ANGLOGOLD AUSTRALASIA LIMITED

BROCKS CREEK PROJECT REPORT
FOR EXPLORATION ON
MLN’s 176 & 1139 MCN’s 4689-4697,
4701-4703, 4863-4871 & 4895-4899
FOR THE PERIOD 27th JUNE 1999 - 26 JUNE 2000

Volume 1 of 2

Author: D. Stephens
F. Lawton

Drafting: A. Horner

Date: September 2000

Copy No: 1

1:250,00 Map Sheet SD5208 Pine Creek
1:100,000 Map Sheet 5172 Batchelor

DISTRIBUTION:

Original: NT Dept. of Mines and Energy (Digital and Hardcopy)
Copy 1: AngloGold - Melbourne (Digital copy only)
Copy 2: AngloGold – Darwin (Digital and Hardcopy)
Copy 3: Field Office (Hardcopy only)
SUMMARY

This report details the exploration work completed within MLN1139 and associated tenements, MLN 176, MCN’s 4689-4697, 4701-4703, 4863-4871 & 4895-4899 -The Brocks Creek Project within the period 27th June 1999 - 26 June 2000.

The completion of mining and shut down of the Mill planned for October of this year, combined with the completion of testing of all areas, has meant that no generative exploration work has been completed within the reporting period.

Rehabilitation work completed has included recontouring of drill pads, and permanent capping of drill holes.
8 EXPENDITURE STATEMENTS .. 15

8.1 MLN1139 - Expenditure for year ending 26th of June 2000 15

8.2 Coppertop (MLN176) - Expenditure for year ending 4th of March 2000 15

8.3 Nirvana (MCN's 4689–4697) – Expenditure for year ending 5th Nov 2000 15

8.4 Utopia (MCN's 4701 – 4703) – Expenditure for year ending 5th Nov 2000 16

8.5 Howley Ck (MCN's 4863–4871) Expenditure for year ending 13th Feb 2000.............. 16

8.6 South Bull (MCN’s 4895–4899) Expenditure for year ending 27th April 2000 16

9 REFERENCES .. 17
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Tenement Location Plan</td>
<td>1:250 000</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Regional Geology</td>
<td>1:250,00</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Geophysical Interpretation with Prospect Locations</td>
<td>1:10,000</td>
</tr>
</tbody>
</table>

LIST OF TABLES

Table 1 Part of the Early Proterozoic Straigraphy from the Pine Creek Inlier

LIST OF APPENDICES

Appendix 1 Acacia Geological Logging Codes
Appendix 2 Environmental Register
1 INTRODUCTION

1.1 Tenement Status

AngloGold Australasia Limited assumed control of the Brocks Creek Project in late 1999, following the successful takeover of Acacia Resources Limited.

Acacia Resources Limited (Acacia) assumed control of Solomon Pacific Resources N.L.’s (Solpac) operations in mid 1996. In October 1996 Solomon Pacific Resources N.L changed its name to Acacia Resources (Brocks Creek) Pty Ltd. AngloGold now manages the numerous MCN’s, MLN’s and EL’s incorporating the Brocks Creek Project (Figure 1).

Cyprus Gold Australia (Cyprus) initially joint ventured into MLN 932 and MCN’s 125, 561-562, 576-578, 1299 and 1300 in 1987 to acquire a 75% holding. In early 1992 SolPac purchased the remaining 25% and a new joint venture was structured with Cyprus, covering the former tenements and nearby EL’s 7011 and 7457, which had been subject to a separate joint venture. In May 1994 SolPac purchased the Cyprus 75% interest. The alluvial/eluvial rights were however, retained by Top End Mineral Ventures. SolPac were therefore obliged to stockpile (but not to separate into waste and ore) all eluvial/alluvial material from the open pit sites.

The purchase of the ex-Zapopan N.L./Zapopan Consolidated property was completed early in 1993, as was the purchase of MCN 1924 (north of Alligator) and MLN 176. The option on the Summer’s property (MCN 534 and HLDN 37) was exercised in mid 1993.

Mineral Lease 1139, covering 3990 ha, was applied for in December 1993 and subsequently granted 27 June 1995. AngloGold now controls all the mineral tenements inside MLN 1139 with the exception of HLDN’s 36 and 49; there are also six small freehold lots at the old Brocks Creek townsit. These lots are excluded from MLN 1139.

This report reviews the location, access, tenure, previous exploration and geology of MLN’s 1139 & 176, MCN’s 4689-4697, 4701-4703, 4863-4871 & 4895-4899 (Figure 1). It also details work completed between 27 June 1999 to 26 June 2000.

1.2 Access and Physiography

The various tenements discussed in this report are situated approximately 140 km south southeast of Darwin. Access may be gained by travelling approximately 160 km south from Darwin via the Stuart Highway, then heading east along the Fountain Head Road for approximately 12 km. A well-established dirt road leads into the Brocks Creek Gold Mine site from the Fountain Head Road.

