-	-	-	-	-		-	-	NO FLI	IGHTS DUE 10	0 HOURLY
27/08	-	1592B	-	-	-	-	-	-	-	-		-	-	100 HC	URLY	
TUES	-	1592B	-	-	-	-	-	-	-	-		-	-	100 HC	URLY	
28/08	-	1592B	16.30	-	0.8	204	-	-	-	-		IH	RH	TEST F	LIGHT	
WEDS	1	1592B	12.00	2.3	1.7	341	1	2	472.4	-		DC	IH	OKAY		
29/08	-	1592B		-	-		-	-		-		-	-	NO PM	FLIGHT	
THU.	-	1592B	10.30	-	1.5	379	-	-		-		IH	DC	FERRY	KUNUNURR	A – Kath
30/08	-	1592B		-	-		-	-		-		-	-			
FRI.	10	1592B	6.46	4.3	0.9	560	-	1	1035.6	-		DC	MD	OK		
31/08	11	1592B	13.00	3.9	1.0	493	2	1	920.4	-		IH	LG	OK		
SAT	12	1592B	6.35	4.3	0.9	575	1	1	973.7	-		IH	LG	ОК		
01/09	13	1592B	12.46	4.0	1.0	539	1	1	1015.1	-		DC	MD	ОК		
SUN.	14	1592B	6.33	0.3	1.5	213	-	-	55.4	-		DC	MD	THICK	SMOKE	
02/09	15	1592B	12.44	4.0	1.0	553	1	1	1031.0	-		IH	LG	OK – S	MOKE IN ARE	EA
		TOTALS	5	23.1	10.3	3857.0	6	7	5503.6	0		-	-			
	_										T			-		TALS
SUMM	IARY 1	FUEL USAG	E	115.5	Ltrs/Hr P	PILOT SU	MM	ARY:	NAM	1E	'ON	LINE'		THER HRS	HOURS	LINE KM
	(OIL USAGE	L:	0.18	Ltrs/Hr				Dave Chap	pell	10.9		5.1		16.0	2578.5
			R:	0.21	Ltrs/Hr				Ivan Husse	ein	12.2		5.2		17.4	2925.1
	1	PRODUCTIO	ON RATE	164.8	Km/Hr							GRAND		15	33.4	5503.6
HOUR	S TO 120 H	OURLY:	5.6	ΤΟΤΑΙ	L A/C HOURS:	25,712.0						GRAND	1018	113	55.4	5505.0
				_		,										

WEEK COMMENCING MONDAY 3/09/2001

AIRCRAFT: VH-KAC

CREW: PILOTS: Dave Chappell, Ivan Hussein

DAY/	FLIGHT	JOB	TAKE	"ON LINE"	ALL OTHER	FUEL	0	IL	KM	KM	CR	EW		COMMEN	ITS
DATE	No.	No.	OFF	FLIGHT	FLIGHT				FLOWN	REFLOWN			(Rou	tes Flown, Wx,	Equipment &
			TIME	HOURS	HOURS		L	R			PLT	OR		A/C Servicabil	lity etc)
MON.	-	1592B	6.30	-	1.2	-	-	-	-	-	IH	LG	FLIGH	T ABORTED D	OUE NO VIS
3/09	17	1592B	12.40	3.9	0.9	514	1	1	882.4	-	DC	MD	OK, Tł	HICK SMOKE	
TUES	18	1592B	6.28	4.1	0.9	567	-	-	1012.7	-	DC	MD	OK		
4/09	19	1592B	12.15	4.6	0.9	593	2	1	1104.8	-	IH	LG	OK		
WEDS	20	1592B	9.56	4.4	1.0	583	-	-	1131.1	-	DC	MD	OK		
5/09	-	1592B	-	-	-	-	-	-	-	-	-	-	A/C M	AINT (OIL CH	ANGE ETC)
THU.	21	1592B	6.30	2.9	2.0	528	-	-	678.6	-	IH	LG	EARLY	Y RETURN DU	E GPS
6/09	-	1592B	13.30	-	2.2	289	1	1	-	-	IH	MD	SPAR	INSPECTION I	N DARWIN
FRI.	22	1592B	7.10	4.5	0.9	568	1	1	1131.0	-	IH	LG	OK		
7/09	23	1592B	13.20	4.5	0.8	-	-	-	1131.1	-	DC	MD	OK		
SAT	-	1592B	-	-	-	-	-	-	-	-	-	-	NO AN	I FLIGHT RH H	FUEL PROBS
8/09	24	1592B	12.36	4.3	1.2	534	1	1	1131.0	-	IH	LG	OK		
SUN.	25	1592B	6.7	4.2	0.9	590	1	1	904.8	-	IH	LG	OK		
9/09	26	1592B	13.16	4.4	0.9	-	-	-	1131.2	-	DC	MD	OK		
	•	TOTALS	5	41.8	13.8	4766	7	6	10,237.8	-	-	-			
					· · · · · · · · · · · · · · · · · · ·	_							•	ТО	TALS
SUMM	IARY	FUEL USAG	E	85.72	Ltrs/Hr]	PILOT SU	MM	ARY:	NAM	4E 'O	N LINE'		THER HRS	HOURS	LINE KM
		OIL USAGE	L:	0.13	Ltrs/Hr				Dave Chap	opell 21.	3	4.5		25.8	5,288.5
			R:	0.11	Ltrs/Hr				Ivan Husse	ein 20.	5	9.3		29.8	4,950.2
		PRODUCTIC	ON RATE	184.1	Km/Hr						GRANE		16	55.6	10,238.7
HOUR	S TO 120 F	IOURLY: 3	1.0		L A/C HOURS:	25.767.6					GKANL	J 101 A	119	55.0	10,238.7
		Ľ													

