

METALS EXPLORATION | INDUSTRIAL MINERALS | ENERGY RESOURCES | QUARRY SERVICES

Bulman Zinc - Lead Project Northern Territory

Report on Drilling Program June-July 2008

EL23814 and MLN726 & MLN727

Geos Mining Project 2212

Project Commissioned by Bulman Resources Pty Ltd

Nikhil Sharma MSc, MAusIMM Geologist

Geos Mining

25 September, 2008

SUMMARY

Admiralty Resources NL holds EL23814, EL25931, MLN 726 and MLN 727, collectively known as the Bulman Prospect, in Arnhem Land, Northern Territory. The region is considered to be prospective for carbonate hosted stratabound Zn-Pb deposits.

An initial drilling program, consisting of 41 RC drillholes totalling 670m, was completed in July 2008. 26 holes (255m) were completed on the two MLNs and 15 holes (415m) were completed on EL23814.

Assays of the drill chip samples have defined mineralised zones of up to 11 metres in several drillholes on the Mining Leases. The results indicate the occurrence of localised mineralisation at shallow depths in dolomitic carbonates. However, this near-surface mineralisation has limited tonnage potential. Deeper drilling to test beneath the dolerite sill is recommended.

Drilling on EL23814 detected narrow lenses of moderate grade Zn-Pb mineralisation. The zones appear to be localised and the tonnage potential is limited. Parts of the proposed program were deleted due to access problems. These areas need to be reviewed to determine whether further drilling is warranted.

Disclaimer

While every effort has been made, within the time constraints of this assignment, to ensure the accuracy of this report, Geos Mining accepts no liability for any error or omission. Geos Mining can take no responsibility if the conclusions of this report are based on incomplete or misleading data.

Geos Mining and the authors are independent of Admiralty Resources and have no financial interests in any associated companies. Geos Mining is being remunerated for this report on a standard fee for time basis, with no success incentives.

CONTENTS

SUMMARY	······································
INTRODUCTION	1
LOCATION AND ACCESS	1
GEOLOGICAL SETTING	2
REGIONAL GEOLOGYBULMAN PROSPECT GEOLOGY	
PREVIOUS EXPLORATION	
DRILLING PROGRAM 2008	
DRILLHOLES COMPLETED SAMPLING PROCEDURES DRILL SITE PREPARATION REHABILITATION DRILLING RESULTS	3 6 6
XRF ANALYSIS	8
ASSAY RESULTS	9
COMPARISON BETWEEN XRF AND ICP ASSAYS	10
	11
CONCLUSIONS	10
	12
REFERENCES	
REFERENCESAPPENDIX 1: COMPLETED DRILLHOLES AT BULMAN	13
REFERENCESAPPENDIX 1: COMPLETED DRILLHOLES AT BULMANAPPENDIX 2: BULMAN XRF AND ASSAY RESULTS	13
REFERENCES	1314111
APPENDIX 1: COMPLETED DRILLHOLES AT BULMAN	1314111
REFERENCES	1411
REFERENCES	1411

INTRODUCTION

Admiralty Resources NL, through its subsidiary Bulman Resources Pty Ltd, holds EL23814, EL25931, MLN 726 and MLN 727, collectively known as Bulman Prospect, in Arnhem Land, Northern Territory (Figure 1). Bulman Resources considers the region to be prospective for carbonate hosted stratabound Zn-Pb deposits.

Geos Mining was commissioned to supervise a RC drilling program on the Bulman Prospect during June-July, 2008. Drilling supervision was undertaken by geologists Aslan Perwick and Nikhil Sharma.