Landforms within MLN 1139 comprise hills, flats and undulating terrain which generally support tall and mixed open woodland with tall grassy understory (NSR, 1995). The low ridges and hills to the north are incised by ephemeral creeks, and to the south the terrain drops away to alluvial plains of Howley Creek. The monsoonal climate is typically hot and humid during the wet season (usually November to May) and dry and warm during the dry season (June to October).
1.3 Aboriginal Area Protection Authority

The AAPA issued Authority Certificate No. C98/149, for a period of two years commencing on the 18th December 1998. There are no registered sites of significance within the tenement group.

2 GEOLOGY

2.1 Regional Geology

The Brocks Creek area is situated approximately 140 km SSE of Darwin in Early/Mid Proterozoic meta-sediments of the Pine Creek Inlier. The Brocks Creek-Zapopan Anticline/Shear Zone (“BKZ”) is the main structure hosting mineralisation in the region, along the southern contact aureole of the post-tectonic Burnside Granite (Figure 2). The BKZ anticline appears to be parasitic on the southern flank of a larger anticline, plunging in a gentle ESE direction and stratigraphically overturned towards the north. Rocks of South Alligator and overlying Finniss River Groups are inferred to be present in the Brocks Creek project area (Table 1).

Strata comprising Gerowie Tuff and Koolpin Formation are the host rocks for mineralisation within the Brocks Creek area. The former contains a repetitious sequence of volcano-sedimentary units comprising argillites (siltstones/shales/schists) and silicified tuffs, and the latter consists of argillite, commonly carbonaceous and pyritic/pyrrhotitic, with chert bands and nodules, and silicified dolomite at the base. Gerowie Tuff has an apparent thickness of more than 500 m and, along with Koolpin and Mount Bonnie Formations comprises the South Alligator Group. These three Formations and the overlying Burrell Creek Formation (part of the Finniss River Group) are host to almost all of the significant gold deposits in the Pine Creek Inlier.

Upper and lower contacts between these four Formations are gradational and interdigitations are common, however, there is an angular unconformity at the base of the Koolpin Formation. Subjacent to the unconformity is the Mount Partridge Group, though it does not outcrop in the Brocks Creek area. A simplified subdivision of the relevant section of the Geosyncline stratigraphy is shown in Table 1.
2.2 Local Stratigraphy and Structure

Mineralisation at Brocks Creek is hosted within the Gerowie Tuff, and comprises interbedded shales, siltstones, greywackes, cherts and tuffs, the thickness of each unit varying from 10 to 50 metres. This sequence of metasediments at Brocks Creek is cut by biotite-rich mafic (lamprophyric) intrusives (Figure 3). The local stratigraphy and structure is discussed below on a prospect basis.

2.2.1 Faded Lily Prospect

Faded Lily mineralisation is structurally and lithologically controlled and hosted by 50° to 60° south-dipping quartz/pyrite ± arsenopyrite and tourmaline veining through two major units of greywacke-argillite rocks separated by argillite dominated units.

Mineralisation at West Faded Lily is essentially contained within a 200 metre long zone dipping -50° to -60° south and plunging -35° (grid) east. The lode is within a closure in the sheared anticlinal axis and stratabound in the lower argillite-greywacke unit. Subsidiary lodes in the anticlinal axis to the east are within the upper argillite-greywacke unit. A 5m wide cherty tuff marker horizon separates the lower and upper argillite greywacke units. The most significant intersections in the main lode have been 24m @ 5.35 g/t Au and 16m @ 33.5 g/t Au.

To the south of the anticlinal axis and within the upper argilite-greywacke unit, are several “hanging wall” or “upper” lodes, up to 100m in length. These lodes
plunge -35° east and dip south between -50° and -60°. Drilling of these bodies has included intersections of 21m @ 2.65 g/t Au.

2.2.2 Alligator Prospect

The Alligator Prospect is situated on the southern limb of the (BKZ) (Figure 3) and mineralisation is structurally and lithologically controlled. Quartz-pyrite ± arsenopyrite and tourmaline veins dipping -50° to -60° (grid) south host mineralisation and are essentially stratabound within two (upper and lower) argillite-greywacke units. In the centre of the Alligator zone, mineralisation may continue across an intervening argillite-chert-tuff horizon. The main lode is 200m long and up to 60 metres wide, dips to the south between -50° and -60° and plunge -40° (grid) east.

The Alligator deposit is located at the intersection of the east-west BKZ structure and a prominent northeast-southwest T.M. structure. Mineralisation is generally lower grade than at Faded Lily but of greater width (60m @ 1.97 g/t Au and 57m @ 2.53 g/t Au).