WEEK COMMENCING MONDAY 10/09/2001

AIRCRAFT: VH-KAC

CREW: PILOTS: Dave Chappell, Ivan Hussein

DAY/	FLIGHT	JOB	TAKE			CR	EW		COMMEN	ITS					
DATE	No.	No.	OFF	FLIGHT	FLIGHT				FLOWN	REFLOWN			(Rou	tes Flown, Wx,	Equipment &
			TIME	HOURS	HOURS		L	R			PLT	OR		A/C Servicabil	lity etc)
MON.	27	1592B	6.25	4.3	1.0	537	1	1	1131.3	-	DC	MD	OK		
10/09	28	1592B	13.20	3.7	0.9	516	1	1	904.8	-	IH	LG	OK		
TUES	29	1592B	10.10	5.5	1.0	74	1	1	1357.2	-	IH	LG	OK		
11/09	-	1592B	-	-	-	592	-	-	-	-	-	-	-		
WEDS	30	1592B	9.18	4.4	1.3	587	2	1	-	1035.6	DC	LG	OK		
12/09	-	1592B	-	-	-	-	-	-	-	-	-	-	-		
THU.	-	1592B	9.30	-	0.2	-	-	-	-	-	IH	LG	AM FL	IGHT CANCEI	LLED, NAV
13/09	-	1592B	13.00	-	4.7	-	-	-	-	-	IH	-	KATH	– ALICE 100 H	IOURLY
FRI.	-	1592B	-	-	-	-	-	-	-	-	-	-	100 HC	DURLY	
14/09	-	1592B	-	-	-	-	-	-	-	-	-	-	100 HC	DURLY	
SAT	-	1592B	-	-	-	-	-	-	-	-	-	-	100 HC	DURLY	
15/09	-	1592B	-	-	-	-	-	-	-	-	-	-	100 HC	DURLY	
SUN.	-	1592B	-	-	-	-	-	-	-	-	-	-	100 HC	DURLY	
16/09	-	1592B	-	-	-	-	-	-	-	-	-	-	100 HC	DURLY	
		TOTALS	5	17.9	9.1	2306	5	4	3393.3	1035.6	-	-			
				-									_		TALS
SUMM	IARY F	UEL USAG	E	85.4	Ltrs/Hr	PILOT SU	MM.	ARY:	NAM	1E '0	ON LINE'		THER HRS	HOURS	LINE KM
	C	DIL USAGE	L:	0.18	Ltrs/Hr				Dave Chap	pell 8.7	1	2.3		11.0	2166.9
			R:	0.15	Ltrs/Hr				Ivan Husse	ein 9.2	2	6.8		16.0	2262.0
	P	RODUCTIC	ON RATE	164.0	Km/Hr										
		_		_			_				GRANI) TOTA	ALS	27.0	4428.9
HOURS	S TO 120 H	OURLY:	0.0	TOTA	L A/C HOURS:	25,794.6									

