Geology and mineral resources of the Northern Territory

Ahmad M and Munson TJ (compilers)

Northern Territory Geological Survey
Special Publication 5

Chapter 7: Halls Creek Orogen

Disclaimer
While all care has been taken to ensure that information contained in this publication is true and correct at the time of publication, changes in circumstances after the time of publication may impact on the accuracy of its information. The Northern Territory of Australia gives no warranty or assurance, and makes no representation as to the accuracy of any information or advice contained in this publication, or that it is suitable for your intended use. You should not rely upon information in this publication for the purpose of making any serious business or investment decisions without obtaining independent and/or professional advice in relation to your particular situation. The Northern Territory of Australia disclaims any liability or responsibility or duty of care towards any person for loss or damage caused by any use of, or reliance on the information contained in this publication.
Chapter 7: HALLS CREEK OROGEN

INTRODUCTION

The Halls Creek Orogen (HCO) is a north-northeast-trending orogenic belt that occurs mainly in Western Australia, where it flanks the eastern side of the Kimberley Craton (Figure 7.1). The extreme northeastern outcropping extension of this belt (about 136 km²) is exposed in the Northern Territory. The HCO is unconformably overlain by the Kimberley, Speweh and Carr-Boyden basins to the west and northwest, by the Victoria, Birrindudu, Ord and Osmond basins to the east and southeast, and by the Canning and Louisa basins to the south. The orogen comprises variably deformed and metamorphosed sedimentary, volcanic, and intrusive Palaeoproterozoic rocks with protolith ages that are dominantly in the range 1910–1800 Ma. Dunster et al (2000) also included the Fitzmaurice Group as part of the HCO, but this is now considered to be included in the Fitzmaurice Basin.

The most detailed studies of the HCO were undertaken by the Geological Survey of Western Australia (GSWA) during the 1990s (Griffin and Grey 1990, Tyler et al 1995, Tyler et al 1999, Blake et al 2000). In the main outcrops in Western Australia, the HCO has been divided into three zones (terranes) – the Western, Central and Eastern zones (Tyler et al 1995). The boundaries between these zones are interpreted to be major strike-slip faults. The Western Zone is composed of low- to high-grade turbiditic metasedimentary rocks of the Marbou Formation (ca 1870 Ma), unconformably overlain by felsic volcanic rocks of the Whitewater Volcanics (1855 Ma). These were deformed, metamorphosed and intruded by granitoid, gabbro and subvolcanic porphyries during the 1865–1850 Ma Hooper Orogeny (Tyler and Page 1996). The Central Zone is dominated by metasedimentary and meta-igneous rocks of the Tickalara Metamorphics, which were deformed and metamorphosed between 1865 and 1856 Ma, and at 1850–1854 Ma (Page and Sun 1994, Tyler and Page 1996, Bodorkos et al 1998). Deformation and metamorphism was followed by the deposition of sedimentary and felsic volcanic rocks between 1845 and 1840 Ma, and intrusion of granites and gabbros during the Halls Creek Orogeny between 1835–1805 Ma. The Eastern Zone comprises low-grade metamorphic and metavolcanic rocks of the Halls Creek Group that unconformably overlie 1920–1900 Ma granitoids and volcanic rocks.

Early tectonic models for the Halls Creek Orogen involved an intraplate extensional model, involving mantle underplating, extension and orogenesis (eg Etheridge et al 1987). However, Sheppard et al (1999a) proposed a subduction model in which the Western Zone formed as a rift marginal to the Kimberley Craton, the Central Zone represents a rifted oceanic island arc, and the Eastern Zone formed as a passive margin on the North Australian Craton. In this model, the 1865–1850 Ma Hooper Orogeny reflects the accreting of an island arc (Central Zone) onto the eastern margin of the Kimberley Craton (Western Zone), and the ca 1835 Ma Halls Creek Orogeny reflects the collision of the North Australian Craton (Eastern Zone) with the Kimberley Craton (Tyler et al 1995, Sheppard et al 1999a)

The exposed units of the Halls Creek Orogen in the Northern Territory (Figure 7.2) belong to the Western Zone of the orogen (Carson et al 2006, Worden et al 2008) and include the Marbou Formation, Whitewater Volcanics, Bow River Granite and unnamed dolerite dykes. Brief descriptions of these rock units are included in Whitehead and Fahey (1985) and Dunster et al (2000). The Halls Creek Orogen has previously been correlated with the Litchfield Domain of the Pine Creek Orogen, although recent studies have highlighted problems with any direct correlation (Carson et al 2009).