2.2.3 Zapopan Prospect

The Zapopan prospect is located east of Faded Lily on the BKZ (Figure 3). A review of the geological and drill hole information over the Zapopan Prospect was completed by Neil Clarke and Mick Dunn in May 1997 and Bill Laing in March 1997. Findings from this work are:

At Zapopan, a cherty hematite-pyrite marker horizon has been identified in several holes, although precise correlation is complicated by the presence of several thinner hematitic units. A very broad upper siltstone - lower shale and chemical sediment division is likely in the immediate area of mineralisation, but to date its has not proven possible to correlate reliably over more than one drill section.

The major structural element at Zapopan is an anticline, with a fold axis plunge indicated as 35° toward 133° (correlating 2 saddle reefs on an historic plan) or from more data, 38° towards 122° (from stereo plot of trench bedding data). The fold hinge zone taken from 4 trenches trends at 115° - 118°. The axial plane dips steeply south 75° - 85°.

The fold and related mineralisation are offset by two fault zones described as "slides" on historic plans. These are steep (80°S to 90°) and trend slightly south of the fold axial plane. Offsets in mineralisation give a north block west apparent horizontal movement on the South Slide. Movement on the north slide is interpreted to be reverse, based on drag folding of bedding observed in core.

Mineralisation is spatially associated with quartz veining. Locally veining is hosted by sulphidic chert / calc silicate, and may have led to previous descriptions of Zapopan as "BIF" hosted. Mineralisation intersected at depth, and to the east of the previous workings has included: 5.95m @ 31.15g/t, 7.4m @ 10.11g/t, 5.15m @ 23.58g/t, 1.1m @ 173.5g/t gold.

Detailed geotechnical logging of core drilled in 1999 indicated that the North Slide (also known as the Axial Planar Shear) is generally less than two metres wide.
Rocks within the Slide are moderately to heavily broken over the width of the structure or alternatively, are reduced to gravelly mud. In the latter case, the structure is generally less than thirty centimetres wide.

The South Slide is a broader, less well defined structure, comprising several narrow zones of deformation over a five to ten metre interval. Deformation ranges from weakly broken zones to heavily broken and gravelly intervals.

2.2.4 Burgan Prospect

The Burgan prospect is situated between the Faded Lily and Alligator prospects on the sheared southern limb of the BKZ (Figure 3). Mineralisation is hosted in either the upper and lower argillite-greywacke units or the intervening argillite- chert, but is not continuous across the three units as seen at Alligator. Mineralisation is erratically developed over 750 metres of strike and recent RC drilling has defined more continuous shallow zones to the northeast of Alligator. Better results from the previous reporting include 3m @ 38.45, 3m @ 10.57, 3m @ 8.34, 5m @ 5 g/t Au.

2.2.5 Rising Tide Prospect

The Rising Tide prospect is situated approximately 2.5 km north of Faded Lily (Figure 3) and is well defined by a regional soil gold anomaly. Mineralisation occurs within the footwall of a south dipping shear which parallels the contact between the Zamu Dolerite and the Koolpin Formation, comprised of varying proportions of argillite, carbonaceous and pyritic/pyrrhotitic shale, chert bands, calc silicates and possible BIF.

Mineralisation is hosted by at least two sub parallel zones dipping at approximately 25° to the south. These zones lie below and have the same orientation as a bedding parallel, quartz-pyrite rich, sheared fault zone, interpreted to thrust the Koolpin to the north, over the Zamu Dolerite. This thrust is either a brittle fracture at the core of an anticline, or has caused the folding during thrusting.

The mineralised zones display quartz - limonite veining in schistose, sericitic and tourmaline-altered argillite (carbonaceous - graphitic shale), pyrite/pyrrhotite veining in fine grained amphibolite ± garnet and fluorite, and quartz - pyrite - pyrrhotite veining in garnetiferous amphibolite. Mineralisation is interpreted to be supergene enriched, and associated with structures leading from the Burnside Granite, as evidenced by the amount of tourmalinisation associated with the mineralisation. One such structure is a 330° trending cross fault, manifested on surface as a linear quartz blow, with old workings. The workings consist of two shafts with indications of copper, lead and zinc.

Near surface mineralisation, intersected within a variety of rock units has included: 8m @ 4.30g/t, 16m @ 2.32g/t and 15m @ 1.15g/t gold.
2.2.6 Homeward Bound Prospect

Homeward Bound is located 500 metres east of the old Zapopan Mine shaft and extends along strike for 200 metres. Mineralisation is hosted in argillite with minor chert, these beds dipping -65° to -75° south. Previous work consisted primarily of shallow workings over widths up to 10m, but with one shaft to approximately 30 metres with approximately 100 metres of underground development. Sampling of mine dumps in the prospect indicated values up to 5.4 g/t gold and the initial drillhole returned 2m @ 3.08 g/t Au in argillites with minor chert and trace quartz. Follow-up drilling in 1994 (McDonald, 1995) aimed towards the old workings failed to intersect mineralisation along strike. In 1996 a further follow up program targeting the eastern extension of the Zapopan mineralisation returned disappointing results, the best being 1m at 1.17 g/t.