WEEK COMMENCING MONDAY 17/09/2001

AIRCRAFT: VH-KAC

CREW: PILOTS: Dave Chappell, Ivan Hussein OPERATORS: Brett Archer, Leith Gardiner

DAY/ DATE	FLIGHT No.		TAKE OFF	"ON LINE" FLIGHT	ALL OTHER FLIGHT	FUEL	0	IL	KM FLOWN	KI REFL		CRE	EW		COMMEN	
DAIL	110.	No.	011	TLIGHT	TEIGITI				1 LO WIN		0,011			(Rou	tes Flown, Wx,	Equipment &
			TIME	HOURS	HOURS		L	R				PLT	OR		A/C Servicabil	lity etc)
MON.	-	1592B	-	-	-				-	-		-	-	100 Ho	ourly in Alice	
17/09	-	1592B	-	-	-				-	-		-	-	100 Ho	ourly in Alice	
TUES	-	1592B	-	-	-				-	-		-	-	100 Ho	ourly in Alice	
18/09	-	1592B	-	-	-				-	-		-	-	100 Ho	ourly in Alice	
WEDS	-	1592B	-	-	-				-	-		-	-	100 Ho	urly in Alice	
19/09	-	1592B							-	-		-	-	100 Ho	ourly in Alice	
THU.	-	1592B							-	-		-	-	100 Ho	ourly in Alice	
20/09	-	1592B	14.15	-	3.5	546	-	-	-	-		IH	BA	Ferry A	lice – Katherine	e
FRI.	31	1592B	8.00	2.6	0.5	336	-	-	454.1	-		DC	LG	Early re	eturn, Nav Comj	puter Problem
21/09	32	1592B	14.06	1.0	0.4	181	1		230	-		DC	LG	Early re	eturn, Nav Com	puter Problem
SAT	33	1592B	6.35	4.3	1.0	522	1	1	8918	-		IH	BA	Flight (OK	
22/09	34	1592B	12.38	4.8	0.6	575	1	1	918.6	-		DC	LG	Flight (OK	
SUN.	35	1592B	6.33	4.9	0.7	591	-	-	1052.6	-		DC	LG	Flight (OK	
23/09	36	1592B	13.10	4.2	0.7	-	1	1	963.4	-		IH	BA	Flight (OK	
		TOTALS	5	21.8	7.4	2751	4	3	4510.5	0		-	-			
														-	TO	TALS
SUMM	IARY	FUEL USAG	Έ	94.2	Ltrs/Hr	PILOT SU	MM.	ARY:	NAM	1E	'ON	I LINE'		THER HRS	HOURS	LINE KM
	-	OIL USAGE	L:	0.14	Ltrs/Hr				Dave Chap	pell	13.3		2.2		15.5	2655.3
	ľ		R:	0.10	Ltrs/Hr				Ivan Husse		8.5		5.2		13.7	1855.2
PRODUCTION RATE 154.5 Km/Hr																
	Ŀ	Γ		 _		[GRAND	TOT	ALS	29.2	4510.5
HOUR	S TO 120	HOURLY:	0.8	TOTA	L A/C HOURS:	25,823.8										

Job No. 1592B Page 8 WEEK COMMENCING MONDAY 24 / 09/ 2001 AIRCRAFT: VH-KAC CREW: PILOTS: Max Eichorn, Mark Rooney, Ivan Hussein, Dave Chappell

