Marshall Geoscience Services Pty Ltd

Contracting and consulting services for gold and base metals exploration • geochemistry • reviews • interpretation • area selection • • exploration program design & supervision • tenement evaluation •

Consultant's Report

То

Havilah Resources NL

Geochemical Survey Testing Surface Sampling Techniques Highland Rocks EL's Northern Territory

> Nick Marshall Mineral Exploration Consultant Sydney, November 2000

2 Conjola Place Gymea Bay NSW 2227 Australia ACN 001 675 350 Australia • Asia • Pacific Ph./Fax: (02) 9525 5996 e-mail: nmarshall@optusnet.com.au International ph./fax: +612 9525 5996 ABN: 33 001 673 350

SUMMARY

Nine field days from September 10-18, 2000 exclusive of travel to and from the district, were spent with Dr Chris Giles, Technical Director for Havilah Resources NL, in sampling Havilah's exploration licence areas in the Highland Rocks district of the Tanami Desert.

With some rare exceptions, outcrop was virtually absent over the areas visited. A generally thin (from RAB drill evidence) regolith of transported aeolian loess and sand, which is usually hardpanized prevails. This underlies wind winnowed, coarse sandy deflation lag from the hardpan soil. Unlike areas at Tanami and elsewhere, "lag" as coarse rock detritus of 4-5 millimeters grain size or more is absent.

Angular, coarse sandy lag probably represents breakdown of arkosic sediments and gneiss, as "gruss", with muscovite and feldspar particles seen under the hand lens. Sheetwash is also present to a variable extent. Long east-west sand dunes are superimposed in some areas, while others are underlain by large paleo drainages, as evidenced from surface vegetation changes, RAB drill information and calcrete formation.

Termite mounds are an almost ubiquitous feature over loess hardpan. These have brought coarser particles of iron oxide coated, angular quartz sand grains, some feldspar grains and minor dark brown micropisolites to surface. Older mounds in various stages of rain denudation, have spread these subsurface products over the present surface. Numerous now denuded mounds have coalesced to add a veneer of angular iron oxide coated quartz grains and micropisolites to the daylight surface. Field photographs were taken to illustrate these features.

Since termites burrow down towards the water table which is often at the (transported) regolith/bedrock boundary, sampling their coarse products could give a micro sample of the buried former paleo lag on the paleo surface, or bring up particles of lateritized bedrock. Some of these micropisolites are magnetic, and can be separated from quartz detritus (apart from inevitable composite grains) as "maglag". Maglag sampling has proved successful for Marshall Geoscience Services in the Tanami area, and in parts of the Tennant Creek and Cloncurry districts, as well as in he WA Yilgarn.

The Highland Rocks area constitutes an extreme test for the development and application of a surface reconnaissance geochemical technique which is both practical and relatively inexpensive in the field and laboratory.

A variety of sample types such as pisolites, coarse, sandy swept lag and maglag were collected, with multi-media sampling where available being carried out at most sites. Samples were analyzed by Ultra Trace Laboratories Pty Ltd in Perth.

Some RAB sample lines drilled over airmagnetic highs in 1998 reported highly anomalous arsenic. RAB follow up drilling in 1999 reported only very low arsenic values, however. Both data sets were from Analabs Laboratories. Resampling of some of these RAB holes and analysis by Ultra Trace Laboratories Pty Ltd in Perth confirmed the low arsenic values.

A limited batch of multi-media orientation samples over the Marla prospect were initially subject to orientation analyses for an extended range of elements using various moderately weak to strong digests.

Due to the very weak and limited nature of the sulfide deficient mineralization at Marla, and to geochemical landscape factors discussed elsewhere, these results were equivocal.

Routine sampling also failed to produce convincingly high anomalies, such that none of the techniques tried can be recommended with certainty.

All sampling media displayed *relative* multi-element highs, but in an absolute sense these are of low magnitude compared to this author's experience elsewhere. They are probably too weak to be regarded as being due to mineralization. See Appendices V and VI.

It is suggested that in the absence of significant, sulfide related mineralization with its redox electrochemical dispersion process, the highs simply represent lithological variations such as quartz sweat-out veins and more mafic phases in a barren gneissic complex.

Although this possibility can not be discounted, the ultimate success or otherwise of any technique can not be proven in this district unless significant mineralization, in both size and grade can be orientation tested.

Nick Marshall Sydney, 4 Nov, 2000

CONTENTS

		Page					
Geology and G	eochemical Landscape	1					
Marla Prospect Orientation C samples M, L and P samples Discussion Routine analyses							
Discussion of RAB controlled routine results							
Ironstone samples							
Vein quartz out	crop	6					
Other Au anom	alous samples	6					
Appendix I:Field logs and sample descriptionsAppendix II:Analysis specifications to Ultra Trace LaboratoriesAppendix III:Initial orientation sample results using different sample digests And expanded element array, Marla prospectAppendix IV:Routine survey results, multi-media samples Line profiles for sample typesAppendix VI:Summary interpretation of line profiles							

Geology and Geochemical Landscape

Inspection of RAB holes and described field relationships show that unlike the known Tanami Complex to the northeast, with its productive Mt Charles beds, former true ferricrete (with nodular pisolites) and underlying mottled and pallid zones have been largely stripped by erosion. Pallid zone material may still be present in some RAB holes under transported regolith. In some instances, however, as at Marla, bedrock is virtually fresh or has undergone subsequent weathering, possibly after stripping to fresh bedrock in a new cycle not yet mature enough to develop a classic laterite profile.

Erosional products are redistributed as transported regolith with its aeolian and sheetwash clay (loess) and sand components.

This landscape is largely covered by hardpanized, windblown loess \pm sheetwash. Termite mounds, on rain denudation, add their coarser subsurface components as described in the Summary. East-west aeolian sand ridges are superimposed in places.

Outcrop is virtually non existent over much of the area, and that which was observed was limited to:

- Two quartz blows with minor float of fresh sillimanite-quartz-biotite gneiss and banded arkosic biotite metaquartzite.
- Ferricrete outcrop and associated desert armour on some low rises.
- Drainage calcrete on some low rises, due to topographic inversion on erosion.
- A small barren vein quartz outcrop among ferricrete.
- Residual low pediments and ridges with low breakaway escarpements of a folded migmatitic complex of schists, gneisses and metasediments of predominately quartzofeldspathic nature. Small, centimeter to sub meter size quartz sweat out veins were observed. The outcropping gneissic complex is weaky lateritized and possibly represents incipient lateritization under restricted rainfall conditions in an erosional/depositional regolith regime.

Field evidence suggests that incipient lateritization has (and still is) taking place, cementing aggregates of wind frosted quartz grains to form nodular, friable "P" samples. These are unlike the classic pisolites successfully used as a geochemical sampling medium in the Yilgarn and parts of the Tanami complex near Tanami.

Aeromagnetics show broad elongate lows corresponding to known granite gneiss terrane and interpreted granite gneiss in covered and undrilled areas. Fringing E-W linear magnetic highs were the locus of previous RAB drill traverses and the reconnaissance surface sampling traverses in this survey, which used a variety of sampling media. The magnetic highs possibly represent "basic fronts" in a gneiss/migmatite complex.

The landscape here is unlike that in the Tanami district: coarser rock lag is absent, quartz blows are rare, BIF subcrop with its characteristic high As \pm Au is not yet known, termite mounds are smaller and less well developed, and ant nests with circular dark purple and black pisolitic particles including maglag are absent, as are strands of mulga (Acacia aneura).

It is suggested that this district is more akin to the well exposed and largely barren Arunta Complex to the southeast than to the gold mineralized Tanami Complex. The difference being that at Highland Rocks, outcrop is largely obscured by transported overburden over fairly fresh bedrock which is possibly undergoing a new cycle of incipient lateritization. At Tanami, regolith, including transported components largely overlies a lateritic profile which is preserved in part, with some ferricrete, mottled and pallid zones evident in plateau breakaways (as at Talbot Hills) and in open pits and RAB holes.

Comparison of the broad aeromagnetic picture for Highland Rocks with that over exposed granite gneiss terrain in the Arunta Complex, versus the Tanami Complex may help support the suggested similarity.

Marla Prospect Orientation

This area was chosen as RAB drilling showed weak Au and Cu mineralization over narrow intervals in inclined holes. See Appendix I for field descriptions, Appendix II for laboratory analysis specifications, and Appendix III for orientation results.

C samples

These were hand picked chips of ferruginized quartz biotite gneiss (avoiding any vein quartz), from 0-3m of the 60° angled holes. A conc. HCl /hypochlorite leach was used to selectively dissolve the iron oxide component in these definite in situ rock samples. The idea was that if the thin overburden was transported, and/or failed to respond, cheaper Gemco type auger drilling to this zone should reveal dispersion anomalies to provide a rapid focus for follow up deeper, angled RAB drilling. C sample data should also dictate what elements could be considered as pathfinders in the surface pisolite("P"), maglag ("M), and swept lag("L") samples.

Various leach procedures were tried on P, M and L samples to then ascertain which would give the best anomaly contrast for use in subsequent analysis of the routine survey samples.

With such a limited data set for each sample type, and generally disappointingly low results, one could only apply a subjective approach to these data.

Of the C samples, 104C gave an elevated response for Cu (Pb) Zn (Ni Mo) W TI (Ba), elements in brackets indicating only a weak relative high.

105C was high in Au, and 106C in Au, Sb (Ni).

108C was high in Bi.

M, L and P samples

Responses were disappointing, which is not surprising considering the weak primary C sample data, and the fact that surface samples are possibly transported. In the M samples, conc. HCI/hypochlorite gave a better contrast for Zn, W and TI for 106M than aqua regia.

Discussion

These data are equivocal, due to:

- Only very weak mineralization, limited and narrow in the original drilling. Note no evidence for As anomalism as previously reported in RAB holes.
- No sulfides were observed in the RAB chips.

- 105C and 106C upper 3m are only weakly anomalous in Au (17 ppb and 5.5 ppb), and 104C in Cu (162 ppm). Therefore the narrow Cu and Au intersections further down the inclined holes do not effectively disperse to near surface, even though these C samples are in situ lateritized bedrock. The lack of sulfides and very small, spotty mineralization does not set up an effective enough electrochemical cell for redox dispersion through several meters of lateritized bedrock.
- Hence if C samples are low, deriviatives such as L, M and P samples can not be expected to be high. Relative highs in this limited data set are background fluctuations, and in fact other, routine samples gave stronger relative anomalies — see Appendix V line profiles.
- There is field evidence (see descriptions, Appendix I) that Marla drilling was in thin transported regolith overlying stripped profiles to essentially fresh schist/gneiss. This bedrock is probably undergoing renewed incipient lateritization, with FeOx accretion of lag to form the sandy textured P samples.
- Outcrop 200m away is lateritized gneiss with quartz veins, typical, in my experience, of largely barren Arunta complex to the southeast. Quartz veins are metamorphic sweat outs which can carry minor, sporadic mineralization.
- There is always the possibility that these innovative sampling techniques "do not work" here. Nevertheless, they have worked elsewhere, and their failure to be convincing here is due to weak mineralization possibly compounded by transported cover.