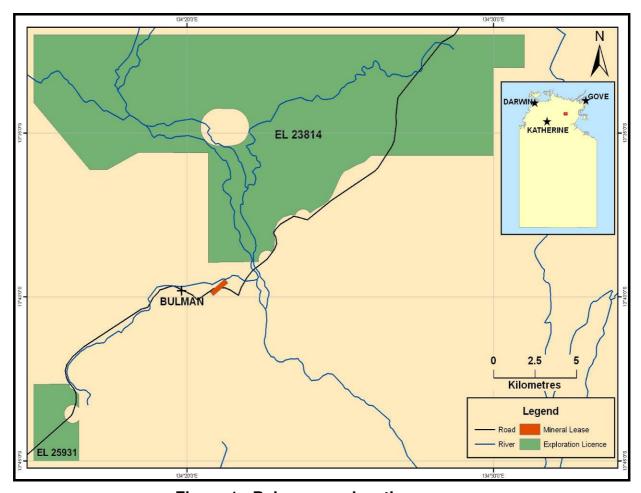


Figure 1: Bulman area location map

LOCATION AND ACCESS

The Bulman Prospect is located 310 kilometres by road northeast of Katherine in the Northern Territory. The leases are centred on the Aboriginal community of Bulman (Figure 1) and lie wholly within the Arnhem Land Aboriginal Reserve.

Access to Bulman is via the partially sealed Central Arnhem Road, which is the main access road to Gove and Nhulunbuy. Access within the tenements is restricted to a small number of rough bush tracks.

GEOLOGICAL SETTING

Regional Geology

The Bulman area lies within the northwest portion of the Paleo-Mesoproterozoic sequence of the McArthur Basin. The formations comprise dolostone and sandstone belonging to the Roper Group (Limmen Sandstone, Mainoru Formation) and the Mt Rigg Group (Dook Creek Formation) (Figure 2). The area has been intruded by the Derim Derim dolerite.

Apart from contact metamorphic effects, the region does not show any evidence of regional metamorphism. The most prominent structure in the region is the northwest-trending Bulman Fault, which can be traced over a distance of 300km. The Bulman Fault is a major basement feature that was reactivated several times during the Proterozoic (Wygralak, 1993). Second generation faulting, possibly reflecting Phanerozoic tectonism (Nasca, 1969), has north-south trends and a third set of faults (probably the youngest) strikes east-northeast. Primary base metal mineralisation has been associated with this set of faults (Nasca, 1969).

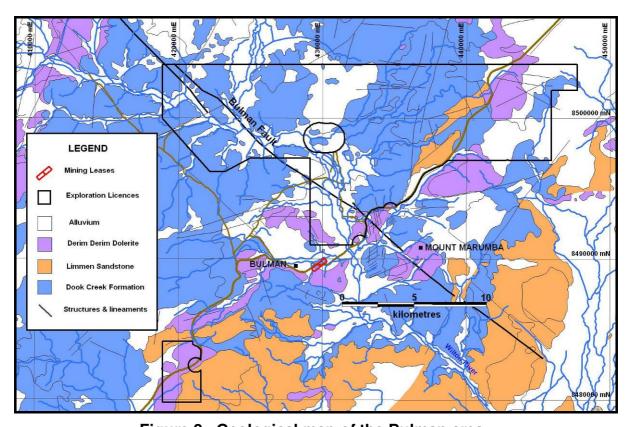


Figure 2: Geological map of the Bulman area.

Bulman Prospect Geology

The Bulman Prospect host rocks consist of flat-lying or gently dipping laminated dolomitic limestone, chert, fine sandstone and chert breccia of the Dook Creek Formation (Wygralak, 1993). The sediments are intruded by sills of Derim Derim Dolerite, which attain thicknesses up to 125m.

The mineralisation style is a carbonate-hosted stratabound Zn-Pb deposit. This type of deposit consists of carbonates with lens-like deposits of galena, sphalerite and chalcopyrite. The carbonates typically have primary and / or secondary porosity from karst formations.