OPERATORS: Kevin Cahill, Rob Deopel

DAY/	FLIGHT		TAKE	"ON LINE"	ALL OTHER	FUEL	0	IL	KM FLOWN	KM DEELOWA	CR	EW		COMMEN	
DATE	No.	No.	OFF	FLIGHT	FLIGHT				FLOWN	REFLOWN			(Rout	es Flown, Wx, I	Equipment &
			TIME	HOURS	HOURS		L	R			PLT	OR		A/C Servicabil	ity etc)
MON.	37	1592B	6.35	4.9	0.7	577	-	1	929.7	-	IH	LG	OK		
24/09	38	1592B	12.40	4.1	0.7	476	2	1	1035	-	DC	LG	OK		
TUES	39	1592B	6.35	4.5	0.5	551	1	1	687.8	282.4	DC	LG	OK		
25/09	40	1592B	12.40	1.9	0.6	348	-	-	-	-	IH	LG	Early re	turn due Nav co	omp Problem
WEDS	-	1592B	9.40	-	0.9	-	-	-	-	-	IH	LG	Ferry K	atherine – Darw	in
26/09	-	1592B	15.00	-	1.1	95	-	-	-	-	IH	LG	Ferry D	arwin to Kather	ine
THU.	41	1592B	8.38	2.3	0.8	413	1	1	502.6	35.9	DC	IH	OK, Job	Completed	
27/09	-	1592B	5.15	-	3.6	351	-	-	-	-	IH	DC	Ferry K	atherine – Alice	
FRI.	-	1592B	-	-	1.4		-	-	-	_	ME	MR	Ferry A	lice – Marqua	
28/09															
SAT															
29/09															
SUN.															
30/09															
		TOTALS	5												
	_					1							J		TALS
SUMN	IARY	FUEL USAG	Έ		Ltrs/Hr I	PILOT SU	MM	ARY:	NAM	IE 'ON	J LINE'		THER HRS	HOURS	LINE KM
		OIL USAGE	L:		Ltrs/Hr								IIKS		
			R:		Ltrs/Hr										
	-														
	-	PRODUCTIO	ON RATE		Km/Hr							_			
		_		7			_		L	I	GRANI	TOT	ALS		
HOUR	S TO 120 H		7.5		L A/C HOURS:	25,867.9				_					
	Ke			l Processed for Ferritory Depart	mont Of Mines	& Fnorm		Job	No. 1592B						
F	Geophy	sics PtyLtd	wormern 1	ernory Depart	ment Of Witnes	<u>xEnergy</u>			Page 9						

APPENDIX 5

Radiometric Calibrations and Test Results

APPENDIX 6

Digital Data Formats

STURT MAGNETICS DATA DESCRIPTION FILE

COPYRIGHT RESERVED NORTHERN TERRITORY GOVERNMENT

Survey Name:SturtSurvey Date:August 2001Airborne Contractor:Kevron GeophysicsContractor Job Number:1592BProcessing Contractor:Kevron GeophysicsClient:Department of Mines and Energy Northern Territory

1:250 000 sheets flown in Located Data File:LarrimahSE53-13Daly WatersSE53-01

1:100 000 sheets flown in Located Data File:Dry River5367Elsey5467Birrimba5366Western Creek5466Middle Creek5465

Flight Line Number Range of Located Data File:	10010 - 31900
Tie Line Number Range of Located Data File:	90010 - 92160

SURVEY SPECIFICATIONS:

Flight Line Direction: Flight Line Separation (m): Tie Line Direction: Tie Line Separation (m): Nominal Terrain Clearance (m AGL): Average Terrain Clearance (m ASL): Total Line km: Projection: MGA Datum: GDA94 Zone: 53

SURVEY EQUIPMENT:

Aircraft: Magnetometer: Magnetometer Resolution (nT): Magnetometer Compensation: Magnetometer Compensation: Magnetometer Sample Rate (s): Magnetometer Sample Interval (m): Base Station Magnetometer: Base Station Magnetometer Resolution (nT): Base Station Magnetometer Sample Rate (s):5 Base Station Magnetometer Location(s):

Data Acquisition System: Flight Path Navigation System: Navigation Equipment: GPS Base Station Location(s):

Radar Altimeter:

400 metres East-West 4000 metres 80 metres 80 metres 33,476

North-South

Rockwell Aerocommander 500S VH-KAC Geometrics G-822A Cesium Vapour 0.001 RMS AADCII operating in real time 0.1 approx 7.0 metres Geometrics G856 .1

Katherine (Tindal) Airport Aprox: -140 31.3 132 26.7

RMS DAS8 GPS Fugro Omnistar and Ashtech G12 GPS Differential corrections via Fugro Omnistar VBS (Virtual Base Station) Sperry AA200

DATA PROCESSING:

MAGNETIC DATA:

Data are corrected for diurnal variation, and International Geometric Reference Field IGRF 2000 updated to 2001.66 secular variation removed. Tie line and micro levelling has been performed.

The Reduced To Pole (RTP) grid was calculated using a magnetic inclination of -46.3 deg and magnetic declination of 4.25 deg. These values correspond to the following location: latitude -15.76923 deg S, longitude 132.50334 deg E, elevation 500 metres.