Routine analyses

As a compromise between conc. HCL digestion and aqua regia digest, it was decided that L, M and P samples were to be leached in hot concentrated HCl/hypochlorite for 2 hours at 95°C, then left overnight, with three agitations. Analyses were limited to Au Cu Pb Zn Ni As W Fe Mn and Mo. L samples were treated as 40g, unpulverized, others were 4g. pulverized.

I, R and some nominated C samples were treated by aqua regia digest.

These results are given in Appendix IV.

Discussion of RAB controlled routine results

HRRB 51-C1 to C3 are RAB samples on the flank of a sand dune. All have very low As, confirming the second, 1999 redrilling. Values are all background, and elevated in the more Fe-Mn rich hand picked nodular ferricrete C1 sample.

HRRB 436-C1 to C7 are from a vertical 1998 RAB hole. All except C5 and C6 are low barren background. Selected vein quartz chips (C7) are also barren. C5 and C6, from 9-15m depth, have anomalous Cu, Zn and possibly Ni. All samples are remarkably low in As. The hand picked ferricrete nodules C1 show no convincing response, and overlie transported hardpan soil above a shallow water table.

HRRB 965C1 to C4 samples are from a 1999 angled hole within a few meters of the vertical hole HRRB 436, drilled in 1998. There is 15m of transported cover here, including hardpan soil with ferricrete nodules overlying pallid zone sericitic siltstone. This is intruded by a dolerite dyke. The water table is at the regolith/bedrock interface. Note that the bedrock has been stripped to the pallid zone, with wind blown loess and possible sheetwash superimposed along with wind blown sand. Subsequent weak pisolite development has taken place from the shallow water table. These pisolites are somewhat friable, sandy nodules cemented by iron oxide, rather than true pisolites. True pisolites, as used successfully in the WA Yilgarn and elsewhere are more indurated, have an onion skin growth around a nucleus, and conchoidal fracture. ie) These "pisolites" are more likely a more recent, FeOx cemented version of the sandy deflation lag from the transported hardpan regolith. HRRB 965C3, which intersected the weathered dolerite dyke, has relatively higher Cu (165 ppm) but not Ni. All samples are very low in As.

86W -101L and M are surface samples from around the adjacent RAB holes HRRB 436 and HRRB 965. Of these, maglag 86W -101M does give a somewhat elevated Zn, Pb, Ni (Cu) response — see line profiles, sequence no. 42.

HRRB 962-C1 is hand picked nodular ferricrete from 0-3m in dune sand. This 60° angled hole intersected a fresh dolerite dyke — ie) the laterite profile has been stripped to fresh bedrock, and transported cover superimposed. The C1 dolerite dyke sample has only low background values in Cu, Ni and other analyzed elements. 86W-102L and M are surface samples around this hole. The maglag sample 86W-102M (sequence no 43 in line profiles, Appendix V) has elevated Zn Pb Ni Mo (Cu).

HRRB 1000-C2, a whole sample of weathered, ferruginized sericitic siltstone from 12-15m RAB hole depth confirms the previous high Cu result, with 350 ppm Cu and 259 ppm Ni. HRRB 1000-C1, hand picked ferricrete type pisolites from 0-3m show no convincing response, particularly in view of their dramatically higher Mn (but not Fe) content.

Surface samples from here, 86W-103L, M and P were all reported by Ultra Trace Laboratories Pty Ltd as "missing". This is obviously a disappointment, and must be a laboratory error since all samples were carefully numbered twice by Chris Giles, then stock taken and check listed by myself and Chris together before dispatch. Moreover, there are three samples reported as missing among the L series, with three other samples having duplicate numbers with A and B suffixes, not used in the field. Similarly, 86W-103M is "missing", while "44-T103MA" and "44-T103MB" do not exist as such.

Ironstone samples

These were all low in the elements analyzed, particularly arsenic. This is contrary to my experience with ironstones taken over Mt Charles beds in the Tanami district to the northeast.

Vein quartz outcrop

87-T105R was the only outcrop sample collected, as a composite of two quartz veins among massive ferricrete subcrop and desert armour. This sample was barren. Its site equivalent 87-T105L is actually a hybrid of coarse, 3-6mm sieved pisolites mixed with 30% angular coarse quartz lag. Accordingly this was split, with one half treated as an unpulverized 40g L sample, and the other half pulverized and treated as a 4g P sample. The pulverized version was anomalous in Au (6.5 ppb) with weak Cu and Pb, while the unpulverized lag version was relatively higher in non Fe normalized Cu and Zn.

Appendix I

Field Logs and Sample Descriptions

Sample No.	Sample types	Amount L	% Fe pisolites in L	Amount M	size M	Eastings	Northings	
44-W1	1					663380	7588580	Hand picked ironsto bedrock. Among 2 c metaqtzite.Some ve stages of denudatio magnetic. Erosional

44T-101	LM			L	F	662744	7583648	Sand plain on spinit
44T-102	LM			L	F	662562	7583523	
44T-103	LM			М	М	662388	7583442	
44T-104	LM			L	F	662019	7583291	
44T-105	LM		20	М	М	661836	7583221	
44T-106	LM		8	М	М	661652	7583149	
44T-107	LM		15	L	F	661487	7583047	Some coarse, friabl
44T-108	LM		10	L	F	661300	7582955	Some coarse, friabl
44T-109	LMP			L	F	661124	7582869	P is 50% of total lag
44T-110	LMP			L	F	660947	7582788	
44T-111	LM			L	F	660771	7582702	
44T-112	LM					660597	7582617	
44T-201	L		2			679490	7601411	On traverse 2, no M Indicates deep dune
44T-202	I		<1			679267	7601428	
44T-203			•			679072	7601416	Mostly wind blown
44T-204	E					678863	7601410	As above, but only t
41-204	L					070000	7001404	
44T-301	L	3				680530	7586555	Traverse 3 over pro
44T-302	L	50	<<1			680480	7586097	As above. Photos 7 mallee suggest bed cover (C. Giles, per
44T-303	L	20	<<1			680437	7585685	
44T-304	L	15	<1			680409	7585314	
44T-305	L	5	<<1			680383	7584925	
44T-306	L	2	<<1			680394	7584532	
44T-307	L	10	<1			680405	7584150	
44T-308	L					680398	7583757	
44T-309	L	10	<1			680401	7583370	
44T-310	L	20	<1			680407	7582979	
44T-311	L	5	1			680360	7583496	
44T-312	L	30	<<1			680635	7582395	
44T-313	L	30	<1			680862	7582345	
44T-314	L	25	<1			681045	7582305	
44T-315	L	25	<1			681247	7582298	
44T-316	-	25	<1			681518	7582251	
44T-317	L	10	1			681977	7582184	approx. 1% sandy b
44-W2	LMP	10	1	VL	М	678317	7595484	L is angular granitic
44-T401	LM	50	7	M	M	700101	7599856	Traverse 4 over dis
44-T402	LM	8	8	М	М	699571	7600187	
	1	1		i i				

44-T403	LMP	15	8	М	М	699217	7600377	4 photos. P is hand cements angular qt
44-T404	LM	50	2	М	М	698860	7600523	
44-T405	LM	15	4	L	М	698500	7600682	
44-T406	LM	20	2	L	F	698133	7600841	
44-T407	LM	10	3	М	М	697767	7600376	
44-T408	LMP	3	3	M	М	697346	7601124	P is 0.3 - 1cm nodu underlying ferricrete
44T-501	LMP	10	2	M	М	698465	7602672	P = 70% of 4 - 6mm
44T-502	LMP	10	2	M	М	698647	7602894	P = 40% Fe ferricre
44T-503	LMP	10	3	М	М	698809	7603149	
44T-504	LMP	3	3	М	М	698958	7603403	Some large + 3.13n
44T-505	LMP	10	2	М	М	699138	603673	
44T-601	LM	60	3	M	F-M	707723	7602829	Traverse 6 along m
44T-602A	Ρ					703015	7602762	At far edge of low ri 2cm. Chocolate bro these is magnetic ie
44T-602	L	50	<1			703122	7602734	Past low rise. M not with lack of other ve
44T-603	L	50	<1			703522	7602649	No M available.
44T-604	L	70	<1			703907	7602619	L is Fe stained, sub surface by termites. calcrete & silcrete s
44T-701	L	30	3	very low		706987	7601034	
44T-702	L	5	2	very low		706989	7600701	Before sieving, L is
44T-703	L	10	2	very low		706991	7600470	Before sieving, L is
44T-801	LM	5	1	L	F-M	698716	7597955	Similar landscapes
44T-802	LM	10	1	М	М	698608	7597761	
44T-803	LM	10	1	М	F-M	698479	7597522	
44T-804	LM	50	1	L	М	698390	7597318	Photos of denuded
44T-805	LM	1	2	L	М	698261	7597060	samples upgraded I
44T-806	LM	20	3	L	М	698098	7596810	L is subrounded, wi

44T-807	LM	5	3	М	М	697895	7596468	
44T-808	LM	5	1	L	М	697738	7596107	
44T-809	LM	5	<1	L	М	697939	7595735	M sample includes
44T-810	L	2	<1	very low		698292	7595532	No M collected (too
44T-811	L	20	<1			698627	7595312	L = qtz & feldspar, s
44T-812	LM	20	<1	L	F-M	699119	7594997	L is somewhat more
44T-813	LM	3	2	L	F-M	699818	7594580	M sample has orang
44T-814	LM	40	3	M	М	700304	7594385	L = subangular qtz
44T-815	LMP	20	1	L	М	700745	7594178	M is 50/50 limonite
44T-816	LP	20	2			701195	7594016	GPS reading not no (not true pisolites) o
44T-817	L	20	1	very low		701654	7593853	
44T-818	L	5	1			702098	7593644	L = subangular grai
44T-819	L	30	1			702509	7593399	L = subangular grai
44T-820	L	5	<1			703016	7593225	L = subangular grai
44T-821	L	5	<1			703203	7593515	
44T-822	L	20	1			703442	7593864	
44T-823	L	2	<1			703640	7594184	Very thin veneer of
44T-824	L	15	<1			703819	7594602	Same as before. At
87T-101						609633	7602420	EL8387, traverse al "basin"). Desert arr chocolate brown, ro magnetic, otherwise >9m in weathered o
87T-102	I					608596	7602887	At E edge of lateritie micropisolites.