Almost all mineralisation occurs in carbonate rocks showing contact metamorphic effects (Wygralak, 1993) within 50m of the intruding dolerite sills. Wygralak defined three styles of mineralisation:

- Small but rich pods of high grade galena and sphalerite that follow fractures or karst-related cavities along bedding planes and terminate at shallow depths, possibly at the base of the palaeokarst corrosion.
- Surface crusts of high grade zinc mineralisation 0.3 to 0.6m thick. The crust ore is light brown in colour, highly porous and consists of cerrusite, smithsonite, galena, hydrozincite and willemite.
- Sub-surface stratiform mineralisation occurring in several horizons, making up the bulk of the base metal resource at Bulman. The mineralisation consists of low iron sphalerite, galena and traces of chalcopyrite.

PREVIOUS EXPLORATION

The Bulman Zn-Pb deposits have been the subject of several previous investigations, notably Western Nuclear and Enterprise Exploration Co Pty Ltd (EEC).

The exploration consisted of active exploration from 1952 to 1962 by EEC, including eight drillholes, and sixteen completed by Western Nuclear, five completed in 1968 and eleven in 1969.

MLNs 726 and 727 were discovered by EEC in 1954. The reports on these areas by Sturmfels describe exploration done on the area as only geological mapping and grab sampling but no drilling.

Admiralty Resources conducted an airborne magnetics and radiometrics survey over EL23814 and the MLNs in 2007. Soil and rock chip sampling was also completed to define drilling targets.

DRILLING PROGRAM 2008

Drillholes completed

The drilling program undertaken on MLNs 726 & 727 (Figure 3) and EL23814 (Figure 4) at Bulman, Northern Territory, consisted of 41 holes of slimline (100mm) RC drilling totalling 670 metres (Table 1). The drilling was carried out during June-July 2008 by Australian Mineral & Waterwell Drilling Pty Ltd (AMWD) using a 4x4 mounted Air-Core / Slim-Line RC Rig (Photo 1). Geos Mining geologists Aslan Perwick and Nikhil Sharma supervised the drilling and logged the drill chips.