ELEVATION DATA:

Elevation was calculted by subration of the radar altimetre from the gps height. Tie line and micro levelling has been performed. AUSGEOID 98 nval geoid elipsoid separation values subtracted to achieve AHD.

LOCATED DATA FORMAT:

Variable	Units	Col number	Width	Format Nul	11
LineName		[1]	12	%12.12s	<u>.</u> .
LineDate		[2]	8	%8.8s	' <u>-</u> '
Flight number		[3]	4	%3.0f	' -99'
Time (CST)	hours	[4]	9	%8.5f	' -99999999'
Fiducial		[5]	10	%9.0f	' -99999999'
Easting	metres	[6]	11	%10.2f	' -99999999.0'
Northing	metres	[7]	11	%10.2f	' -99999999.0'
Raw Magnetics	nT	[8]	10	%9.2f	' -99999999.'
Diurnal	nT	[9]	10	%9.2f	' -99999999.'
Final Magnetics	nT	[10]	10	%9.2f	' -99999999.'
1VD	nT	[11]	11	%10.6f	' -99999999.0'
Radio Alt	meters	[12]	7	%6.1f	' -99999'
Baro Alt	metres	[13]	7	%6.1f	' -99999'
Gps Height	metres	[14]	7	%6.1f	' -99999'
Elevation	metres	[15]	7	%6.1f	' -99999'

STURT RADIOMETRICS DATA DESCRIPTION FILE

COPYRIGHT RESERVED NORTHERN TERRITORY GOVERNMENT

Survey Name:SturtSurvey Date:August 2001Airborne Contractor:Kevron GeophysicsContractor Job Number:1592BProcessing Contractor:Kevron GeophysicsClient:Department of Mines and Energy Northern Territory

1:250 000 sheets flown in Located Data File:LarrimahSE53-13Daly WatersSE53-01

1:100 000 sheets flown in Located Data File:

 Dry River
 5367

 Elsey
 5467

 Birrimba
 5366

 Western Creek
 5466

 Middle Creek
 5465

Flight Line Number Range of Located Data File:	10010 - 31900
Tie Line Number Range of Located Data File:	90010 - 92160

SURVEY SPECIFICATIONS:

Flight Line Direction: Flight Line Separation (m): Tie Line Direction: Tie Line Separation (m): Nominal Terrain Clearance (m AGL): Average Terrain Clearance (m ASL): Total Line km: Projection: MGA Datum: GDA94 Zone: 53

SURVEY EQUIPMENT:

Aircraft:	Rockwell Aerocommander 500S VH-KAC
Magnetometer:	Geometrics G-822A Cesium Vapour
Magnetometer Resolution (nT):	0.001
Magnetometer Compensation:	RMS AADCII operating in real time
Magnetometer Sample Rate (s):	0.1
Magnetometer Sample Interval (m):	approx 7.0 metres
Base Station Magnetometer:	Geometrics G856
Base Station Magnetometer Resolution (nT):	.1
Base Station Magnetometer Sample Rate (s):	5
Base Station Magnetometer Location(s):	Katherine (Tindal) Airport Aprox: -140 31.3 132 26.7
Spectrometer:	Exploranium GR820
Crystal Size:	33lt downward array
Spectrometer Sample Rate (s):	.5
Spectrometer Sample Interval (m):	70

North-South

400 metres

East-West

80 metres

80 metres

33,476

4000 metres

Spectral Windows:	Potassium Uranium Thorium Cosmic	1370 - 1570 keV 1660 - 1860 keV 2410 - 2810 keV 4000 keV
Date aircraft last calibrated: Calibration range: Data Acquisition System:	March 2001 Carnamah RMS DAS8	
Flight Path Navigation System: Navigation Equipment: GPS Base Station Location(s): Radar Altimeter:	GPS Fugro Omnistar and Ashtech G12 GPS Differential corrections via Fugro Omnistar VB (Virtual Base Station) Sperry AA200	

RADIOMETRICS DATA PROCESSING:

Data has been corrected for aircraft and cosmic backgrounds. Height corrected to a constant datum of 80 metres, minimum height of 30 and a maximum of 300 metres. Data has also been corrected for radon using Minty (1996 - Alt Method B) and corrected for channel interaction.

Noise Adjusted Singular Value Deconvolution (NASVD) has been applied. Five components used to reconstruct spectra.