2.2.7 John Bull Prospect

The John Bull prospect is situated approximately 4 km west of Faded Lily along the BKZ (Figure 3). The stratigraphy comprises argillites, greywackes and chert beds dipping south between -75° and -85°. Soil sampling indicates gold associated with quartz-veined greywacke-argillite, though the significant alluvial/eluvial cover means few soil samples would have penetrated the transported cover. Assay results to date from this area have been disappointing, with RC holes targeted on both old workings, geophysical and geochemical targets returning a best intercept of 3m at 0.8g/t.
3 SUMMARY OF PREVIOUS WORK

3.1 Work Completed Prior To AngloGold (Acacia Resources) Involvement

Gold was first discovered in the Brocks Creek region at the end of 1872, and by 1884 there were many Chinese working along the line between Brocks Creek and John Bull; eventually leading to the establishment of Brocks Creek Chinatown (Pederson-McClaren, 1990). By 1911 the population of Brocks Creek had dwindled following the sale of the Zapopan mine in 1902.

During the last 25 years there have been in excess of 100 different tenements within the area covered by this report. It is therefore beyond the scope of this report to discuss the exploration history associated with each tenement. However, in summary, during the 1980s and early 1990s the area was mined for eluvial gold. It was during this period that Cyprus identified a significant hard rock resource at Faded Lily and Alligator. Work included detailed drilling, geological mapping, geophysical surveying (mainly IP) and soil geochemical sampling. In April 1992 SolPac acquired a 25% interest in a group of tenements in the area owned by Cyprus and in May 1994 purchased Cyprus’ remaining 75% and undertook a pre-feasibility study of the Faded Lily and Alligator deposits.

3.2 Work Completed by AngloGold (Acacia Resources)

Period 1 Jan 1995 to 26 June 1996

Work completed by Acacia/Solpac in the first half-year of management includes the following:

- 20km of gridding
- Surveying of RC and diamond holes, drilled prior to May 1996.
- A dipole-dipole surface IP survey between the Alligator and Faded Lily prospects.
- A gradient array surface IP survey at the Rising Tide prospect.
- HQ3 diamond drilling for a total of 1823.25m
- RC drilling totalling 14 737.5m.
- Open hole percussion drilling for a total of 130m.
- Vacuum and auger geochemical sampling totalling 2657m.
- Geological mapping and structural analysis of the Faded Lily prospect.
- Geological mapping of the John Bull and Alligator prospects.
- Faded Lily and Alligator Feasibility Studies.
Period 27 June 1996 to 26 June 1997

The work completed in this reporting period is summarised below:

- Gradient array IP survey totalling 48 line km along the Brocks Creek Shear Zone.
- Ground magnetic survey within the Faded Lily pit.
- RC drilling for a total of 12,779m in 151 holes.
- Diamond drilling totalling 888m in 11 holes.
- Vacuum and posthole RAB drilling totalling 1262m and 2099m respectively.

Period 27 June 1997 to 26 June 1998

The focus of exploration for the 1997/1998 reporting period was to rapidly delineate new mineable resources. Consequently the work completed, as is summarised below, included a significant amount of reverse circulation and diamond drilling.

- 27,342m of RC drilling and 2,184m of diamond drilling, most of which was drilled at Rising Tide, Zapopan and Burgan.
- 45 samples were sent for petrographic analysis
- 4075m of vacuum drilling and 42 auger holes were completed to finalise the surface geochemical coverage of the mining leases and claims
- 38 rockchip and niche samples
- 3096m of costeans at Howley Creek and Homeward Bound
- Pit and surface geological mapping at Faded Lily, Alligator and Howley Creek.
- Aeromagnetic, radiometric and gravity surveys

Period 27 June 1998 to 26 June 1999

Sixteen vacuum based soil samples for a total of 40m were taken from John Bull, targeted on anomalous, possibly transported soils.

Costean work at Howley Creek was aimed at testing the eastern extension of the Zapopan mineralisation, and the hinge zone of the main Brocks Creek anticline at surface. To this end, 4 costeans were emplaced, for a total of 1,004m.

The John Bull prospect, which lies along strike of the main mineralised trend, at the western most point of the Mining Lease, returned several good results in both soil and vacuum testing. The results were then tested with two costeans for a total of 446m.

Exploration RC drilling (3023m) in the reporting period has focussed in four areas, at Zapopan, for the purpose of resource work, and between the Alligator and Faded Lily pits to finalise drill coverage within this area. Other prospects with RC drilling include Britannia & John Bull/Crocodile.

Five (5) diamond holes were completed at Zapopan All had RC precollars (484m) with diamond tails (396m). The drilling tested for high grade zones within the ore body, as well as the hypothesised tightly folded anticlinal hinge.
4 WORK COMPLETED FOR THE PERIOD ENDING 26 JUNE 2000

No generative exploration work was completed within the leases in the reporting period.