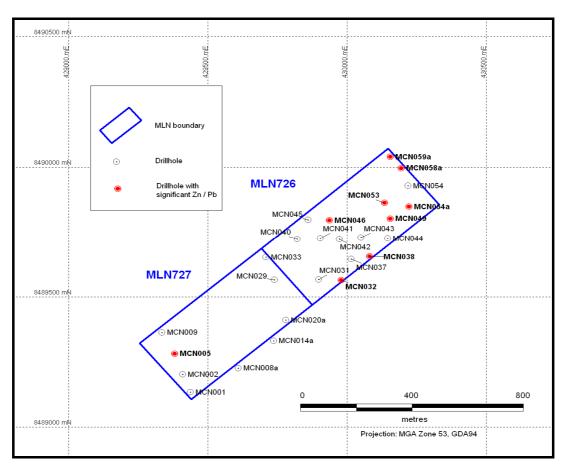


Figure 3: MLN drillhole locations

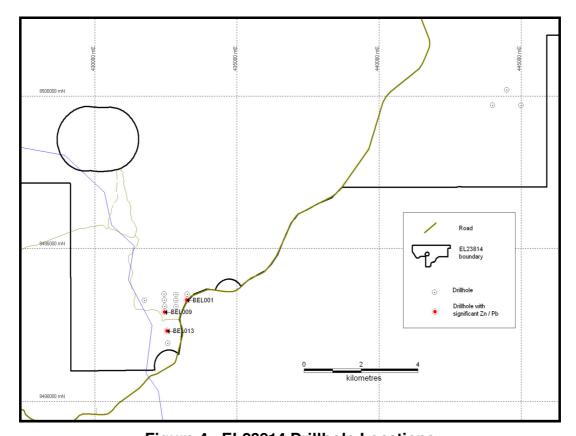


Figure 4: EL23814 Drillhole Locations

Hole No.	East MGA94, Zn53	North MGA94, Zn53	RL (m)	Azimuth (grid)	Dip	Length (m)	Tenement	Date
BEL001	433241	8493305	106	000	-90	31	EL23814	6/07/2008
BEL002	433252	8493499	123	000	-90	42	EL23814	5/07/2008
BEL003	432852	8493301	109	000	-90	17	EL23814	4/07/2008
BEL004	432850	8493097	96	000	-90	8	EL23814	4/07/2008
BEL005	432442	8493512	98	000	-90	18	EL23814	4/07/2008
BEL006	432853	8493490	114	000	-90	18	EL23814	8/07/2008
BEL007	431740	8493295	94	000	-90	31	EL23814	8/07/2008
BEL009	432462	8492916	100	000	-90	18	EL23814	4/07/2008
BEL010	432455	8493112	99	000	-90	8	EL23814	9/07/2008
BEL011	432446	8493310	104	000	-90	15	EL23814	4/07/2008
BEL013	432543	8492299	112	000	-90	56	EL23814	8/07/2008
BEL014	432568	8491900	103	000	-90	59	EL23814	6/07/2008
BEL027	445001	8499702	154	000	-90	22	EL23814	15/07/2008
BEL030	444503	8500201	165	000	-90	30	EL23814	16/07/2008
BEL033	444001	8499703	156	000	-90	42	EL23814	14/07/2008
MCN001	429437	8489133	110	000	-90	6	MLN727	2/07/2008
MCN002	429410	8489202	109	000	-90	4	MLN727	2/07/2008
MCN005	429380	8489281	111	000	-90	8	MLN727	2/07/2008
MCN008a	429609	8489226	111	000	-90	14	MLN727	2/07/2008
MCN009	429336	8489363	104	000	-90	9	MLN727	3/07/2008
MCN014a	429736	8489331	112	000	-90	11	MLN727	2/07/2008
MCN020a	429780	8489410	116	000	-90	14	MLN727	2/07/2008
MCN029	429739	8489565	112	000	-90	12	MLN727	1/07/2008
MCN031	429898	8489567	104	000	-90	9	MLN726	1/07/2008
MCN032	429978	8489563	107	000	-90	9	MLN726	1/07/2008
MCN033	429709	8489652	108	000	-90	7	MLN727	3/07/2008
MCN037	430015	8489646	105	000	-90	15	MLN726	26/06/2008
MCN038	430081	8489656	106	000	-90	27	MLN726	27/06/2008
MCN040	429821	8489723	102	000	-90	5	MLN726	10/07/2008
MCN041	429904	8489726	104	000	-90	7	MLN726	10/07/2008
MCN042	429973	8489723	105	000	-90	10	MLN726	10/07/2008
MCN043	430050	8489728	106	000	-90	11	MLN726	10/07/2008
MCN044	430146	8489725	109	000	-90	5	MLN726	3/07/2008
MCN045	429861	8489797	100	000	-90	2	MLN726	27/06/2008
MCN046	429936	8489795	102	000	-90	6	MLN726	30/06/2008
MCN049	430155	8489802	107	000	-90	12	MLN726	3/07/2008
MCN053	430134	8489862	111	000	-90	14	MLN726	3/07/2008
MCN054a	430222	8489848	104	000	-90	9	MLN726	1/07/2008
MCN054	430219	8489928	100	000	-90	11	MLN726	1/07/2008
MCN058a	430195	8489996	100	000	-90	9	MLN726	30/06/2008
MCN059a	430155	8490039	98	000	-90	9	MLN726	30/06/2008

Table 1: Bulman drillholes completed

The proposed program involved 95 drillholes in total: 59 on the Mining Leases and 36 on EL23814 in three areas (Sawyer, 2008). This program was significantly modified as a result of the underlying dolerite being intercepted at much shallower levels than expected and access problems due to wet weather and terrain difficulties. Drilling difficulties were encountered in most holes due to the rig being unable to penetrate the harder strata and the downhole hammer occasionally getting stuck in soft clayey weathered material.