87T-103	1					606064	7603657	Desert armour on e about 5% of total de through desert armo
87T-104	I					604725	7603221	I = <1%, indurated,
87T-105	LMIR1	coarse	70			603298	7602264	R1 = composite of s approx. 2cm irregul 30% angular coarse
87T-106	LM	10	5	Н	М	600681	7594340	Basin S of escarper mounds on hardpar micropisolites
87T-107	LM	20	3	М	М	600585	7593964	As before, with all N scarp retreat from th
87T-108	LM	10	2	М	М	600542	7593579	As before, L is well
87T-109	LM	10	1	L	M	600500	7593179	GPS position not no
			L		<u> </u>			

Marla Prospect, EL 8951, orientation traverse from S to N downslope, over 60* RAB holes with 690 & 900 ppb A sloping gently down to the N from a low ridge of lateritized (ferruginized) gneiss with qtz veins 300m to the S. Surfa pisolites occur in lag +/- patches of ferricrete type nodular brown pisolites (P samples). Most holes have 0-3m "late feldspar + clear, angular quartz and decussate texture after biotite. "C samples" are hand picked 0-3m lateritized b Objective is to examine 0-3m in situ laterite as a cheap, rapid alternative (use Gemco type power auge

51T 101	IMD	10	1	Ц	F	٥	At PAR 535 No C
511-101	LIVIF	10			F	0	impregnated biotite angular qtz. Coord.
51T-102	LMPC	15	1	Н	F-C	50	At RAB 531. C is c
51T-103	LMPC	7	1	Н	F-C	100	At RAB 527. C is r
51T-104	LMPC	12	1	Н	F-M	125	At RAB 525. C = ra crystalline) qtz lag.
51T-105	LMPC	15	2	Н	F-M	150	At RAB 523. C is ra surface.
51T-106	LMC	5	2	M	M-F	175	At RAB 521. C is s are hand picked, fe Fe component only
51T-107	LMC	10	2	M	F-M	200	At RAB 519. P is ve
51T-108	LMC	3	2	M	F-M	250	"515" (no RAB hole from water flow on precipitation via ox

HRRB 436-C1	C					591482	7647355	EL 8386. Approx. 3 of large granitic boc gave only low As. S is hand picked, fror the usual surface P including angular ve Gemco auger samp
	0							
HRRB 430-02	C							0-3m whole sample
HRRB 436-C3	С							3-6m, buff colored l
HRRB 436-C4	С							6-9m, light buff colo
HRRB 436-C5	С							9-12m, mix of C4 ar
HRRB 436-C6	С							12-15m, off white, to
HRRB 436-C7	С							12-15m, hand selec
HRRB 965-C1	С							1999 RAB hole nea
HRRB 965-C2	С							C2 from 0-3m is wh wind blown dune sa
HRRB 965-C3	С							6-9m, selected chip
HRRB 965-C4	С							33-39m composite t cover gives way to l
86W-101	LM	10	1	L	F			Surface samples fro
HRRB 962-C1	С					591466	7647399	0-3m, ferricrete nod angled hole intersed
86W-102	LM	5	2	L	F	591466	7647399	Surface samples ar
86T-101	LM	5	1	L	F	591556	7647252	Traverse across line
86T-102	LM	10	1	L	F	591542	7646890	
86T-103	LM	5	2	Н	М	591477	7646602	Slightly upslope to S

	I							
86T-201	LM	5	1	L	F	597807	7647639	Traverse 2 at 400m sample site.
86T-202	LM	5	<1	L	F	598033	7647285	NB. In all cases, M samples.
86T-203	LM	5	<1	L	F	598239	7646969	L is well sorted and
86T-204	LM	10	<1	L	F	598433	7646642	
86T-205	LM	10	<1	M	F-M	598669	7646308	
86W-103	LMP	2	2	L	F	600510	7647953	Surface spot sampl magnetic. P is sand
HRRB 1000-C1	P					600510	7647953	0-3m, hand picked
HRRB 1000-C2	C					600510	7647953	12-15m, whole sam definite quartz-mus
86T-301	LM	1	3	M	F	611275	7642898	Traverse 3 at 320To termite mounds. L h
86T-302	LM	10	10	M	F-M	611082	7643165	On incipient sand d
86T-303	LM	2	10	М	F-M	610869	7643417	L contains 10% fria
86T-304	LM	10	<<1	L	F	610647	7643736	Essentially drift san
86T-305	LM	10	5	М	F-M	610520	7644025	As previous, but ap
HRRB 51-C1	Ρ							RAB site is on S fla Au. Holes 51 and 5 ppm As. C1 sample sand.
HRRB 51-C2	"C"							3-6m, whole sample
HRRB 51-C3	"P"							6-15m composite. F
86W-104	LMP	1	5	M	F			Surface samples ar

Appendix II

Analysis Specifications to Ultra Trace Laboratories Pty Ltd

ABN 33 001 675 350

4 Oct., 2000

Mr Alex Christ Ultra Trace Analytical Laboratories FAX: (08) 9456 0403 PH: (08) 9456 0404

Dear Alex

Re: Havilah Resources NL Orientation Samples

Following receipt of these samples which involve orientation analyses using various leaches, we have had a number of telephone discussions, as a result of which the main change is to substitute a nominal 40g aqua regia digest in lieu of a mixed acid digest. I understand that due to the HF component of the mixed acid digest, only samples of the order of 0.3g can be handled efficiently. Since we must have maximum sensitivity for Au, we agreed to substitute aqua regia for mixed acid.

These changes have already been adopted by you, but for the record (analytical requests are included as an Appendix in my report), amendments from the heading "Orientation Samples" on page 2 of my previous letter follow:

Orientation Samples — all 51 series, packed separately.

Lag Samples — 51-T101L to 51-T108L

Do not pulverize

Split into 2 portions:

1. Conc. HCl + Na hypochlorite (Au leach) on 50 – 100g of <u>whole</u> sample. Warm to boiling, then let stand for a day or so with occasional stirring, so that the quartz residue is bleached. Trace micropisolites present are not visibly attacked.

2. Your cold 4M HCl + Na hypochlorite leach on a 50 – 100g portion of the <u>whole</u> sample.

Both solutions to be analyzed by ICP-MS to best possible detection limit for Au, and ICP-MS for Cu, Pb, Zn, Ni, As, Mo, Sb, Bi, W, Tl, Ag, Ba and for Fe and Mn by the most suitable technique (ICP-OES or AAS?)

Maglag samples — 51-T101M to 51-T108M

Pulverize and split into three portions:

- 1. Digest by your cold 4M HCl + hypochlorite leach.
- 2. Digest with conc, HCl + hypochlorite leach as for lag samples, above.
- 3. Aqua regia digest.

Analyze all three digests for Au and other elements as above, by ICP-MS.

Pisolite samples — 51-T101P to 51-T105P

Pulverize lightly to disaggregate, then split into 3 portions:

- 1. Conc. HCl + hypochlorite leach as before.
- 2. Cold 4M HCl + hypochlorite leach as before.
- 3. Aqua regia digest.

Analyze these digest solutions as for lag and maglag elements.

The routine P samples are of a less indurated, sandier nature than these. ie) They are FeOx cemented quartz and feldspar lag debris, rather than (weakly) lateritized bedrock (albeit possibly transported) as these appear to be. ie) These P samples are generically a variant of orientation C samples, whereas the routine P samples are mostly a more ferruginized variant of L samples. Routine I samples ("ironstone") are generically considered to be strongly lateritized bedrock.

RAB samples — 51-T102C to 51-T108C

Pulverize, then conc. HCl + hypochlorite digest as for lag 1, maglag 2 and pisolite 1 leaches, and analysis for Au and other elements as above.

In typing up the field notes I found that these orientation C samples are ferruginized bedrock from 0-3m of RAB holes, not fresh bedrock chips from deeper down hole as in most of the remaining, routine C samples. They represent a potential sampling medium under thin transported cover, and are more likely to reflect mobilized elements from below than fresher bedrock samples.

In all cases, please use maximum amounts of material available to ensure optimum detection limits.

A list of the remaining samples will be sent later.

Please do not hesitate to call me to discuss any aspects of this work.

Yours sincerely

Nick Marshall cc. Dr Chris Giles

ABN 33 001 675 350

17 Oct., 2000

Mr Alex Christ Ultra Trace Analytical Laboratories FAX: (08) 9456 0403 PH: (08) 9456 0404

Dear Alex

Re: Havilah Resources NL Routine Samples

Thank you for the receipt of the orientation results, and your high Au rechecks using mini aqua regia on the C suffix samples. The agreement in Au and base metals, despite the small sample weight of only 0.8g, is encouraging. On this basis, we agreed to use the orientation conc. HCl/hypochlorite procedure (2hrs at 95° C on water bath, then 24 hrs at ambient temperature, with three inversions to mix contents), rather than your standard procedure (4 hrs. at 24° C, \pm 1° C, for a lower extraction gradient).

Due to previous delays, and impending ground relinquishment decisions, my client requests that these remaining samples be treated as most urgent.

Samples are categorised as in my previous letter, with the suffix indicating sample type.

L (lag) samples.

Do not pulverise.

50g hot conc. HCl hypochlorite digest, with ICP- MS and ICP- OES to best detection limits except for Fe and Mn) for Au, Cu, Pb, Zn, Ni, As, Mo, W, Fe%, Mn.

 44-T101L to 112L
 44-T201L to 204L
 44-T301L to 317L
 44-W2L

 44-T401L to 408L
 44-T501L to 505L
 44-T601L to 604L
 44-T701L to 703L

 44-T801L to 824L
 86-W101L to 104L
 86-T 101L to 103L
 86-T201L to 205L
 86-T301L to 305L

 87-T106L to 109L
 86-T201L to 205L
 86-T301L to 305L
 86-T301L to 305L

87-T105L *** This is actually a coarse sieved lag with quartz and pisolites, actually a hybrid between a P and an L sample. Therefore split, treat half unpulverized as for L samples, and pulverize the other half, to treat as a P sample.

M (maglag) samples

Pulverize, then treat with hot, conc. HCl /hypochlorite as above, for same elements. Please use maximum weight (to 50g), perhaps reserving say 1g for any Au checks by mini aqua regia. Please note approx. sample weights used.

44-T101M to 112M	44-W2M	44-T401M to 408M	44-T501M to 505M
44-T601M	44-T801M to	809M	44-T812M to 815M
86-W101M to 104M	86-T101M to	103M	86-T201M to 205M
86-T301M to 305M	87-T105M to	109M	

P (pisolite) samples

Pulverize lightly to disaggregate, then treat with hot, conc. HCl as above, for same elements. Please use maximum weight (up to 50g) perhaps reserving say 1g for any Au checks by mini aqua regia. Please note approx. sample weights used.

44-T109P to 110P44-W2P44-T403P44-T408P44-T501P to 502P44-T815P to 816P86-W103P to 104P87-T101P to 104P87-T110P87-T105L *** See note for L samples but treat this half as a P sample.

I (Ironstone) samples

Pulverize, use maximum weight up to 40g (record sample weights used) keeping a little in reserve in case of Au checks. Aqua regia digest and elements as above.

44-W1I "(w one ironstone)"
87-T101I to 105I
44-T 602AP *** Although labelled as a P sample, this is a true pisolitic ironstone, rather than nodular ferricrete, and should be treated as an "I" sample by aqua regia.

R (rock outcrop) samples

87-T105R1 vein quartz outcrop composite. Pulverize and treat as for I samples.

C (chips ex RAB holes) samples.

HRRB 436-C1 to C6. Pulverize, take max. weight up to 40g (record weight, etc.) then hot conc. HCl leach as for P samples, same elements.

HRRB 436-C7 vein quartz chips, hand selected. *** Treat as for R and I samples.

HRRB 965-C1 to C4 and HRRB 962-C1. Pulverize and treat as for P samples.

HRRB 1000-C1 to C2. Pulverize and treat as a P sample.

HRRB 51-C1 to C3. Pulverize, split in half. Treat one half as P sample, and the other as an aqua regia I and R sample.

Please do not hesitate to call me to discuss any aspects of this work.

Yours sincerely

Nick Marshall cc. Dr Chris Giles

ABN 33 001 675 350

21 Sept., 2000

Mr Colin Eldridge Manager Ultra Trace Analytical Laboratories *FAX: (08) 94560403*

Dear Colin

We have recently dispatched to you some multi-media samples, of which the marked orientation batch (only) should be analyzed first, urgently. Pending review of data from the various digests used, I shall advise the preferred technique to be applied to the remaining samples.