Rehabilitation of drill pads was carried out.

5 PRODUCTION SUMMARY

A total of 1,195,118 tonnes of ore was mined from the three working pits Alligator, Alligator East and Zapopan during the period 1st July 1999 – 30th June 2000. The total number of ounces recovered was 114,424 Oz.

6 ENVIRONMENTAL ISSUES

Environmental disturbance was kept to a minimum wherever possible. Pre-existing tracks were used and additional tracks were driven only where necessary. RC and diamond drill holes were capped immediately after drilling (above surface).

Rehabilitation at Rising Tide, John Bull, Crocodile, Burgan and Zapopan during the year includes removing bags, spreading material and capping outstanding collar holes for decommissioning works. Recontouring of drill pads was carried out as required. This work has now been completed. All rehabilitation of holes has been completed at the project.

An Environmental Register has been established and is presented in Appendix 4.

7 CONCLUSIONS

All exploration work within the tenements has been completed to a level that gives confidence that all near surface ore-bodies have been identified.

No further exploration work is intended.

Milling at the Brocks Creek Mine will be completed in October.
8 EXPENDITURE STATEMENTS

Note: due to incorrect allocation of costs in the previous period, a recovery cost is included in this years' expenditures. This is in effect a refund of costs incorrectly attributed to these tenements in the previous year.

8.1 MLN1139 - Expenditure for year ending 26th of June 2000

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staffing & Support</td>
<td>$11,464</td>
</tr>
<tr>
<td>Consumables</td>
<td>$133</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$915</td>
</tr>
<tr>
<td>Administration</td>
<td>$1,877</td>
</tr>
<tr>
<td>Recovery*</td>
<td>-$240</td>
</tr>
<tr>
<td>Total</td>
<td>$14,150</td>
</tr>
</tbody>
</table>

Tenement $25

8.2 Coppertop (MLN176) - Expenditure for year ending 4th of March 2000

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staffing & Support</td>
<td>$405</td>
</tr>
<tr>
<td>Consumables</td>
<td>$5</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$97</td>
</tr>
<tr>
<td>Administration</td>
<td>$76</td>
</tr>
<tr>
<td>Recovery*</td>
<td>-$21</td>
</tr>
<tr>
<td>Total</td>
<td>$583</td>
</tr>
</tbody>
</table>

8.3 Nirvana (MCN’s 4689–4697) – Expenditure for year ending 5th Nov 2000

Actual up until 20th September 2000.

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staffing & Support</td>
<td>$307</td>
</tr>
<tr>
<td>Consumables</td>
<td>$48</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$3</td>
</tr>
<tr>
<td>Administration</td>
<td>$54</td>
</tr>
<tr>
<td>Recovery*</td>
<td>-$697</td>
</tr>
<tr>
<td>Total</td>
<td>-$285</td>
</tr>
</tbody>
</table>

Tenement $467
8.4 Utopia (MCN’s 4701 – 4703) – Expenditure for year ending 5th Nov 2000

Actual up until 20th September 2000.

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staffing & Support</td>
<td>$89</td>
</tr>
<tr>
<td>Consumables</td>
<td>$2</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$1</td>
</tr>
<tr>
<td>Administration</td>
<td>$14</td>
</tr>
<tr>
<td>Recovery*</td>
<td>-$238</td>
</tr>
<tr>
<td>Total</td>
<td>-$132</td>
</tr>
</tbody>
</table>

Tenement $159

8.5 Howley Ck (MCN’s 4863–4871) Expenditure for year ending 13th Feb 2000

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staffing & Support</td>
<td>$859</td>
</tr>
<tr>
<td>Consumables</td>
<td>$47</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$81</td>
</tr>
<tr>
<td>Administration</td>
<td>$148</td>
</tr>
<tr>
<td>Recovery*</td>
<td>-$1,143</td>
</tr>
<tr>
<td>Total</td>
<td>-$7</td>
</tr>
</tbody>
</table>

8.6 South Bull (MCN’s 4895–4899) Expenditure for year ending 27th April 2000

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staffing & Support</td>
<td>$409</td>
</tr>
<tr>
<td>Consumables</td>
<td>$9</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$45</td>
</tr>
<tr>
<td>Administration</td>
<td>$70</td>
</tr>
<tr>
<td>Recovery*</td>
<td>-$350</td>
</tr>
<tr>
<td>Total</td>
<td>$183</td>
</tr>
</tbody>
</table>

Tenement $947
9 REFERENCES

Buskas, A. J., 1995, Some notes on the geology, and recommendations for the Brocks Creek project, N.T. (unpubl. report - 08.)

Clarke, N., & Dunn, M., May 1997, Acacia Resources Limited, Interpretation of the Zapopan Prospect (Unpubl. report - 08.8878)

Hy, C., 1993 (by ERA - Maptec for Cyprus Gold). A Structural Interpretation of the Brocks Creek Area Using Multiple Data Sets (Unpubl. report - 08.8730).