ELEVATION DATA:

Elevation was calculted by subration of the radar altimetre from the gps height. Tie line and micro levelling has been performed. AUSGEOID 98 nval geoid elipsoid separation values subtracted to achieve AHD.

LOCATED DATA FORMAT:

Variable	Units	Col number	Width Format	Null
LineName		[1]	12 %12.12s	'_'
LineDate			8 %8.8s	-
		L J		
Flight number		[3]	4 %3.0f	'-99'
Time (CST)	hours	[4]	9 %8.5f	' -99999999'
Fiducial		[5]	10 %9.0f	' -99999999'
Easting	metres	[6]	11 %10.2f	' -99999999.0'
Northing	metres	[7]	11 %10.2f	' -99999999.0'
Raw Potassium	cps	[8]	9 %8.2f	' -99999999'
Raw Uranium	cps	[9]	9 %8.2f	' -99999999'
Raw Thorium	cps	[10]	9 %8.2f	' -99999999'
Raw Total Cour		[11]	9 %8.2f	' -99999999'
Corrected Potas	sium cps	[12]	9 %8.2f	' -99999999'
Corrected Urani		[13]	9 %8.2f	' -99999999'
Corrected Thori	um cps	[14]	9 %8.2f	' -99999999'
Corrected Total	Count cps	[15]	9 %8.2f	' -99999999'
Corrected Potas	siun %	[16]	9 %8.3f	' -99999999'
Corrected Urani	um ppm	[17]	9 %8.3f	' -99999999'
Corrected Thori		[18]	9 %8.3f	' -99999999'
Corrected Total	Count nG	y/hr[19]	9 %8.3f	' -99999999'
Radio Alt	meters	[20]	7 %6.1f	' -99999'
Baro Alt	metres	[21]	7 %6.1f	' -99999'
Gps Height	metres	[22]	7 %6.1f	' -99999'
Elevation	metres	[23]	7 %6.1f	' -99999'

Flown and Processed for Northern Territory Department Of Mines & Energy

***** # **Stripping Coefficients** StrippingCoeffStart 0.265020 ALPHA BETA 0.433140 GAMMA 0.805216 0.081903 А StrippingCoeffEnd Height Attenuation Coefficients # HeightAttenuationStart TOTAL_COUNT -0.0074 POTASSIUM -0.0094 **URANIUM** -0.0084 THORIUM -0.0074 HeightAttenuationEnd Cosmic & Aircraft background Cosmic TOTAL COUNT 0.718991 POTASSIUM 0.039252 URANIUM 0.033910 THORIUM 0.035575 Background TOTAL_COUNT 52.26 POTASSIUM 7.4 **URANIUM** 1.2 THORIUM 0.0

Sensitivity Coefficients

98.60
7.9
6.1
27.5

#

STURT 256 CHANNEL RADIOMETRIC DATA DESCRIPTION FILE

COPYRIGHT RESERVED NORTHERN TERRITORY GOVERNMENT

Survey Name:	Sturt
Survey Date:	August 2001
Airborne Contractor:	Kevron Geophysics
Contractor Job Number:	1592B
Processing Contractor:	Kevron Geophysics
Client:	Department of Mines and Energy Northern Territory

1:250 000 sheets flown in Located Data File:LarrimahSE53-13Daly WatersSE53-01

1:100 000 sheetsflown in Located Data File:Dry River5367Elsey5467Birrimba5366Western Creek5466Middle Creek5465

Flight Line Number Range of Located Data File:	10010 - 31900
Tie Line Number Range of Located Data File:	90010 - 92160

SURVEY SPECIFICATIONS:

Flight Line Direction: Flight Line Separation (m): Tie Line Direction: Tie Line Separation (m): Nominal Terrain Clearance (m AGL): Average Terrain Clearance (m ASL): Total Line km: Projection: MGA Datum: GDA94 Zone: 53 North-South 400 metres East-West 4000 metres 80 metres 80 metres 33,476

SURVEY EQUIPMENT:

Server Even merti	
Aircraft:	Rockwell Aerocommander 500S VH-KAC
Magnetometer:	Geometrics G-822A Cesium Vapour
Magnetometer Resolution (nT):	0.001
Magnetometer Compensation:	RMS AADCII operating in real time
Magnetometer Sample Rate (s):	0.1
Magnetometer Sample Interval (m):	approx 7.0 metres
Base Station Magnetometer:	Geometrics G856
Base Station Magnetometer Resolution (nT):	.1
Base Station Magnetometer Sample Rate (s):	5
Base Station Magnetometer Location(s):	Katherine (Tindal) Airport Aprox: -140 31.3 132 26.7
Spectrometer:	Exploranium GR820
Crystal Size:	33lt downward array
Spectrometer Sample Rate (s):	.5
Spectrometer Sample Interval (m):	70