Please invoice my client, Havilah Resources NL (Attn. Dr Chris Giles, Exploration Director) of 235 Glen Osmond Rd, Frewville SA 5063 direct for your services. Their ABN is 39 077 435 520, phone (08) 8338 9292, fax (08) 8338 9293. Please email results in Excel format to me at <u>mmarshall@optusnet.com.au</u> and to Chris Giles at <u>geocom@cobweb.com.au</u>.

Sample Numbering System

The first two digits (44, 81 etc) define the area as the last two digits of the exploration licence. "W" and "T" signify "waypoint" (spot sample) or "traverse" respectively, followed by a digit indicating the traverse no. and then the sample no. along that traverse. The letter suffix indicates sample type. For example, 44-T813M indicates the 13th maglag sample on traverse 8 from area "44".

Sample Types

These are indicated by a letter suffix:

L = 2mm - 3.13mm sieved lag sample, essentially ironstained quartz detritus with a minor to trace micropisolite component.

I = ironstone, hand picked. Essentially a dark brown, highly indurated pisolite.

M = unsieved maglag, essentially maghemite particles (\pm minor fine magnetite) and composites grains.

P = coarse pisolites, hand picked, generally friable (weakly inducated) nodular ferricrete cemented sand.

- C = rock chip samples from RAB drill holes.
- R = rock outcrop sample.

Orientation Samples — all 51 series, packed separately.

Lag Samples — 51-T101L to 51-T108L

Do not pulverize

Split into 2 portions:

- 3. Conc. HCl + Na hypochlorite (AU leach) on 50 100g of <u>whole</u> sample. Warm to boiling, then let stand for a day or so with occasional stirring, so that the quartz residue is bleached. Trace micropisolites present are not visibly attacked.
- 4. Your cold 4M HCl + Na hypochlorite leach on a 50 100g portion of the <u>whole</u> sample.

Both solutions to be analyzed by ICP-MS to best possible detection limit for Au, and ICP-MS for Cu, Pb, Zn, Ni, As, Mo, Sb, Bi, W, Tl, Ag, Ba and for Fe and Mn by the most suitable technique (ICP-OES or AAS?)

Maglag samples — 51-T101M to 51-T108M

Split into three portions:

- 4. Whole, <u>unpulverized</u> sample by your cold 4M HCl + hypochlorite leach.
- 5. <u>Pulverized</u> sample, conc, HCl + hypochlorite leach as for lag samples, above.
- 6. <u>Pulverized</u> sample, aqua regia digest.

Analyze all three digests for Au and other elements as above, by ICP-MS.

Pisolite samples — 51-T101P to 51-T105P

Pulverize, then split into 3 portions:

- 4. Conc. HCl + hypochlorite leach as before.
- 5. Cold 4M HCl + hypochlorite leach as before.
- 6. Aqua regia digest.

Analyze these digest solutions as for lag and maglag elements. $\$

RAB samples — 51-T102C to 51-T108C

Pulverize, then aqua regia digest and analysis for Au and other elements as above.

A list of the remaining samples will be sent later.

Please do not hesitate to call me to discuss any aspects of this work.

Yours sincerely

Nick Marshall

Appendix III

Initial Orientation Sample Results using different sample digests and expanded element array, Marla prospect

	Sample	Au(AR)	Au(AR)	Cu	Pb	Zn	Ni	As	Мо	Sb	Bi	W	TI	Ag	Ва	Fe	Mn
	UNITS	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm						
51	T101 P	-1		28	17	19	22	5.6	1.5	0.42	1.26	0.2	0.04	-0.05	199	23.1	109
51	T102 P	-1		15	17	7	8	4.6	1	0.2	0.6	0.1	0.1	-0.05	94	20.1	233
51	T103 P	-1		21	27	13	9	7.6	1.5	0.28	0.7	0.1	0.24	-0.05	102	21.7	500
51	T104 P	-1		35	23	22	9	12	2.7	0.58	1.26	0.3	0.08	-0.05	31	34.9	194
51	T105 P	1		32	21	44	16	9	1.7	0.4	0.82	0.2	0.06	-0.05	28	27	118
62	molo Dro	naration															

Sample Preparation

The samples have been sorted and dried. The whole sample has been pulverised in a ring pulveriser.

Analytical Methods

The samples have been digested with Aqua Regia. Because of limited sample availability, a reduced analysis weight was used (approx 4 grams). This is a partial digest though it is extremely efficient for extraction of Gold. Easily digested elements show good recoveries however others (particularly the refractory oxides and silicates) are poorly extracted.

Au(AR), Pb, As, Mo, Sb, Bi, W, Tl, Ag, Ba have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Cu, Zn, Ni, Fe, Mn have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry.

	Sample	Au(AR)	Au(AR)	Cu	Pb	Zn	Ni	As	Мо	Sb	Bi	W	Ag	TI	Ва	Fe	Mn
	UNITS	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm						
51	T101 M	1		28	31	32	34	8.4	2	0.26	1.42	0.4	-0.05	0.13	36	32.7	214
51	T102 M	-1		16	31	31	37	7.8	2.4	0.34	1.38	0.3	-0.05	0.13	47	32.4	227
51	T103 M	-1		16	28	25	21	7.4	1.5	0.24	1.4	0.3	-0.05	0.13	30	30.2	199
51	T104 M	-1		14	27	21	21	7.6	1.4	0.3	1.4	0.3	-0.05	0.13	27	31.2	217
51	T105 M	-1		15	30	38	21	8.4	4.6	0.34	1.46	0.3	-0.05	0.15	31	33.5	252
51	T106 M	-1	-1	14	30	50	17	8	8.1	0.32	1.44	0.3	-0.05	0.14	26	31.3	251
51	T107 M	-1		12	30	25	15	8	2.2	0.28	1.44	0.3	-0.05	0.15	27	30.8	237
51	T108 M	-1		10	29	21	16	7.4	1.7	0.28	1.48	0.3	-0.05	0.14	22	30.3	221
~																	

Sample Preparation

The samples have been sorted and dried. The samples have then been split with a riffle splitter and a portion then pulverised in a ring pulveriser.

Analytical Methods

The samples have been digested with Aqua Regia. Because of limited sample availability, a reduced analysis weight was used (approx 4 grams). This is a partial digest though it is extremely efficient for extraction of Gold. Easily digested elements show good recoveries however others (particularly the refractory oxides and silicates) are poorly extracted.

Au(AR), Pb, As, Mo, Sb, Bi, W, Ag, Tl

have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Cu, Zn, Ni, Fe, Mn

have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry.

The samples have been digested with Aqua Regia. This is a partial digest though it is extremely efficient for extraction of Gold. Easily digested elements show good recoveries however others (particularly the refractory oxides and silicates) are poorly extracted.

If Barium occurs as the Sulphate mineral, then at high levels (more than 4000 ppm) it may re-precipitate after the digest giving seriously low results.

Ва

has been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Sample	Au(P)	Cu	Pb	Zn	Ni	As	Мо	Sb	Bi	W
UNITS	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppb	ppb
51 T101 F	D	-0.5	19.4	14.4	11.7	16	4.2	1.77	567	898
51 T102 F	D	-0.5	9	12.6	1.4	6	2.8	0.95	191	348
51 T103 F	D	-0.5	12.4	21.6	6.1	6	3.4	1.05	215	397
51 T104 F	D	-0.5	18.2	14.6	8	6	4.2	1.42	297	629
51 T105 F	D	1	16.2	13.8	9.4	9	4	1.11	258	430

Sample Preparation

The samples have been sorted and dried. The whole sample has been pulverised in a ring pulveriser.

Analytical Methods

These MagLag samples have been treated with a concentrated Hydrochloric acid leach to extract moderately bound elements from the surface of sample grains Recovery of elements is always PARTIAL however the results may be used in establishment of path-finder elements.

Au(P), Cu, Pb, Zn, Ni, As, Mo, Sb, Bi, W, Tl, Ag, Ba have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Fe, Mn

have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry.

Sample	Au(P)	Cu	Pb	Zn	Ni	As	Мо	Sb	Bi	W	TI	Ag	Ba	Fe	Mn
UNITS	ppb	ppm	ppm	ppm	ppm	ppm	ppb	ppb	ppb	ppb	ppb	ppb	ppm	ppm	ppm
51 T101 L	-0.1	-0.2	0.4	0.1	-0.2	-0.05	20	3.5	8.6	3.5	1	-1	1	510	2
51 T102 L	-0.1	-0.2	0.4	0.1	-0.2	-0.05	10	2.5	6.4	10	1.5	-1	2	359	5
51 T103 L	-0.1	-0.2	0.3	-0.1	-0.2	-0.05	15	2.5	6.2	34	1	-1	1	770	4
51 T104 L	-0.1	-0.2	0.8	-0.1	-0.2	-0.05	15	3.5	8.6	5	3.5	-1	2	574	11
51 T105 L	-0.1	-0.2	0.4	-0.1	-0.2	-0.05	15	3	6.8	5.5	1.5	-1	1	514	4
51 T106 L	-0.1	0.2	0.6	-0.1	-0.2	0.05	25	3.5	9.6	1.5	3.5	-1	2	942	8
51 T107 L	-0.1	-0.2	0.3	-0.1	-0.2	-0.05	15	2	5.6	4.5	2	-1	2	384	7
51 T108 L	-0.1	-0.2	0.4	-0.1	-0.2	-0.05	15	2.5	6.6	4	1.5	-1	-1	414	4
Sample Pre	paratic	n													

No sample preparation was required on these samples.

Analytical Methods

The samples have been treated with a diluted Hydrochloric Acid leach to extract elements from the surface coatings on sample grains. Recovery of elements is always PARTIAL however the results may be used in establishment of path-finder elements.

Au(P), Cu, Pb, Zn, Ni, As, Mo, Sb, Bi, W, Tl, Ag, Ba, Fe, Mn have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Sample	Au(P)	Cu	Pb	Zn	Ni	As	Мо	Sb	Bi	W	TI	Ag	Ba	Fe	Mn
UNITS	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppb	ppb	ppb	ppb	ppm	%	ppm
51 T102 C	-0.5	15.2	11.9	1.6	6.2	2.15	0.905	111	327	335	86	20	125	16.2	189
51 T103 C	-0.5	15.4	17.5	6.4	7.2	2.4	1.12	151	517	460	91.5	40	216	17.1	205
51 T104 C	-0.5	162	21.2	45.1	15.8	1.95	1.86	98.5	324	1180	241	50	268	17.3	119
51 T105 C	17	21.8	12	7	6.8	2.85	1.11	139	413	340	35	40	87	15.4	49
51 T106 C	5.5	25.2	15.5	13.6	14.6	3.8	1.53	215	600	375	48.5	60	86	20.2	77
51 T107 C	0.5	15.4	15.6	8.1	13	2	1.7	187	780	285	54.5	60	101	19.8	49
51 T108 C	-0.5	16.8	10.9	3.9	6.4	2.2	1.67	123	830	365	13.5	70	33	17.6	28
Sample Pre	Sample Preparation														

The samples have been sorted and dried. The whole sample has been pulverised in a ring pulveriser.

Analytical Methods

The samples have been treated with a concentrated Hydrochloric Acid leach to extract moderately bound elements from the surface of sample grains. Recovery of elements is always PARTIAL however the results may be used in establishment of path-finder elements.