Hungerford N., Jan. 1997, (by Hungerford Geophysical Consultants for Acacia), Brocks Creek NT - Interpretation of IP and Aeromagnetic Surveys for Acacia Resources (Unpubl. report 08. 8725)

Dr Kitto P., Nov 1996 (of codes for Acacia), Structural Examination of the Brocks Creek Gold Mine - Faded Lily Pit (Unpubl. report - 08.8738)

McDonald S., April 1995, Solomon Pacific, Brocks MLA 1139, Report on Exploration of MLA 1139 for the period 1/1/94 to 31/12/94 (Volumes 1-8), (Unpubl. report - 088374).

Smith, B., (of Rocksearch for SOLPAC), Dec. 1995, Structural Geology of the Faded Lily Deposit, Brocks Creek. Analysis of Data from Surface Mapping and orientated Drillcore (unpubl - 08.8418)

APPENDIX 1

Geological Logging Codes
AngloGold Australasia - Geological Logging Codes

<table>
<thead>
<tr>
<th>RETURN (RTN)</th>
<th>TEXTURE Ctd. (TEXT)</th>
<th>REGOLITH (REGO)</th>
<th>ROCKTYPE Ctd. (MAJ, MIN1, MIN2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Of Return</td>
<td>Metamorphic</td>
<td>BR Bedrock (fresh)</td>
<td>Metamorphic Ctd</td>
</tr>
<tr>
<td>WATER (H2O)</td>
<td>CR Crenulated</td>
<td>LS Lower Saprolite</td>
<td>PH Phyllite</td>
</tr>
<tr>
<td></td>
<td>MY Mylonitic</td>
<td>RX Redox Front</td>
<td>QC Quartz Carbonate</td>
</tr>
<tr>
<td></td>
<td>PB Porphroblastic</td>
<td>SA Saprolite (undifferentiated)</td>
<td>QMS Quartz Mica Schist</td>
</tr>
<tr>
<td></td>
<td>SC Schistose</td>
<td>TL Laterite</td>
<td>GT Quartzite</td>
</tr>
<tr>
<td></td>
<td>SP Spotted</td>
<td>TR Transported</td>
<td>SC Schist</td>
</tr>
<tr>
<td></td>
<td>Igneous</td>
<td>US Upper Saprolite</td>
<td>SL Slate</td>
</tr>
<tr>
<td></td>
<td>AC Acicular</td>
<td>WB Weathered Bedrock</td>
<td>SSM Metasediment</td>
</tr>
<tr>
<td></td>
<td>AM Amygdaloidal</td>
<td></td>
<td>TM Tourmalinite</td>
</tr>
<tr>
<td></td>
<td>AN Anaphitic</td>
<td></td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>EO Equigranular</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PO Porphyrinic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PW Pillows</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BO Boxwork</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BX Breciated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FD Folded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FO Foliated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FR Fractured</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LI Linedate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RO Rosetted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH Sheared</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SL Slickenslides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CX Crystalline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO Competant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FB Fibrous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GO Gossanous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS Massive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PT Platy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS Porous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SA Saccaroidal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SB Solution Bands</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRAINSIZE (Gn_SZ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VF Very Fine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FN Fine - not visible to naked eye</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MD Medium - visible to naked eye</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS Coarse - >2mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VC Very Coarse (pebble)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WEATH (Weathering) (WTH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EW Extremely weathered with poor textural preservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HW Highly weathered with moderate textural preservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW Moderately weathered with good textural preservation preservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SW Slightly weathered with < 20% oxides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FR Fresh Bedrock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sedimentary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IB Interbedded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LM Laminated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LY Layered</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ST Strong</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MD Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WK Weak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SSM Metasediment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROCKTYPE Ctd. (MAJ, MIN1, MIN2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AM Amphibolite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMS Biotite Mica Schist</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GN Gneiss</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HF Hornfels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MB Marble</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metamorphic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phylolite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINERALS (ALTER, VEIN_MIN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AB Albite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AD Andalusite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AM Amphibole</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AS Arsenopyrite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AT Alter (undiff)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU Gold</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BI Biotite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BL Bleaching (cb-si)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB Carbonate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH Chlorete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CL Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO Cordierite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CW Clay Weathering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP Epidote</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FE Iron</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FL Fluorine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA Garnet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GN Green Alteration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GP Graphite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GT Goethite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HM Haematite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KA Kaolinite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KS K-Feldspar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KY Kyanite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Li Limonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LX Leucocene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MI Mica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MN Manganese</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MT Magnetite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU Muscovite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PH Phlogopite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL Plagioclase</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PO Pyrrhotite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PY Pyrite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QZ Quartz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SE Sericite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI Silica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SR Siderite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC Talc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TE Tremolite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TM Tourmaline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZE Zeolite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revised 13/06/2000 x:\ Technical\Computin\Geology Logging Codes.xls
AngloGold Australasia - Geological Logging Codes