26 scout holes (totalling 255m) were drilled on MLN726 & MLN727 on a nominal 75 x 75 metre grid pattern, mainly targeting old workings and known mineralisation. Several holes were terminated at shallow depths as they either passed into the dolerite sill(s) that underlie the prospective carbonate horizons or the lack of mineralisation in the prospective strata.

Photo 1: Drilling on EL23814

Scout drilling of 15 holes (totalling 415m) was completed on EL23814 (Figure 4). Access problems prevented completion of the remainder of the proposed holes.

Sampling procedures

RC chips were collected from a cyclone and processed through a three-tier splitter to produce a sample of approximately 2kg for analysis (Photo 2).

A small scoop of each RC chip sample was collected and wet sieved in a kitchen strainer to produce a sample for logging and storage in chip trays.

Drill Site Preparation

All drill holes and tracks were prepared with the Ranger front-end loader hired from the Gulin Gulin Community Council. The loader was of small-medium size with a bucket ~3m wide.

Locations were determined onsite with every consideration for the environment. Drill pad locations were commonly altered to avoid large trees, outcrop, streams, steep topography, buildings/fences and roads/tracks. Tracks were wriggled through

vegetation, only removing flora and termite mounds when no other reasonable option was left.

Drill pads were typically rectangle shape and rarely larger than 9m x 12m. This equated to 3 bucket scrapings in width and twice the length of the drill rig. Tracks between pads were a single bucket width and, wherever terrain allowed, the bucket was raised and only tyre width tracks were left.

No stream beds were filled as agreed before clearing, however streams were occasionally crossed to reach certain drill locations.

Photo 2: Three-tier splitter used at Bulman

Rehabilitation

Only a small volume of the drill sample was removed from site for testing, the remainder was left on ground adjacent to the drill pad. This method was selected to ensure no bags of excess sample were left onsite after completion of the program.

Drilling results

Drill chip logging indicated thin zones of shallow flat-lying Zn-Pb mineralisation hosted by dolomitic and calcareous sediments in some of the Mining Lease holes. Rich galena mineralisation was also observed in and near the old workings on these

leases (Photo 3). The drilling results show this mineralisation is localised in favourable near-surface zones in dolomitic carbonates. Several holes were collared beneath the prospective dolomite unit and passed directly into underlying calc-silicate hornfels or dolerite. Because of the capacity of the drill rig, it was unable to drill through the dolerite sill to test for underlying mineralisation.

Two of the scout holes on EL23814 intersected mineralisation up to 3 metres thick (Table 2) in calc-silicate hornfels (BEL001: 15-18m) and carbonates (BEL009: 0-3m). Other drill holes intersected thin lenses of mineralisation, but with no significant values.

Photo 3: Rich galena mineralisation near an old working

Drill logs have been entered into Excel spreadsheets that accompany this report.

XRF ANALYSIS

An Innov-X Systems portable XRF analyser was used to produce preliminary results from the samples of drill chips. Significant XRF results are tabulated in Table 2. (Note: because of the nature of the sampling and analytical procedure, these results can only be regarded as indicative).

The Innov-X Systems XRF Analyser is a point source analyser that can analyse soil, rock and drillholes and give an instantaneous breakdown of the elements present.

The instrument can be set on to 1 of 2 settings with the first being analysis to a ppm level (Bulk Analysis) and the second being to a % level (Industrial Bulk Analysis). The second setting is usually used for high grade samples.

The RC chip samples collected were analysed on the Bulk analysis setting (ppm) with a sampling time of 30 seconds. The readings were taken on samples inside the chip trays to avoid contamination between samples. Readings ranged up to 42.8% Zn, 86.1% Pb (obviously an error), 5.4 ppm Ag and 0.11% Cu. On the basis of the XRF results, selected intervals of RC chips were sent to NTEL Laboratories in Darwin for assaying.