Au(P), Cu, Pb, Zn, Ni, As, Mo, Sb, Bi, W, Tl, Ag, Ba have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Fe, Mn

have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry.

	Sample	Au(P)	Cu	Pb	Zn	Ni	As	Мо	Sb	Bi	W	TI	Ag	Ba	Fe	Mn
	UNITS	ppb	ppm	ppm	ppm	ppm	ppm	ppb	ppb	ppb	ppb	ppb	ppb	ppm	%	ppm
51	T101 L	-0.5	4.6	4	2	4.5	1.4	455	59	133	80	16	-10	9	3.09	33
51	T102 L	-0.5	2.2	2	0.2	1	1	245	36	64.6	79	13	-10	8	2.06	26
51	T103 L	-0.5	3.4	2.4	0.2	1.5	1.2	305	53	121	102	8	-10	5	3.03	20
51	T104 L	-0.5	4	4.2	0.3	1.5	1.8	440	74	186	204	20	-10	10	4.44	52
51	T105 L	-0.5	3	3.8	0.2	1.5	2.2	425	80	165	83	11	-10	6	5	25
51	T106 L	-0.5	3.2	2.8	0.5	2	2	405	87	168	79	14	-10	9	3.64	81
51	T107 L	-0.5	3.8	3.4	2.8	4	2	545	76	114	102	14	-10	9	3.77	53
51	T108 L	-0.5	1.8	2.8	0.1	2	1.8	400	84	2110	127	13	-10	6	3.46	33
0			-													

Sample Preparation

No sample preparation was required on these samples.

Analytical Methods

These MagLag samples have been treated with a concentrated Hydrochloric acid leach to extract moderately bound elements from the surface of sample grains Recovery of elements is always PARTIAL however the results may be used in establishment of path-finder elements.

Au(P), Cu, Pb, Zn, Ni, As, Mo, Sb, Bi, W, Tl, Ag, Ba have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Fe, Mn

have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry.

Sample Au(P) Cu Pb Zn Ni As Mo Sb Bi W TI Ag Ba Fe Mn ppb ppm ppm UNITS ppb ppm ppm ppm ppm ppb ppb ppb ppb ppb ppb ppm 51 T101 P 9 0.3 325 28 9930 38 0.3 2.9 6 5.6 136 171 58.5 23 -1 51 T102 P -0.1 2.4 2.8 1.6 1 0.15 120 44.5 31.2 38.5 33.5 -1 29 4380 87 51 T103 P 0.2 5.6 50 11100 227 7.5 5 1.6 0.25 310 64 64.8 29 106 -1 51 T104 P 7.7 0.3 305 -0.1 9 3.8 1.8 55 111 36 28.5 -1 14 10400 55 51 T105 P 1.2 7.6 3.3 5.8 1.6 0.25 260 54 63.2 42.5 20 -1 13 10100 28 Sample Preparation

The samples have been sorted and dried. The whole sample has been pulverised in a ring pulveriser.

Analytical Methods

The samples have been treated with a diluted Hydrochloric Acid leach to extract elements from the surface coatings on sample grains. Recovery of elements is always PARTIAL however the results may be used in establishment of path-finder elements.

Au(P), Cu, Pb, Zn, Ni, As, Mo, Sb, Bi, W, Tl, Ag, Ba, Fe, Mn have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

	Sample	Au(P)	Cu	Pb	Zn	Ni	As	Мо	Sb	Bi	W	TI	Ag	Ba	Fe	Mn
	UNITS	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppb	ppb	ppb	ppb	ppm	%	ppm
51	T101 M	-0.5	18	25.6	21.2	28.5	3.8	2.24	493	975	838	96	-10	42	22.2	188
51	T102 M	-0.5	11.4	24.8	17.3	26	3.4	2.1	491	886	669	92	-10	54	19.7	185
51	T103 M	-0.5	12	23.8	16.4	16	3.8	1.91	497	983	754	97	-10	34	21.8	185
51	T104 M	-0.5	9.4	21	12.9	14	3.8	1.66	479	882	674	92	-10	28	19.5	175
51	T105 M	-0.5	10.4	22.6	21.9	15	3.8	2.91	549	887	727	96	-10	31	20.3	217
51	T106 M	-0.5	9	22.4	32.5	12	4	3.01	523	872	698	94	-10	26	19.5	199
51	T107 M	-0.5	8.6	23.8	14.9	12.5	4.2	2.17	539	914	749	110	-10	29	21	203
51	T108 M	-0.5	7.8	25.2	12.9	10.5	4	1.96	529	1020	726	103	-10	24	21.4	201
Sa	mple Pre	paratio	n													

The samples have been sorted and dried. The samples have then been split with a riffle splitter and a portion then pulverised in a ring pulveriser.

Analytical Methods

These MagLag samples have been treated with a concentrated Hydrochloric acid leach to extract moderately bound elements from the surface of sample grains Recovery of elements is always PARTIAL however the results may be used in establishment of path-finder elements.

Au(P), Cu, Pb, Zn, Ni, As, Mo, Sb, Bi, W, Tl, Ag, Ba have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Fe, Mn

have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry.

Appendix IV

Routine Survey results, Multi-media samples

Sample	Au(P)	Au(AR)	Au(AR
UNITS	ppb	ppb	ppb
HRRB 436 C1	1		
HRRB 436 C2	1.5		
HRRB 436 C3	-0.5		
HRRB 436 C4	0.5	-1	
HRRB 436 C5	0.5		
HRRB 436 C6	0.5	1	
HRRB 965 C1	-0.5		
HRRB 965 C2	-0.5		
HRRB 965 C3	-0.5	-1	
HRRB 965 C4	0.5	-1	
HRRB 962 C1	-0.5		
HRRB 1000 C1	0.5		
HRRB 1000 C2	0.5	-1	
HRRB 51 C1	-0.5		
HRRB 51 C2	-0.5		
HRRB 51 C3	-0.5		
	-1		
	-1		
	2		
	1		

Sample Preparation

The samples have been sorted and dried. The whole sample has been pulverised in a ring pulveriser.

HRRB 436 C7 HRRB 51 C1 HRRB 51 C2 HRRB 51 C3

Analytical Methods

The samples have been treated with a concentrated Hydrochloric Acid leach to extract moderately bound elements from the surface of sample grains. Recovery of elements is always PARTIAL however the results may be used in establishment of path-finder elements.

Au(P), Pb, As, Mo, W have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Cu, Zn, Ni, Fe, Mn have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry.

The samples have been digested with Aqua Regia. Because of limited sample availability, a very small sample weight was used (approx 1 gram). This is a partial digest though it is extremely efficient for extraction of Gold. Easily digested elements show good recoveries however others (particularly the refractory oxides and silicates) are poorly extracted.

Au(AR) has been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Sequence										
No.	Sample	Au(P)	Cu	Pb	Zn	Ni	As	Мо	W	
	UNITS	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppb	
1	44-T101M	0.5	14	27.4	70	19	2.25	1.25	350	2
2	2 44-T102M	0.5	10	23.8	26	16	2.5	1.32	285	1
3	3 44-T103M A	. 1	9	23.8	27	16	2.7	1.25	285	
4	44-T103M B	0.5	9	23	25	12	2.7	1.34	270	1
5	5 44-T104M	-0.5	10	26.6	31	14	3.65	1.35	330	2
6	6 44-T105M	0.5	9	24.2	25	14	2.6	1.22	260	1
7	′ 44-T106M	-0.5	9	23.8	25	14	2.75	1.33	295	
8	3 44-T107M	-0.5	9	23.2	28	15	2.55	1.24	275	1
ç	9 44-T108M	0.5	9	24.6	32	15	3	1.46	420	2
10) 44-T109M	-0.5	11	25.4	30	12	2.5	1.28	295	1
11	44-T110M	-0.5	11	25.2	31	14	2.35	1.09	250	2
12	2 44-T111M	-0.5	13	27	34	14	2.95	1.31	295	2
13	3 44-T112M	-0.5	11	28.6	32	16	2.6	1.05	245	2
14	44-W2M	-0.5	10	30.6	21	14	2.95	0.975	220	2
15	5 44-T401M	-0.5	8	23.8	25	10	2.45	1.46	280	1
16	6 44-T402M	-0.5	9	25.2	26	10	2.65	1.43	245	
17	′ 44-T403M	0.5	8	24.4	24	9	2.5	1.38	260	1
18	8 44-T404M	-0.5	9	27.2	24	11	2.6	1.28	230	1
19	9 44-T405M	1	9	27.4	28	10	2.25	1.44	280	1
20) 44-T406M	-0.5	9	23.8	29	11	2.4	1.45	250	1
21	44-T407M	0.5	8	23	28	11	2.35	1.51	295	1
22	2 44-T408M	-0.5	11	26.4	28	12	2.65	1.47	325	1
23	8 44-T501M	-0.5	9	27	33	12	2.3	1.32	320	1
24	44-T502M	-0.5	9	24.2	28	13	2.6	1.39	245	1
25	5 44-T503M	-0.5	8	24	30	11	2.35	1.51	350	1
26	6 44-T504M	0.5	9	23.4	28	12	2.5	1.59	265	1
27	44-T505M	0.5	9	26.2	32	13	2.45	1.47	315	1
28	3 44-T601M	-0.5	10	23.4	19	6	1.15	0.87	175	1
29	9 44-T801M	0.5	9	26.4	30	11	1.85	1.17	350	1
30) 44-T802M	-0.5	8	24.6	24	11	1.95	1.23	240	1
31	44-T803M	-0.5	8	28.2	28	10	1.75	1.28	400	
32	2 44-T804M	-0.5	9	25.8	27	11	2.05	1.29	280	1
33	3 44-T805M	-0.5	10	27.4	34	9	1.55	1.23	360	1
34	44-T806M	-0.5	13	24	31	8	1.7	1.15	355	1
35	5 44-T807M	-0.5	11	26.4	24	7	1.6	1.07	230	1
36	6 44-T808M	0.5	10	19.8	31	9	1.45	1.03	370	1
37	44-T809M	-0.5	10	22.2	30	8	1.8	1.13	380	
38	3 44-T812M	-0.5	9	20.4	28	8	1.95	0.96	290	1
39	9 44-T813M	0.5	9	24.6	30	12	2.1	1.16	350	1
40) 44-T814M	-0.5	8	23.2	24	13	2.3	1.35	250	1
41	44-T815M	0.5	9	24.4	37	13	2.1	1.38	475	1
42	2 86-W101M	-0.5	14	39.4	35	31	2.6	0.7	300	2
43	86-W102M	-0.5	16	39.2	44	35	2.6	2.56	390	2
44	86-W103M	MISSING								
45	5 86-W301M	-0.5	20	32.8	33	33	1.55	0.78	240	2
46	86-W104M	1	12	28.2	23	10	2.05	1.98	280	2
47	' 86-T101M	-0.5	14	40.6	34	36	2.7	0.68	315	2
48	86-T102M	0.5	19	43	52	53	2	0.615	220	2
49	9 86-T103M	-0.5	26	43	71	65	3.8	0.59	240	2
50	86-T201M	-0.5	15	34	36	26	1.75	0.73	265	2