Spectral Windows:	Potassium Uranium Thorium Cosmic	1370 - 1570 keV 1660 - 1860 keV 2410 - 2810 keV 4000 keV
Date aircraft last calibrated: Calibration range:	March 2001 Carnamah	
Data Acquisition System:	RMS DAS8	
Flight Path Navigation System: Navigation Equipment: GPS Base Station Location(s):	GPS Fugro Omnistar and Ashtech G12 GPS Differential corrections via Fugro Omnistar VBS (Virtual Base Station)	
Radar Altimeter:	Sperry AA200	

RADIOMETRICS DATA PROCESSING:

Data has been corrected for aircraft and cosmic backgrounds. Height corrected to a constant datum of 80 metres, minimum height of 30 and a maximum of 300 metres. Data has also been corrected for radon using Minty (1996 - Alt Method B) and corrected for channel interaction.

Noise Adjusted Singular Value Deconvolution (NASVD) has been applied. Five components used to reconstruct spectra.

LOCATED DATA FORMAT:

Variable	Units	Col number	Width Format	Null
LineName		[1]	12 %12.12s	' <u>-</u> '
LineDate		[2]	8 %8.8s	'_'
Flight number		[3]	4 %3.0f	' -99'
Time (CST)	hours	[4]	9 %8.5f	' -99999999'
Fiducial		[5]	10 %9.0f	' -99999999'
Easting	metres	[6]	11 %10.2f	' -99999999.0'
Northing	metres	[7]	11 %10.2f	' -99999999.0'
Raw Potassium	cps	[8]	9 %8.2f	' -99999999'
Raw Uranium	cps	[9]	9 %8.2f	' -99999999'
Raw Thorium	cps	[10]	9 %8.2f	' -99999999'
Raw Total Count	cps	[11]	9 %8.2f	' -99999999'
Corrected Potassium	cps	[12]	9 %8.2f	' -99999999'
Corrected Uranium	cps	[13]	9 %8.2f	' -99999999'
Corrected Thorium	cps	[14]	9 %8.2f	' -99999999'
Corrected Total Count	cps	[15]	9 %8.2f	' -99999999'
Corrected Potassiun	%	[16]	9 %8.3f	' -99999999'
Corrected Uranium	ppm	[17]	9 %8.3f	' -99999999'
Corrected Thorium	ppm	[18]	9 %8.3f	' -99999999'
Corrected Total Count	nGy/hr	[19]	9 %8.3f	' -99999999'
Temperature	deg	[20]	9 %8.3f	' -99999999'
Humidity	%	[21]	9 %8.3f	' -99999999'
Air Pressure	hPa	[22]	9 %8.3f	' -99999999'
Radio Alt	meters	[23]	7 %6.1f	' -99999'
Gps Height	metres	[24]	7 %6.1f	' -99999'
Live Time	msec	[25]	5 %5d	'_'
256 channel counts	cps	[26-279]	5 %5d	'_'
Cosmic	cps	[280]	5 %5d	'_'

Flown and Processed for Northern Territory Department Of Mines &Energy

***** # **Stripping Coefficients** StrippingCoeffStart ALPHA 0.265020 BETA 0.433140 GAMMA 0.805216 А 0.081903 StrippingCoeffEnd # Height Attenuation Coefficients **** HeightAttenuationStart TOTAL_COUNT -0.0074 POTASSIUM -0.0094 URANIUM -0.0084 THORIUM -0.0074HeightAttenuationEnd ***** Cosmic & Aircraft background ***** Cosmic TOTAL_COUNT 0.718991 POTASSIUM 0.039252 URANIUM 0.033910 THORIUM 0.035575 Background TOTAL_COUNT 52.26 POTASSIUM 7.4 **URANIUM** 1.2 THORIUM 0.0

Sensitivity Coefficients # ****

Potassium	98.60
Uranium	7.89
Thorium	6.06
Total Count	27.46

#

APPENDIX 7

Occupational Health and Safety and Environment Policies