ASSAY RESULTS

Assaying was done at NTEL laboratories, Darwin, using methods ICP-MS and ICP-OES for Al, Ag, Ca, Cd, Co, Cu, Fe, Mg, Mn, Mo, Na, Ni, Pb, V, Zn and Ti. Assays ranged up to 25.2% Zn, 9.1% Pb, 163 g/t Ag and 0.06% Cu. Appendix 2 presents the results for Zn and Pb.

Several significant mineralised zones were intersected in holes drilled on the MLNs (Table 2). Most of these intervals were from the surface, but continuity between adjacent holes was not consistent. The mineralised zones are interpreted to have formed narrow pods and lenses.

The assay results from holes drilled in EL23814 have indicated mineralised zones up to 3 metres in thickness (Table 2) in holes BEL001 and BEL009. (The significant Pb XRF result for BEL013 was not repeated in the ICP assays, suggesting that the XRF reading may have been biased by a small patch of galena). Thin intervals of low values were intersected in other holes (Appendix 2). The results suggest flat-lying shallow Pb-Zn mineralisation in dolomitic and calcareous sediments overlying volcanics / dolerite. These zones do not appear to be laterally extensive.

Hole	Tenement	From (m)	To (m)	Interval (m)	XRF-Zn %	XRF-Pb %	ICP-Zn %	ICP-Pb %
BEL001	EL23814	15	18	3	6.56	-	11.63	5.02
BEL009	EL23814	0	3	3	2.22	0.11	2.37	0.16
BEL013	EL23814	21	22	1	-	3.93	-	-
MCN005	MLN727	5	8	3	1.03	-	0.22	-
MCN008a	MLN727	8	11	3	0.21	-	0.17	-
MCN032	MLN726	0	4	4	1.12	-	0.14	0.21
MCN040	MLN726	0	3	3	0.29	-	0.49	0.19
MCN046	MLN726	0	4	4	1.76	-	1.76	0.19
MCN049	MLN726	0	9	9	6.24	-	1.59	-
MCN053	MLN726	0	11	11	0.39	-	0.16	-
MCN054a	MLN726	0	8	8	2.89	-	2.20	0.16
MCN058a	MLN726	0	9	9	0.82	-	1.14	-
MCN059a	MLN726	1	9	8	1.17	-	1.28	-

Table 2: Significant XRF and ICP assay results

- = < 0.1%

Comparison between XRF and ICP Assays

All the samples were analysed on site using the Innov-X Systems portable XRF analyser. Selected samples were then sent to the NTEL in Darwin for assays using ICP-MS and ICP-OES.

A comparison of the two sets of data has found reasonable correlation (Figure 5) although the relative difference could be in excess of 100-fold for some pairs of values. In fact, around 20% of paired results had relative differences in excess of 10-fold. With this in mind, the XRF readings can only be regarded as indicative of zones of mineralisation and not definitive of the true grades.

Hole BEL013 returned 1m @ 3.93% Pb in XRF readings but the corresponding ICP assay was less than 0.1% Pb.