51	86-T202M	-0.5	16	33.2	39	25	1.9	0.64	265	2
52	86-T203M	-0.5	12	32.6	35	21	1.7	0.76	290	2
53	86-T204M	-0.5	12	30.6	31	18	1.85	0.78	230	2
54	86-T205M	0.5	13	31.2	27	17	1.95	0.94	240	2
55	86-T301M	-0.5	8	33	14	8	2.45	0.81	380	2
56	86-T302M	-0.5	7	27.4	11	6	2.6	1.14	360	1
57	86-T303M	-0.5	8	24.8	14	5	1.75	1.08	320	2
58	86-T304M	0.5	9	29.4	17	10	1.7	0.825	380	2
59	86-T305M	0.5	7	23.8	13	6	1.65	0.94	305	
60	87-T105M	-0.5	15	27.2	21	9	1.15	0.81	125	2
61	87-T106M	-0.5	10	29.6	18	7	1.55	0.9	130	1
62	87-T107M	-0.5	12	33.6	18	11	1.65	1.15	125	2
63	87-T108M	-0.5	11	35.6	15	8	2.1	1.65	135	1
64	87-T109M	-0.5	17	36.4	19	9	2.2	1.48	190	2
65	51 T101 M	-0.5	18	25.6	21.2	28.5	3.8	2.24	838	2
66	51 T102 M	-0.5	11.4	24.8	17.3	26	3.4	2.1	669	1
67	51 T103 M	-0.5	12	23.8	16.4	16	3.8	1.91	754	2
68	51 T104 M	-0.5	9.4	21	12.9	14	3.8	1.66	674	1
69	51 T105 M	-0.5	10.4	22.6	21.9	15	3.8	2.91	727	2
70	51 T106 M	-0.5	9	22.4	32.5	12	4	3.01	698	1
71	51 T107 M	-0.5	8.6	23.8	14.9	12.5	4.2	2.17	749	
72	51 T108 M	-0.5	7.8	25.2	12.9	10.5	4	1.96	726	2

Sample	Au	Cu	Pb	Zn	Ni	As	Мо	W	Fe	N
UNITS	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	рр
44-W1I	2	20.5	26	10	15	9.8	1.4	1.1	19.1	30
87-T101I	2	8	17	9	2	0.6	0.2	1.1	18.7	15
87-T102I	2	3.5	11	3	2	1	0.6	0.9	15.8	8
87-T103I	1	10	17	4	6	0.8	0.1	0.9	16.8	7
87-T104I	2	4	14	3	5	1.8	0.7	0.8	17	16
87-T105I	2	9.5	24	5	3	1	0.3	0.7	18	11
44-T602A	-1	6	20	3	6	2	0.5	0.7	18.2	1(
87-T105R	1	11	3	18	7	1.4	2.3	0.6	6	9
HRRB 436 C7	-1	8	6	6	10	9.6	0.9	1.6	3.21	14
HRRB 51 C1	-1	30.5	42	10	20	7.4	0.7	0.5	15.4	11
HRRB 51 C2	2	10	9	13	6	6.2	1.7	0.6	7.49	38
HRRB 51 C3	1	12.5	6	12	6	3.6	0.7	0.7	4.37	27
0	41									

Sample Preparation

The samples have been sorted and dried. The whole sample has been pulverised in a ring pulveriser.

Analytical Methods

The samples have been digested with Aqua Regia. This is a partial digest though it is extremely efficient for extraction of Gold. Easily digested elements show good recoveries however others (particularly the refractory oxides and silicates) are poorly extracted.

Au, Pb, As, Mo, W

have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Cu, Zn, Ni, Fe, Mn

have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry.