ALT QUAL (QUAL)
- Qualifier
 - TR Trace
 - WK Weak
 - MD Moderate
 - ST Strong
 - IN Intense
 - DM Disseminated
 - PV Pervasive
 - PT Patchy
 - SV Selvedge
 - VN Vein

MINERALISATION (OTHER MIN)
- AZ Azurite
- AU Gold
- BI Biotite
- BO Bornite
- CB Carbonate (undiff)
- CN Native Copper
- GR Garnet
- GT Goethite
- HM Haematite
- MA Malachite

STRUCTURAL DEFECTS (Geotech)
- AXP Axial Plane
- BG Bedding Parting
- BK Broken Zone
- CV Cleavage
- CN Contact
- CR Crushed Seam
- DC Decomposed Zone
- DK Dyke
- FA Fold Axis
- FD Fold
- FG Fragmented Zone
- FH Fold Hinge
- FC Fractured Zone
- FT Fault
- FT1 Early Fault
- FT2 Late Fault
- FTM Minor Fault
- FTL Fault Large
- FV Fractured Vein
- IF Infill Zone
- LI Lineation
- JN Joint
- SC Schistosity
- S0 Bedding
- S1 Earliest Schistosity
- S2 Second Earliest Schistosity
- SH Share Zone
- VS Vein Stockwork
- VN Vein
- VB Brecciated Vein

ROUGHNESS (Geotech)
- SK Slickensided
- PO Polished
- RO Rough
- SM Smooth

BROKEN ZONE (Geotech)
- D Drill Induced
- H Heated
- N Natural

FRACTURING (Geotech)
- WF Weak, core pieces 1m-200m
- MF Mod. core pieces 10-20cm
- SF Strong, core pieces 5-10cm
- BK Broken core, 25 cm pieces

SHAPE (Geotech)
- PL Planar
- CU Curved
- UN Undulose
- ST Stepped
- IR Irregular

VEIN STYLE (VN_STYLE)
- BK Buck
- BX Breccia
- CB Comb
- CH Chaledonic
- FB Fibrous
- LM Laminated
- MI Milky
- RB Ribbon
- SA Saccharoidal
- SM Smoky
- ST Stringer
- SW Stock Work
- TR Translucent

SULPHIDES (OTHER SULPH)
- AS Arsenopyrite
- CC Chalcocite
- CP Chalcopyrite
- CU Cuprite
- CV Covellite
- GA Galena
- MF Fine Black Mineral
- MN Manganese
- PO Pyrrhotite
- PY Pyrite
- SP Sphalerite

INFILL (Geotech)
- KL Clean
- LM Limonite
- HM Haematite
- OZ Quartz
- CL Clay
- TL Talc
- CB Carbonate
- CH Chlorite
- EP Epidote
- SU Sulphide
- RF Rock Fragments
- RC Rock Frag & Clay Mixtures

ROCK STRENGTH (Geotech)
- S1 Very Soft Soil
- S2 Soft Soil
- S3 Stiff Soil
- S4 Hard Soil
- S5 Transitional Rock/Soil
- R1 Very Low Rock Strength
- R2 Low Rock Strength
- R3 Medium Rock Strength
- R4 High Rock Strength
- R5 Very High Rock Strength

Revised 13/06/2000

x:\Technical\Computin\Geology Logging Codes.xls
APPENDIX 2

Environmental Register
TENEMENT ENVIRONMENTAL MANAGEMENT REGISTER
LAND STATUS RECORD

Project: Brocks Creek Project

Tenement Name: Brocks Creek Mining Lease

Loc. Code: BC01

Tenement No’s: MLNs 176 & 1139
MCNs 4689-4697, 4701-4703, 4863-4871 & 4895-4899

Registered Holder(s): AngloGold Australasia Limited.

Date Granted: 26/09/95

Bond/Security: None

JV Partners (if any): None

Land Classification: (Crown, Private, Lease) Pastoral lease

Land Holder/Occupier: Britts Australia Pty. Ltd.
Manager: Lyn Edwards

Address: Ban Ban Springs Station
Fountainhead Road
Via Hayes Creek
N.T.

Phone: (08) 8978 2438

Date: 1995

Contacted By: Solomon Pacific resources N.L

Station: Ban Ban Springs

Land Holder/Occupier: Tovehead Pty Ltd.

Address: Douglas Station
Daly River

Phone: (08) 8978 2408

Date: 1995

Contacted By: Solomon Pacific resources N.L

Pastoral Notes: (Stock, Cultivation, Access, Rainfall)
The land to the north of the abandoned railway is part of Ban Ban Springs Station. A “deed of Licence” was established between Ban Ban Springs Station Pty Ltd and Solomon Pacific Resources N.L.