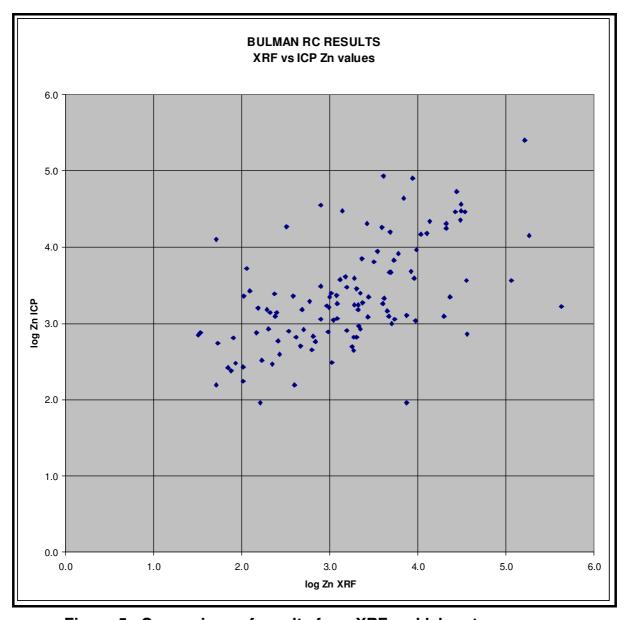


Figure 5: Comparison of results from XRF and laboratory assays

CONCLUSIONS

Scout drilling over the Mining Leases has indicated flat-lying shallow Zn/Pb mineralisation in localised zones. Some of these zones contain high grade Zn mineralisation but the tonnage potential of the near surface mineralised zones is limited.

No attempt was made to drill through the dolerite to test the potential under the sill due to the constraints of the capacity of the drill rig. A few deep holes are recommended to check the lithology and potential mineralisation under the dolerite.

Drilling on EL23814 located narrow zones of moderate grade Zn-Pb mineralisation. However, continuity between holes was poor and the zones are interpreted to be narrow localised lenses with negligible tonnage potential.

Access problems prevented the full proposed program being completed. In light of these drilling results, the unfinished component of the proposed program needs to be reviewed to determine whether further drilling is warranted.

REFERENCES

- Nasca, S, (1969). Bulman A.P.2188 Northern Territory. Summary report to end of 1969. Western Nuclear (Australia) Pty Ltd.

 Northern Territory Mines Branch Report CR19790134
- Sawyer, L (2008) Bulman Project. EL 23814, MLN 726, MLN 727.
 Drilling Program Update, March 2008

 Geos Mining report for Admiralty Resources NL (unpubl).
- Wygralak, A, (1993). Bulman Zinc and Lead Mineralisation.

 Northern Territory Geological Survey Technical Report GS 93/002

APPENDIX 1: Completed Drillholes at Bulman

Hole	E_MGA94	N_MGA94	RL	Azim	Dip	Length	Tenement	Date
BEL001	433241	8493305	106	000	-90	31	EL23814	6/07/2008
BEL002	433252	8493499	123	000	-90	42	EL23814	5/07/2008
BEL003	432852	8493301	109	000	-90	17	EL23814	4/07/2008
BEL004	432850	8493097	96	000	-90	8	EL23814	4/07/2008
BEL005	432442	8493512	98	000	-90	18	EL23814	4/07/2008
BEL006	432853	8493490	114	000	-90	18	EL23814	8/07/2008
BEL007	431740	8493295	94	000	-90	31	EL23814	8/07/2008
BEL009	432462	8492916	100	000	-90	18	EL23814	4/07/2008
BEL010	432455	8493112	99	000	-90	8	EL23814	9/07/2008
BEL011	432446	8493310	104	000	-90	15	EL23814	4/07/2008
BEL013	432543	8492299	112	000	-90	56	EL23814	8/07/2008
BEL014	432568	8491900	103	000	-90	59	EL23814	6/07/2008
BEL027	445001	8499702	154	000	-90	22	EL23814	15/07/2008
BEL030	444503	8500201	165	000	-90	30	EL23814	16/07/2008
BEL033	444001	8499703	156	000	-90	42	EL23814	14/07/2008
MCN001	429437	8489133	110	000	-90	6	MLN727	2/07/2008
MCN002	429410	8489202	109	000	-90	4	MLN727	2/07/2008
MCN005	429380	8489281	111	000	-90	8	MLN727	2/07/2008
MCN008a	429609	8489226	111	000	-90	14	MLN727	2/07/2008
MCN009	429336	8489363	104	000	-90	9	MLN727	3/07/2008
MCN014a	429736	8489331	112	000	-90	11	MLN727	2/07/2008
MCN020a	429780	8489410	116	000	-90	14	MLN727	2/07/2008
MCN029	429739	8489565	112	000	-90	12	MLN727	1/07/2008
MCN031	429898	8489567	104	000	-90	9	MLN726	1/07/2008
MCN032	429978	8489563	107	000	-90	9	MLN726	1/07/2008
MCN033	429709	8489652	108	000	-90	7	MLN727	3/07/2008
MCN037	430015	8489646	105	000	-90	15	MLN726	26/06/2008
MCN038	430081	8489656	106	000	-90	27	MLN726	27/06/2008
MCN040	429821	8489723	102	000	-90	5	MLN726	10/07/2008
MCN041	429904	8489726	104	000	-90	7	MLN726	10/07/2008
MCN042	429973	8489723	105	000	-90	10	MLN726	10/07/2008
MCN043	430050	8489728	106	000	-90	11	MLN726	10/07/2008
MCN044	430146	8489725	109	000	-90	5	MLN726	3/07/2008
MCN045	429861	8489797	100	000	-90	2	MLN726	27/06/2008
MCN046	429936	8489795	102	000	-90	6	MLN726	30/06/2008
MCN049	430155	8489802	107	000	-90	12	MLN726	3/07/2008
MCN053	430134	8489862	111	000	-90	14	MLN726	3/07/2008
MCN054	430219	8489928	100	000	-90	11	MLN726	1/07/2008
MCN054a	430222	8489848	104	000	-90	9	MLN726	1/07/2008
MCN058a	430195	8489996	100	000	-90	9	MLN726	30/06/2008
MCN059a	430155	8490039	98	000	-90	9	MLN726	30/06/2008