UNITS ppb ppm ptm ptm ptm ptm ptm ptm ptm ptm </th <th>Sample Seque</th> <th>nce No.</th> <th>Au(P)</th> <th>Cu</th> <th>Pb</th> <th>Zn</th> <th>Ni</th> <th>As</th> <th>Мо</th> <th>W</th> <th>Fe</th> <th>Mn</th>	Sample Seque	nce No.	Au(P)	Cu	Pb	Zn	Ni	As	Мо	W	Fe	Mn
44-T101L1 0.5 4 3.2 41 1.9 270 160 188 79 44-T103L3 0.5 10 10.9 84 805 102 235 7.32 200 44-T103L4 -0.5 6 8.9 62 4.65 645 250 41.5 44-T103L6 -0.5 3 4.6 4 -1 21.5 325 225 2.3 163 44-T104L7 -0.5 56 -1 3.45 555 245 3.74 92 44-T108L9 -0.5 20 18.8 13 15 14.7 1510 215 10.8 300 44-T101L11 -0.5 4 64 5 -1 2.55 35.12 900 $44.71111L$ 12 -0.5 6 9.4 6 2 3.4 595 2255 3.12 900 44-T101L11 -0.5 6 9.4 6 2 3.4 595 255 34.207 44-T102L13 -0.5 6 9.4 6 2 3.4 595 255 34.207 44-T202L15 -0.5 2 2 2 130 1.51 43 44-T202L16 -0.5 3 1.9 3 -1 1.55 590 90 52.43 44-T202L16 -0.5 2 1.6 31 0.55 90 90.52 <	UNITS		ppb	ppm	ppm	ppm	ppm	ppm	ppb	ppb	%	ppm
44-T102L 2 -0.5 4 4.3 5 2 2.2 370 185 2.4.3 81 44-T103L A 3 -0.5 6 8.9 6 2 4.65 64.5 520 4.15 180 44-T104L 5 -0.5 2 1 10.1 19 -1 1.95 345 195 2.18 527 2.3 163 44-T105L 6 -0.5 5 5 6 -1 3.45 555 2.45 3.74 92 44-T104L 8 -0.5 11 24.9 11 7 8.75 190 210 6.91 629 3.44 55 245 3.74 92 44-T104L 10 -0.5 6 9.4 6 2 3.4 505 2.55 3.4 207 44-T104 10 50 7.9 3.4 4.72 2.2 2.0 130 1.61 43 44-T204 10.5 6 3.9 3 -1 1.25 230 1.0 1.51	44-T101L	1	-0.5	4	3.2	4	1	1.9	270	160	1.88	79
44-T103L A 3 -0.5 10 10.9 8 4 8.95 1020 235 7.32 200 44-T103L B 4 -0.5 6 8.9 6 2 4.65 64 55 10 10 10 19 -1 1.95 345 155 245 3.74 92 44-T106L 7 -0.5 5 6 -1 3.45 555 245 3.74 92 44-T108L 9 -0.5 20 18.8 13 15 14.7 1510 215 8.03 3.02 168 44-T108L 9 -0.5 20 18.8 13 15 14.7 1510 215 3.02 168 44-T100L 11 -0.5 6 9.4 6 2 3.4 595 255 3.12 90 44-T101L 14 -0.5 6 3.8 5 2 2.2 230 10.15 151 433 44-T201L 14 -0.5 3 1.9 3	44-T102L	2	-0.5	4	4.3	5	2	2.2	370	185	2.43	81
44-T103L B 4 -0.5 6 8.9 6 2 4.65 64.5 250 4.15 180 44-T104L 5 -0.5 2 1 10.1 19 -1 1.95 345 195 2.18 527 2.3 163 44-T106L 7 -0.5 5 5 6 -1 3.45 555 245 3.74 92 44-T107L 8 -0.5 1 12.49 11 7 8.75 190 210 6.91 6.23 3.45 555 245 3.12 90 44-T101L 11 -0.5 7 4.6 7 2 2.9 505 255 3.4 90 44-T111L 12 -0.5 5 2.6 5 -1 1.25 200 130 1.88 74 44-T201L 14 -0.5 6 3.9 3 -1 3.15 235 160 2.28 55 44-T203L 16 -0.5 2 1.4 3 -1	44-T103L A	3	-0.5	10	10.9	8	4	8.95	1020	235	7.32	200
44-T104L 5 -0.5 21 10.1 19 -1 1.95 345 195 2.18 627 44-T105L 6 -0.5 5 6 -1 1.95 345 155 225 225 23 163 44-T106L 7 -0.5 5 6 -1 3.45 555 245 3.74 92 44-T108L 9 -0.5 20 18.8 13 15 14.7 1510 215 60 3.12 90 44-T108L 9 -0.5 2 6 9.4 6 2 3.4 595 255 3.12 90 44-T110L 11 -0.5 2 2 2 10 115 13 44 44-T201L 14 -0.5 2 2 2 3.0 1.0 1.15 10 95 0.5 2.4 44-T203L 16 -0.5 2 1.4 3 -1 1.15 95 0.5 1.4 44-T303L 21	44-T103L B	4	-0.5	6	8.9	6	2	4.65	645	250	4.15	180
A4-T105L60.511.6.712.153.262.252.316344-T105L70.556-13.455552453.749244-T107L80.52018.8131514.715102106.916.2944-T108L9-0.52018.8131514.7151021510.833044-T108L10-0.546.45-12.5545024030216844-T111L12-0.569.4623.45952553.420744-T111L12-0.569.4623.45952553.420744-T201L14-0.563.93-13.152351602.285544-T202L15-0.521.43-10.6595950.541544-T304L19-0.521.63-11.710950.5751444-T304L22-0.521.83-11.11951200.8021744-T304L22-0.521.43-10.5590900.5321344-T304L22-0.521.43-10.5590900.5321344-T304L22-0.521	44-T104I	5	-0.5	21	10.1	19	-1	1.95	345	195	2 18	527
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T105I	6	-0.5	3	4.6	4	-1	2 15	325	225	2.3	163
Harmond Hord	44-T106I	7	-0.5	5	5	6	_1	3 4 5	555	245	3 74	92
Harmonic Border Line Line <thline< th=""> <thline< th=""> Line <thline< t<="" td=""><td>44-T107I</td><td>, 8</td><td>-0.5</td><td>11</td><td>24 9</td><td>11</td><td>7</td><td>8 75</td><td>1190</td><td>210</td><td>6 91</td><td>629</td></thline<></thline<></thline<>	44-T107I	, 8	-0.5	11	24 9	11	7	8 75	1190	210	6 91	629
Harmond Borney	44-T108I	a	-0.5	20	18.8	13	15	14 7	1510	215	10.8	330
HarmonHarm	44-T100L	10	-0.5	20	6.4	5	_1	2 55	450	240	3 02	168
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T1101	10	-0.5	7	4.6	7	2	2.00	505	235	3 12	90
H-111L1210151021.41212.01.514344-T201L14-0.563.8522.2201301.514344-T201L14-0.563.8522.22301301.887444-T201L16-0.5222-11110950.7993444-T203L16-0.563.93-11.251301001.151744-T301L18MISSING86-W301L19-0.573231.33057802.52344-T303L21-0.521.63-10.7110950.5751444-T304L22-0.521.83-10.7110950.5751444-T304L22-0.521.83-10.7110950.5751444-T304L22-0.521.83-10.5590900.5041544-T304L22-0.521.43-10.5590900.5021344-T304L26-0.521.43-10.5590900.5021344-T304L26-0.521.83-10.751201050.6242044-T311L29		12	-0.5	6		6	2	2.5	505	255	3.12	207
44-T12L13-0.552.63-11.25222301301.314344-T201L15-0.5222-11110950.7993444-T202L15-0.5222-11110950.7993444-T204L17-0.531.93-11.251301001.151744-T301L18MISSING86-W301L19-0.573231.333057602.52244-T302L20-0.521.43-10.6595950.5411944-T304L22-0.521.83-11.11951200.8021744-T306L24-0.521.83-10.7110950.5381444-T306L24-0.521.43-10.559090900.5041544-T306L24-0.521.43-10.559090900.5041544-T304L22-0.521.43-10.751201050.6242044-T304L26-0.521.43-10.751201050.6242044-T304L28-0.521.83-10.7150115<	44-1111L 44 T110	12	-0.5	5	9. 4 2.6	5	1	1 25	220	120	1 51	207
44-1201L14-0.505.8522.22.301.501.501.7444-1202L15-0.5222-11110950.7993444-1203L16-0.563.93-13.152351602.285544-1204L17-0.531.93-11.251301.001.151744-1301L18MISSING86-W301L19-0.521.43-10.6595950.5411944-1302L20-0.521.43-10.7110950.5751444-1304L22-0.521.83-11.11951200.8021744-1304L22-0.521.43-10.5590900.5321344-1304L26-0.521.43-10.5590900.5041544-1308L26-0.521.43-10.751201050.6242044-1308L26-0.521.83-10.11400.772044-1302L29-0.521.83-10.71401150.8392044-1312L30-0.522.13-10.851801350.8512444-1312L<	44-1112L 44 T2011	10	-0.5	5	2.0	5	-1	1.20	220	120	1.01	43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-1201L	14	-0.5	0	3.0 0	5	2	۷.۷	230	130	1.00	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-1202L	10	-0.5	2	2	2	-1	2 4 5	110	460	0.799	54
44-1204L17-0.531.93-11.251301001.151786-W301L19-0.573231.33057802.52344-T302L20-0.521.43-10.6595950.5751444-T304L22-0.521.83-11.11951200.8021744-T306L23-0.521.22-10.5595900.5381444-T306L24-0.521.54-10.6590900.5041544-T308L26-0.521.43-10.751200.8021050.6242044-T309L27-0.522.13-111601400.772044-T310L28-0.521.83-10.71201050.6242044-T312L30-0.522.13-111601400.772044-T312L30-0.522.13-10.71401150.8051744-T312L31-0.522.53-11.051050.8392044-T314L33-0.522.53-11.051450.8392044-T314L35-0.52<	44-1203L	10	-0.5	0	3.9	3	-1	3.15	235	100	2.28	20
44-1301L 19MISSING 86-W301L 19 -0.5 7 3 2 3 1.3 305 780 2.5 23 44-T302L 20 -0.5 2 1.4 3 -1 0.65 95 95 0.541 19 44-T304L 22 -0.5 2 1.6 3 -1 0.7 110 95 0.575 14 44-T306L 23 -0.5 2 1.8 3 -1 0.15 90 0.538 14 44-T306L 24 -0.5 2 1.4 3 -1 0.55 90 90 0.538 14 44-T306L 26 -0.5 2 1.4 2 -1 0.55 90 90 0.522 13 44-T308L 26 -0.5 2 1.4 2 -1 0.75 120 105 0.624 20 44-T310L 29 -0.5 2 1.8 3 -1 0.75 120 105 0.65 17	44-1204L	17	-0.5	3	1.9	3	- 1	1.25	130	100	1.15	17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44-1301L	181	IISSING	-	•	•	•	4.0	005	700	0.5	~~~
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86-W301L	19	-0.5	/	3	2	3	1.3	305	/80	2.5	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-1302L	20	-0.5	2	1.4	3	-1	0.65	95	95	0.541	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-1303L	21	-0.5	2	1.6	3	-1	0.7	110	95	0.575	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-1304L	22	-0.5	2	1.8	3	-1	1.1	195	120	0.802	17
44-T306L24 -0.5 2 1.5 4 -1 0.65 9090 0.504 1544-T307L25 -0.5 2 1.4 3 -1 0.55 9090 0.532 1344-T308L26 -0.5 2 1.4 2 -1 0.55 9080 0.509 1444-T309L27 -0.5 2 2.1 3 -1 0.75 120 105 0.624 2044-T310L28 -0.5 2 1.9 3 -1 1 160 140 0.77 2044-T312L A30 -0.5 2 2.1 3 -1 0.7 150 115 0.805 17 44-T312L B31 -0.5 2 2.1 3 -1 0.7 140 115 0.679 14 44-T313L32MISSING44-T314L33 -0.5 2 2.5 3 -1 1.05 300 270 0.772 25 44-T314L33 -0.5 2 2.1 3 -1 0.85 180 135 0.851 24 44-T314L33 -0.5 2 2.1 3 -1 0.85 180 0.509 14 44-T314L36 -0.5 1 1.5 2 -1 0.8 135 0.851 15 44-T314L33 -0.5 2 2.1 3 -1 0.85 180 0.505 115 4	44-T305L	23	-0.5	2	1.2	2	-1	0.55	95	90	0.538	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T306L	24	-0.5	2	1.5	4	-1	0.65	90	90	0.504	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T307L	25	-0.5	2	1.4	3	-1	0.55	90	90	0.532	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T308L	26	-0.5	2	1.4	2	-1	0.5	90	80	0.509	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T309L	27	-0.5	2	2.1	3	-1	0.75	120	105	0.624	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T310L	28	-0.5	2	1.9	3	-1	1	160	140	0.77	20
44-T312L A 30 -0.5 2 2.1 3 -1 0.9 205 145 0.839 20 44-T312L B 31 -0.5 2 1.7 3 -1 0.7 140 115 0.679 14 44-T313L 32MISSING - - 1.05 300 270 0.772 25 44-T316L 33 -0.5 2 2.1 3 -1 0.85 180 135 0.851 24 44-T316L 35 -0.5 2 2.1 3 -1 0.85 180 135 0.851 24 44-T316L 35 -0.5 2 2.1 3 -1 0.85 180 135 0.851 24 44-T317L 36 -0.5 1 1.5 2 -1 0.8 105 0.581 15 44-W2L 37 -0.5 5 2.2 4 1 2.1 210 0.898 33 44-T401L A 38 -0.5 4 4.7 4 <	44-T311L	29	-0.5	2	1.8	3	-1	0.7	150	115	0.805	17
44-T312L B 31 -0.5 2 1.7 3 -1 0.7 140 115 0.679 14 44-T313L 32MISSING 33 -0.5 2 2.5 3 -1 1.05 300 270 0.772 25 44-T314L 33 -0.5 2 2.5 3 -1 0.85 180 135 0.851 24 44-T316L 35 -0.5 2 2.1 3 -1 0.85 180 135 0.851 24 44-T316L 35 -0.5 2 2.1 3 -1 0.8 125 120 0.714 17 44-T317L 36 -0.5 1 1.5 2 -1 0.8 105 0.581 15 44-W2L 37 -0.5 5 2.2 4 1 2.1 210 155 1.81 17 44-T401L A 38 -0.5 3 2.5 3 -1 3.05 360 215 2.69 129 44-T402L <	44-T312L A	30	-0.5	2	2.1	3	-1	0.9	205	145	0.839	20
44-T313L $32MISSING$ 44-T314L 33 -0.5 2 2.5 3 -1 1.05 300 270 0.772 25 44-T315L 34 -0.5 2 2.1 3 -1 0.85 180 135 0.851 24 44-T316L 35 -0.5 2 2.1 3 -1 0.8 125 120 0.714 17 44-T317L 36 -0.5 1 1.5 2 -1 0.8 105 105 0.581 15 44-W2L 37 -0.5 5 2.2 4 1 2.1 210 155 1.81 17 44-T401L A 38 -0.5 3 2.5 3 -1 1.25 165 120 0.898 33 44-T401L B 39 -0.5 4 4.7 4 -1 3.25 455 215 3.23 58 44-T402L 40 -0.5 4 4.7 4 -1 3.05 360 215 2.69 129 44-T403L 41 -0.5 2 2.6 3 -1 2.12 240 145 1.71 29 44 -T404L 42 -0.5 3 3.1 5 -1 1.92 50 160 2.04 39 44 -T405L 43 -0.5 4 6.7 4 -1 2.95 305 195 2.23 274 44 -T406L 44 -0.5 <	44-T312L B	31	-0.5	2	1.7	3	-1	0.7	140	115	0.679	14
44-T314L33 -0.5 2 2.5 3 -1 1.05 300 270 0.772 25 44-T315L34 -0.5 2 2.1 3 -1 0.85 180 135 0.851 24 44-T316L 35 -0.5 2 2.1 3 -1 0.85 180 135 0.851 24 44-T317L 36 -0.5 1 1.5 2 -1 0.8 105 105 0.581 15 44-W2L 37 -0.5 5 2.2 4 1 2.1 210 155 1.81 17 44-T401L A 38 -0.5 3 2.5 3 -1 1.25 165 120 0.898 33 44-T401L B 39 -0.5 4 4.7 4 -1 3.25 455 215 3.23 58 44-T402L 40 -0.5 4 5.3 4 -1 3.05 360 215 2.69 129 44 -T403L 41 -0.5 2 2.6 3 -1 2.12 20 145 1.71 29 44 -T404L 42 -0.5 3 3.1 5 -1 1.9 250 160 2.04 39 44 -T405L 43 -0.5 4 6.7 4 -1 2.95 145 1.77 74 44 -T406L 44 -0.5 3 2.7 3 -1 2.25 28	44-T313L	32N	AISSING									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T314L	33	-0.5	2	2.5	3	-1	1.05	300	270	0.772	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T315L	34	-0.5	2	2.1	3	-1	0.85	180	135	0.851	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T316L	35	-0.5	2	2.1	3	-1	0.8	125	120	0.714	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T317L	36	-0.5	1	1.5	2	-1	0.8	105	105	0.581	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-W2L	37	-0.5	5	2.2	4	1	2.1	210	155	1.81	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T401L A	38	-0.5	3	2.5	3	-1	1.25	165	120	0.898	33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T401L B	39	-0.5	4	4.7	4	-1	3.25	455	215	3.23	58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T402L	40	-0.5	4	5.3	4	-1	3.05	360	215	2.69	129
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T403L	41	-0.5	2	2.6	3	-1	2.1	240	145	1.71	29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T404L	42	-0.5	3	3.1	5	-1	1.9	250	160	2.04	39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44-T405L	43	-0.5	4	4.7	5	-1	2.35	305	195	2.23	274
44-T407L45-0.546.74-12.252851601.939044-T408L46-0.532.73-12.552901802.192944-T501L47-0.533.64-11.92151551.699744-T502L48-0.5334-12.553051802.24644-T503L49-0.532.8411.92651601.823144-T504L50-0.523.23-12.153001601.937844-T505L51-0.522.44-11.451851201.2822	44-T406L	44	-0.5	3	3.1	4	-1	1.95	245	145	1.7	74
44-T408L46-0.532.73-12.552901802.192944-T501L47-0.533.64-11.92151551.699744-T502L48-0.5334-12.553051802.24644-T503L49-0.532.8411.92651601.823144-T504L50-0.523.23-12.153001601.937844-T505L51-0.522.44-11.451851201.2822	44-T407L	45	-0.5	4	6.7	4	-1	2.25	285	160	1.93	90
44-T501L47-0.533.64-11.92151551.699744-T502L48-0.5334-12.553051802.24644-T503L49-0.532.8411.92651601.823144-T504L50-0.523.23-12.153001601.937844-T505L51-0.522.44-11.451851201.2822	44-T408L	46	-0.5	3	2.7	3	-1	2.55	290	180	2.19	29
44-T502L 48 -0.5 3 3 4 -1 2.55 305 180 2.2 46 44-T503L 49 -0.5 3 2.8 4 1 1.9 265 160 1.82 31 44-T504L 50 -0.5 2 3.2 3 -1 2.15 300 160 1.93 78 44-T505L 51 -0.5 2 2.4 4 -1 1.45 185 120 1.28 22	44-T501L	47	-0.5	3	3.6	4	-1	1.9	215	155	1.69	97
44-T503L 49 -0.5 3 2.8 4 1 1.9 265 160 1.82 31 44-T504L 50 -0.5 2 3.2 3 -1 2.15 300 160 1.93 78 44-T505L 51 -0.5 2 2.4 4 -1 1.45 185 120 1.28 22	44-T502L	48	-0.5	3	3	4	-1	2.55	305	180	2.2	46
44-T504L 50 -0.5 2 3.2 3 -1 2.15 300 160 1.93 78 44-T505L 51 -0.5 2 2.4 4 -1 1.45 185 120 1.28 22	44-T503L	49	-0.5	3	2.8	4	1	1.9	265	160	1.82	31
44-T505L 51 -0.5 2 2.4 4 -1 1.45 185 120 1.28 22	44-T504L	50	-0.5	2	3.2	3	-1	2.15	300	160	1.93	78
	44-T505L	51	-0.5	2	2.4	4	-1	1.45	185	120	1.28	22

