| Overburde | en | Upper Sap | rolite | | |-----------|---|------------------|--|--| | OP | Pindan | С | Clay after basement lithology of indeterminate type | | | OPG | Pindan with gravel – clast-supported | CSS | Sandy clay probably after sandstone | | | DS . | Sand | CLST | Clay probably after limestone | | | OSC | Sandy clay | CG | Basement sandy clay with gravel | | | ocs | Clayey sand | CULM | Clay probably after magmatic lamproite | | | OSCGR | Sandy clay with grit – matrix supported | CULT | Clay probably after tuffaceous lamproite | | | OGR | Grit – clast-supported | CULTS | Clay probably after sandy tuffaceous lamproite | | | OSG | Sand with gravel – matrix-supported | CUK | Clay probably after kimberlitic rock | | | OSCG | Sandy clay with gravel – matrix-supported | | | | | OCSG | Clayey sand with gravel – matrix-supported | Ultramafic Rocks | | | | OCG | Clay with gravel – matrix-supported | UK | Kimberlitic rock of indeterminate type | | | OG | Gravel – clast-supported | UKB | Kimberlitic breccia | | | OLGR | Transported lateritic grit | | | | | OLG | Transported lateritic gravel | UL | Lamproitic rock of indeterminate type | | | OGL | Lag gravel on bedrock surface | ULT | Lamproite tuff | | | OSCL | Sandy clay with insitu laterite | ULTS | Sandy tuff (>20% quartz grains) | | | OPWL | Pindan with weakly developed laterite | ULTR | Reworked tuff (clasts of tuff) | | | OPML | Pindan with moderately developed laterite | | | | | OPHL | Pindan with highly developed laterite | ULTL | Lapilli tuff Covetal right tuff (>20% opyetals) | | | OSWL | Sand with weakly developed laterite | ULTX | Crystal-rich tuff (>20% crystals) | | | | , , | ULTW | Welded tuff | | | OSML | Sand with moderately developed laterite | TS | Tuffaceous sandstone (>40% quartz grains) | | | OSHL | Sand with highly developed laterite | ULBX | Lamproitic magmatic breccia, usually auto breccia | | | OCWL | Clay with weakly developed laterite | | T | | | OCML | Clay with moderately developed laterite | - | | | | OCHL | Clay with highly developed laterite | 4 | | | | OB | Black soil | + + | | | | | | Chemical E | 1 | | | Sediments | | LNW | Weakly developed nodular laterite (overprinting plexisting rock) | | | 3 | Sediment | LNM | Moderately developed nodular laterite | | | SL | Limestone | LNH | Highly developed nodular laterite | | | SST | Sandstone | LM | Massive laterite overprinting pre-existing rock | | | SSS | Silicified sandstone | LL | Laminated laterite overprinting pre-existing rock | | | SSF | Fine-grain sandstone | CCO | Chemical calcrete overprinting pre-existing rock | | | SSM | Medium-grain sandstone | CCOW | Weakly developed calcrete overprint | | | SSC | Coarse-grain sandstone | CCOH | Highly developed calcrete overprint | | | SSFM | Fine to medium-grain sandstone | CCOM | Moderately developed calcrete overprint | | | SSMC | Medium to coarse-grain sandstone | CSO | Chemical silcrete overprinting pre-existing rock | | | SSFC | Fine to coarse-grain, poorly-sorted sandstone | | | | | SGW | Greywacke - > 15% clay matrix, poorly sorted | Merlin-spe | Merlin-specific Rock Types | | | SSL | Siltstone | Qsl | Quaternary soil | | | SMD | Mudstone | Qfk | Ferricrete | | | SCG | Conglomerate | Tlat | Tertiary laterite - insitu | | | SBX | Breccia | Kslst | Cretaceous Siltstone | | | SSH | Shale | Ksst | Cretaceous Sandstone Cretaceous Sandstone | | | SSHC | | Kb | | | | | Carbonaceous shale | 1 | Kimberlite Combridge Bulkelere Sendatone | | | SCT | Chert | Ebsst | Cambrian Bukalara Sandstone | | | | | Pmd | Proterozoic (McArthur Group) | | | | | - | <u> </u> | | | | | | | | | | | - | | | | WET COLOUR DESCRIPTION | | | | |------------------------|-----------|--|--| | Code | Intensity | | | | 5 | VERY DARK | | | | 4 | DARK | | | | 3 | MEDIUM | | | | 2 | LIGHT | | | | 1 | PALE | | | | Code | Colour | Code | Composite Colours | |------|--------|------|-------------------| | Gy | grey | GyWh | grey-white | | Bu | blue | YeOr | yellow-orange | | Pk | pink | OrYe | orange-yellow | | Gn | green | YeGn | yellow-green | | Kh | khaki | RdBn | red-brown | | Ol | olive | OlGn | olive-green | | Bl | black | BuGn | blue-green | | Or | orange | CrWh | cream-white | | Pu | purple | OrCr | orange-cream | | Rd | red | RdBn | red-brown | | Tn | tan | YeWh | yellow-white | | Bn | brown | | | | Wh | white | | | | Ye | yellow | | | | Cr | cream | | | | WEATHERING/OXIDATION | | | | | | |----------------------|-------------------------|--|--|--|--| | CODE | DESCRIPTION | DETAILED DESCRIPTION | | | | | F | FRESH | ROCK SUBSTANCE UNAFFECTED BY WEATHERING, SULPHIDES OBSERVED. | | | | | s | SLIGHTLY
WEATHERED | ROCK SHOWS SLIGHT CHANGE OF COLOUR AND LUSTRE BUT
GENERALLY SHOWS LITTLE OR NO CHANGE OF STRENGTH FROM
FRESH ROCK. | | | | | М | MODERATELY
WEATHERED | SIGNIFICANT CHANGE OF COLOUR AND LUSTRE THROUGH THE ROCK
FABRIC, AND ROCK STRENGTH IS NOTICEABLY REDUCED BY
WEATHERING, BUT ROCK PIECES CANNOT BE BROKEN BY HAND
ACROSS THE ROCK FABRIC AND THE ROCK MATERIAL IS NOT FRIABLE. | | | | | Н | HIGHLY
WEATHERED | ROCK STRENGTH AND HARDNESS CLEARLY REDUCED BY WEATHERING, ROCK PIECES CAN GENERALLY BE BROKEN BY HAND ACROSS THE ROCK FABRIC AD THE ROCK MATERIAL IS PARTLY FRIABLE; THE ROCK MAY BE HIGHLY DISCOLOURED, USUALLY BY IRONSTAINING. | | | | | E | EXTREMELY
WEATHERED | ROCK IS WEATHERED TO AN EXTENT THAT IT HAS SOIL PROPERTIES, IE. IN WATER IT EITHER DISINTEGRATES OR CAN BE REMOULDED, BUT ORIGINAL FABRIC IS MAINLY PRESERVED. | | | | | R | RESIDUAL SOIL | ROCK IS COMPLETELY CHANGED TO SOIL IN WHICH ORIGINAL ROCK FABRIC IS COMPLETELY DESTROYED. | | | |