Environmental Notes: (Flora/Fauna, Erosion, Bushfires, Flooding)
region subject to flooding during wet season, and periodic burning off is conducted at the start of the dry season by station management.

Groundwater: (Bores/Wells/Dams, streams, drainage, test data)
There are numerous seasonal creeks in the tenement and numerous water bore have been drilled for the mining operations.
Aboriginal Notes: (Sacred Sites, Cultural)
No registered sacred sites have been recorded in this tenement. An Authority Certificate has been issued by the Aboriginal Areas protection Authority for the tenement, and this is valid until 16th September, 1999 (ie. 2 years after the date of issue, 16/09/97).

Historic Relics: (Mine Workings, Equipment, Homesteads etc.)
There are many “old workings” scattered throughout the tenement, dating back to the turn of the century. The remains of an old Chinese temple exists between the Faded Lily and Alligator pits. The remnants of the old Brocks Creek township are also situated around the tenement. Details of these areas of archaeological significance are documented in the Environmental Impact Statement (report ref No. 08.8350).

Previous Activity: (Mining, Exploration, Forestry, etc.)
The Brocks Creek area has an extensive history of mining and exploration, dating back to the late 1880s.
TENEMENT ENVIRONMENTAL MANAGEMENT REGISTER
PRE-EXISTING ENVIRONMENTAL DISTURBANCE RECORD

Tenement Name: Brocks Creek Mining Lease

No(s): MLNs176 &1139 MCNs 4689-4697, 4701-4703, 4863-4871 & 4895-4899

Exploration Activity Area: Brocks Creek Mining Lease

Shafts/Pits/Dumps: Innumerable

Track/Access: Well maintained access and property boundary tracks, fire breaks and old exploration tracks provide access within the tenement

Line Clearing: Several grids were used by previous owners and explorers in the region for geological, geochemical and geophysical surveys. These were mainly hand cleared when required and have rehabilitated naturally, as minimal impact was experienced. Active grids are maintained and marked by steel fence droppers or wooden stakes.

Costeaneing: Only costeans excavated since the 1980s have been rehabilitated.

Drill Sites: Auger & Vacuum drill holes were backfilled upon completion and RAB holes capped with a “spider plug” and then backfilled at the completion of each hole. RC and diamond holes from previous years have been rehabilitated.

Other: None

Location Data: 1:100, 000 Sheet Batchelor

Other Ref: 08.8416 08.8118

Compiled by: Helen Clark Date: 16/10/97
TENEMENT ENVIRONMENTAL MANAGEMENT REGISTER
ANGLOGOLD ENVIRONMENTAL IMPACT RECORD

Tenement Name: Brocks Creek Mining lease
No(s): MLNs176 &1139, MCNs 4689-4697, 4701-4703, 4863-4871 & 4895-4899
Report Ref No's: 08.10951(this report), 08.10565, 08.9636, 08.8944, 08.8416, 08.8118, 08.8350, 08.8374

Exploration Activities:
1994-June 1997: Extensive exploration and mining activities within the tenement.
June 1997-1998: Extensive exploration and mining activities within the tenement.
1998 – 1999: Extensive exploration and mining activities within the tenement.

Soil Sampling: None collected in the period
Costeans / Pits: All mining has been completed, leaving 4 pits – Zapopan, Faded Lily, Alligator East and Alligator
Drilling: None in the reporting period
Drill Pads: N/A
Access Tracks: Pre existing tracks were used where possible.
Camps: The old exploration camp is now used as a core shed. Accommodation is off-site.

Other: None

Compiled by: Jane Ham Date: 11/09/98
Revised by: Penny Large Date: 5/10/99
Damien Stephens Date: 20/9/00
TENEMENT ENVIRONMENTAL MANAGEMENT REGISTER
ANGLOGOLD REHABILITATION RECORD

Tenement Name: Brocks Creek Mining lease

No(s): MLNs176 &1139, MCNs 4689-4697, 4701-4703, 4863-4871 & 4895-4899

Disturbance: Significant
Rehabilitation: Ongoing Date: 20/9/00

Grids & Traverses: All grid pegs to be removed when ground relinquished.

Soil Sampling: Minimal environmental impact; soil sampling holes backfilled upon completion

Costeans/Pits: Infilled at the end of the field season.

Drilling: RC hole rehabilitation completed. All drill holes are capped
 30cm below the surface and samples bagged removed to the
 sample farm.

Drill Traverses:

Drill Pads: Drill pads were ripped and recontoured to encourage natural
 regrowth of vegetation.

Ground Geophysics: N/A

Access Tracks: Existing tracks were used where possible.

Camps: Cosmo Village now used as camp.

Other: None

Inspected / Clearance: NTDME/landholder (at end of tenure)

Bond/Security released:

Compiled by: Jane Ham Date: 11/09/98
Revised by: Penny Large Date: 05/10/99
 Damien Stephens
 20/09/00

Follow-up Inspection Report: To be completed at end of tenure.