44-T601L	52	-0.5	2	4.8	3	-1	2.25	360	220	4.14	30
44-T602L	53	-0.5	2	1.5	2	-1	0.65	90	60	1.01	14
44-T603L	54	-0.5	3	1.5	3	-1	0.8	85	65 ().933	21
44-T604L	55	-0.5	1	1.3	1	-1	0.85	95	70	1	18
44-T701L	56	-0.5	5	6.2	5	1	3.35	365	210	2.56	116
44-T702L	57	-0.5	4	3.2	7	-1	2.5	305	180	2.25	53
44-T703L	58	-0.5	3	2.6	3	-1	1.95	220	155	1.68	36
44-T801L	59	-0.5	2	2.1	3	-1	1.65	195	130	1.56	19
44-T802L	60	-0.5	2	2.9	4	-1	1.8	220	130	1.7	41
44-T803L	61	-0.5	2	2.4	4	1	1.3	170	120	1.36	38
44-T804I	62	-0.5	1	27	3	-1	1 15	140	110	1	37
44-T805I	63	-0.5	3	4.5	7	-1	2.5	405	205	271	68
44-T806I	64	-0.5	2	2.8	.3	-1	0.95	140	110	12	43
44-T807I	65	-0.5	1	19	3	_1	0.00	130	95	1 16	22
44-T808I	66	-0.5	2	23	3	_1	0.75	105	95 (1.10	70
	67	-0.5	2	2.5	J 1	-1	0.75	100	85 (7/1	10
44-1009L 44 T910I	68	-0.5	2	1.7		-1	1 15	166	115	1 07	51
44-1010L	60	-0.5	ວ ວ	3.5	5 1	-1	0.75	00	75 (1.21	26
44-1011L	09 70	-0.5	2 1	2.2	4	-1	0.75	00		J.00Z	20
44-1012L	70	-0.5	1	1.9	ა ⊿	-1	0.75	95	90 (1.111	21
44-1813L	71	-0.5	3	3.3	4	-1	1.65	165	140	1.53	70
44-1814L	72	-0.5	4	2.2	4	1	1.5	200	125	1.44	29
44-1815L	73	-0.5	3	2.1	3	-1	1.6	180	115	1.45	21
44-1816L	74	-0.5	2	1.9	3	-1	1.4	165	100	1.3	16
44-1817L	75	-0.5	2	2.2	3	-1	1.1	140	100	1.06	30
44-1818L	76	-0.5	1	2.2	4	-1	1.35	170	125	1.44	20
44-1819L	77	-0.5	2	1.6	3	1	1	110	80	0.86	18
44-1820L	78	-0.5	2	1.6	2	-1	0.95	110	85 ().844	46
44-T821L	79	-0.5	3	3.8	4	-1	1.75	210	125	1.61	58
44-T822L	80	-0.5	2	1.9	4	2	1	130	105	1.1	24
44-T823L	81	-0.5	2	2.1	3	-1	1.2	135	120	1.31	26
44-T824L	82	-0.5	2	2.6	3	-1	0.8	95	80 ().751	53
86-W101L	83	-0.5	6	3.5	6	1	2.2	280	210	3.14	26
86-W102L	84	-0.5	3	3.8	2	-1	2.3	300	205	3.09	18
86-W103L	85M	ISSING									
86-W104L	86	-0.5	6	7.4	7	-1	3.8	680	315	5.83	134
86-T101L	87	-0.5	1	2	1	2	1.25	140	120	1.56	10
86-T102L	88	-0.5	2	3.4	4	-1	1	165	95	1.48	45
86-T103L	89	-0.5	9	4.7	16	6	5	460	370	4.02	67
86-T201L	90	-0.5	1	1.8	1	1	0.95	125	105	1.43	16
86-T202L	91	-0.5	3	2	2	1	1	140	140	1.64	14
86-T203L	92	-0.5	1	1.1	2	-1	0.65	90	110	1.05	13
86-T204L	93	-0.5	-1	1.1	2	-1	0.5	90	85 ().862	9
86-T205L	94	-0.5	2	2.2	3	1	0.9	150	90	1.58	21
86-T301L	95	-0.5	6	11.6	3	1	7	880	690	8.02	65
86-T302L	96	-0.5	4	14.5	4	2	6.55	1400	745	11.4	123
86-T303L	97	-0.5	3	12.5	3	2	5.4	1200	585	11.7	111
86-T304L	98	-0.5	-1	0.7	1	-1	0.35	55	80 (0.696	5
86-T305L	99	-0.5	1	5.5	1	1	3.2	775	515	6.22	32
87-T106L	100	-0.5	3	10.4	3	1	2.95	795	215	8.42	41
87-T107L	101	-0.5	3	6	3	-1	2.55	595	195	4.86	35
87-T108L	102	-0.5	2	5.5	3	-1	2.6	585	170	4.32	25
87-T109	103	-0.5	2	28	2	_1	1 65	265	125	19	16
87-T105	104	-0.5	13	20.6	9	2		1370	190	14.2	231
51-T101I	105	-0.5	46	20.0 4	2	<u> </u>	 1⊿	455	80	3 00	22
0 L	100	0.0	1.0	т	~	4.0	1.7	+00	00	0.00	00

1-T102L	106	-0.5	2.2	2	0.2	1	1	245	79	2.06	26
1-T103L	107	-0.5	3.4	2.4	0.2	1.5	1.2	305	102	3.03	20
1-T104L	108	-0.5	4	4.2	0.3	1.5	1.8	440	204	4.44	52
1-T105L	109	-0.5	3	3.8	0.2	1.5	2.2	425	83	5	25
1-T106L	110	-0.5	3.2	2.8	0.5	2	2	405	79	3.64	81
1-T107L	111	-0.5	3.8	3.4	2.8	4	2	545	102	3.77	53
1-T108L	112	-0.5	1.8	2.8	0.1	2	1.8	400	127	3.46	33
1-T104L 1-T105L 1-T106L 1-T107L 51-T108L	108 109 110 111 112	-0.5 -0.5 -0.5 -0.5 -0.5	4 3 3.2 3.8 1.8	4.2 3.8 2.8 3.4 2.8	0.2 0.2 0.5 2.8 0.1	1.5 1.5 2 4 2	1.8 2.2 2 2 1.8	440 425 405 545 400	204 83 79 102 127	4.44 5 3.64 3.77 3.46	- 5 2 8 5 3

Sample Preparation

No sample preparation was required on these samples.

Analytical Methods

The samples have been treated with a concentrated Hydrochloric Acid leach to extract moderately bound elements from the surface of sample grains. Recovery of elements is always PARTIAL however the results may be used in establishment of path-finder elements.

Au(P), Pb, As, Mo, W

have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.

Cu, Zn, Ni, Fe, Mn

have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry.

Appendix V

Line profiles for sample types — for sequence nos. versus sample nos. refer to Appendix IV

Appendix VI

Summary Interpretation of Line profiles

Summary interpretation of line profiles

Line profiles were generated (Appendix V) for the various elements among different sample types. A subjective pattern recognition approach was then used, to simply identify peaks which stand out above background noise. These peaks were then related back to actual sample nos. from their sequence no. in the results listed in Appendix IV. Weak highs are shown in parenthesis, and strong highs are in bold.

All M samples

Zn	44T-101M
Zn	44T-815M Au
Zn Pb (Cu) Ni	86W-101M
Zn Pb (Cu) Ni Mo	86W-102M
(Cu) Ni Mo	86W-301M
(Cu) Pb Ni	86T-101M
(Cu) Pb Zn Ni	86T-102M
(Cu) Pb Zn Ni	86T-103M matches
Zn Ni	86T-201M
(Cu) Zn Ni	86T-202M
Zn Ni	86T-203M
Ni	86T-204M
Pb	87T-108M
(Cu) Pb	87T-109M
(Cu) Ni	51T- 101M
Ni	51T-102M
	Zn Zn Zn Pb (Cu) Ni Zn Pb (Cu) Ni Mo (Cu) Ni Mo (Cu) Pb Ni (Cu) Pb Zn Ni (Cu) Pb Zn Ni Zn Ni (Cu) Zn Ni Zn Ni Ni Pb (Cu) Pb (Cu) Pb (Cu) Ni Ni

All L samples.

Fe-As, Fe-Mo and Fe-Pb are all highly correlated — see regression scattergrams. Therefore profiles for elements normalized to Fe, by simply dividing the raw value by corresponding % Fe, were generated

Fe normalized L samples				
5	Cu (Pb) Zn Mn	44T	-104L	
8	(Pb)	44T	-107L	
19	W	86V	/-301L	
20	Cu Zn W	44T	-302L	
21	Mo W Cu Zn	44T	-303L	
22	Mo W Zn	44T	-304L	
23	W (Cu) Zn	44T	-305L	
24	W (Cu) Zn	44T	-306L	
25	W (Cu) Zn	44T	-307L	
26	W (Cu) Zn	44T	-308L	
27-31	Mo W Zn	44T-309L	to	312LB
(313L"missing")				
33	Mo W Zn	44T	-314L	
34	W Zn	44T	-315L	
35	W Zn	44T	-316L	
36	W Zn	44T	-317L	

43	Mn	44T-405L
45	(Pb)	44T-407L
66	Mn	44T-808L

L samples non Fe normalized profiles were also considered but not for the highly Fe dependent elements Mo, As and Pb.

L samples, non normalized		
3	Cu	"44T-103LA"
5	Mn Cu Zn	44T-104L matches
normalized L result		
8	Mn Cu Zn Ni	44T-107L matches
normalized L result		
9	Mn Cu	44T-108L
43	(Mn)	44T-405L matches
normalized L result		
89	Cu Zn Ni	86T-103L matches
86T-103M for these elements.		
95-97	W	86T-301L to 303L
99	W	86T-305L
104	Cu Zn	87T-105L matches
87T-105L/P hybrid.		