Figure 7.1. Regional geology of Halls Creek Orogen. NT geological regions from NTGS 1:2.5M GIS database. WA geological regions simplified and slightly modified from Tyler and Hocking (2001); some small outliers/inliers omitted. Extent of Kalkarindji Province in WA slightly modified from Glass and Phillips (2006).
Halls Creek Orogen

PALAEOPROTEROZOIC

Maroo Formation

A succession of ferruginous fine-grained, greenschist facies phyllite and schist that outcrops within the Northern Territory and extends into Western Australia was originally mapped as the Halls Creek Group by Whitehead and Fahey (1985) and Dunster et al (2000). However, extrapolation of the mapped geology from Western Australia, and the association of the unit with the Whitewater Volcanics and Bow River Granite, indicates that the unit is almost certainly the (LP3 of Ahmad 2000) Maroo Formation (Griffin et al 1993). The phyllite and schist shows rare evidence of compositional layering (Figure 7.3a) and contains muscovite, quartz, sericite, chlorite and haematite, with minor chloritised biotite and epidote and local andalusite (Figure 7.3b, Sweet et al 1974, Whitehead and Fahey 1985). Whitehead and Fahey (1985) interpreted felsic volcanic rocks near Nigli Gap as being part of this unit. In Western Australia, the Maroo Formation has been interpreted as part of submarine fan system sourced from the north to northeast (Hancock 1991). The formation was deformed during the Hooper Orogeny in the interval 1865–1850 Ma (Tyler et al 1995). In the Northern Territory, the first deformation is associated with a greenschist-facies foliation that dips moderately southwest (Whitehead and Fahey 1985). A sample of foliated fine-grained chloritic siltstone from the Maroo Formation in Keep River National Park in the Northern Territory has a maximum deposition age of 1871 ± 4 Ma (Worden et al 2008), which is effectively identical to a maximum deposition age of ca 1872 Ma derived from the Maroo Formation in Western Australia (Tyler et al 1999).

Whitewater Volcanics

The Whitewater Volcanics (E4 of Ahmad 2000) comprise red-brown porphyritic rhyolite and rhyodacite, containing angular phenocrysts of quartz and feldspar up to 2–4 mm in length, set in grey-pink groundmass of finely crystalline microcline, intergrown with quartz, sericite and plagioclase (Figure 7.4). A sample of Whitewater Volcanics from within the Northern Territory has yielded a SHRIMP U-Pb zircon age of 1849 ± 6 Ma (Worden et al 2008), which is within error of conventional and SHRIMP U-Pb zircon ages of 1850 ± 5 Ma and 1854 ± 5 Ma, respectively, for the unit within Western Australia (Page and Hancock 1988, Sheppard et al 1999a). The Whitewater Volcanics unconformably overlie the Maroo Formation, and are intruded by the Bow River Granite

1 Names of 1:250 000 and 1:100 000 mapsheets are in large and small capital letters, respectively, eg AUVERNGE, KEEP.

Figure 7.2. Geology of Halls Creek Orogen in Northern Territory from NTGS AUVERNGE GIS database. Location shown in **Figure 7.1.**
(Plumb and Vevers 1991). Blake et al (2000) considered the Whitewater Volcanics to have been subaerial, on the basis of the predominance of ignimbrites over lava flows.

Bow River Granite

Granitic rocks, mapped as Bow River Granite in the Northern Territory, form part of the Paperbark Supersuite, which intruded in the interval 1865–1850 Ma. These are considered to have been co-magmatic with the Whitewater Volcanics (Sheppard et al 1999b). The main exposures of the Paperbark Supersuite are in Western Australia, where the granites are widespread through the Western Zone and include monzogranite, syenogranite and granodiorite, with less-common tonalite. In the Northern Territory, the Bow River Granite comprises typically a pink to green-grey, coarsely crystalline and porphyritic biotite granite (Figure 7.5a) with phenocrysts of K-feldspar, which locally display rapakivi textures (Figure 7.5b). A sample of undeformed K-feldspar-megacrystic biotite granite from within the Northern Territory has yielded a SHRIMP U-Pb zircon age of 1853 ± 5 Ma (Worden et al 2008).

Dolerite dykes

Several dolerite dykes intrude the Bow River Granite and Whitewater Volcanics, and are commonly associated with quartz veins. The dolerite is fine to medium grained and porphyritic, with varying degrees of alteration. Plagioclase has been altered to sericite and pyroxene has been replaced by amphibole, chlorite and epidote (Whitehead and Fahey 1985).
MINERAL RESOURCES

The Halls Creek Orogen in Western Australia contains a number of occurrences of gold, copper-nickel, copper, rare earth elements (REE), diamonds, platinum group elements (PGE), tin, tungsten, kyanite and corundum (Plumb 1990, Blake et al 2000). The Central and Western zones of the orogen have a number of layered mafic-ultramafic intrusions that host copper-nickel sulphide and PGE mineralization, including the Sally Malay Ni-Cu deposit (Hoatson and Blake 2000). Most gold deposits are in the Eastern Zone, whereas base metals, including VHMS deposits such as Koongie Park, are largely confined to the Central Zone. No significant mineral occurrences have yet been identified in the Halls Creek Orogen within the Northern Territory.

REFERENCES

Griffin TJ, Tyler IM, Playford PE and Lewis JD, 1993. Lennard River, Western Australia. 1:250 000 geological map series explanatory notes, SE 51-08. Geological Survey of Western Australia, Perth.

Sheppard S, Thorne AM and Tyler IM, 1999b. Bow, Western Australia. 1:100 000 geological map series explanatory notes, 4564. Geological Survey of Western Australia, Perth.