Appendix 2: Bulman XRF and assay results

Hole	From	То	Sample	XRF-Zn	XRF-Pb	Zn	Pb	Comment
noie	FIOIII	10	No.	ppm	ppm	ppm	ppm	Comment
BEL001	14	15	575	403	20	155	176	
BEL001	15	16	576	6852	14	43900	902	
BEL001	16	17	577	162345	159	252000	91200	
BEL001	17	18	578	27699	57	52900	58400	
BEL001	18	19	579	592	14	1960	46800	
BEL001	16	17	17	-	-	237000	80800	Duplicate
BEL001	17	18	18	-	-	62500	59400	Duplicate
BEL001	18	19	19	-	-	1810	51000	Duplicate
BEL009	0	1	451	30805	1126	29900	1760	
BEL009	1	2	452	30803	1127	36600	2140	
BEL009	2	3	453	4927	1126	4630	842	
BEL009	3	4	454	412	66	665	124	
BEL009	4	5	455	103	21	270	42	
BEL013	4	5	765	794	101	1140	364	
BEL013	5	6	766	1222	108	1810	176	
BEL013	6	7	767	1921	61	1720	406	
BEL013	7	8	768	342	27	785	114	
BEL013	8	9	769	469	92	505	216	
BEL013	19	20	780	-	28	55	120	
BEL013	20	21	781	85	352	300	2360	
BEL013	21	22	782	76	39269	240	920	
BEL013	21	22	782	46	134	-	-	
BEL013	22	23	783	52	-	155	72	
BEL014	29	30	730	54	5740	550	178	
BEL014	30	31	731	5081	28	1000	1090	
BEL014	31	32	732	-	-	200	294	
BEL014	32	33	733	-	22	145	84	
BEL014	33	34	734	1561		3010	134	
BEL014	34	35	735	154	12	1580	54	
MCN005	3	4	264	34	110	750	120	
MCN005	4	5	265	252	55	1390	392	
MCN005	5	6	266	2111	87	1530	320	
MCN005	6	7	267	8987	114	3900	858	
MCN005	7	8	268	19804	35	1230	198	
MCN008a	2	3	293	239	-	1240	100	
MCN008a	3	4	294	2037	-	655	56	
MCN008a	7	8	298	32	436	705	80	
MCN008a	8	9	299	2004	64	2850	240	
MCN008a	9	10	300	2339	40	1870	182	
MCN008a	10	11	301	1856	-	440	94	
MCN020a	7	8	338	164	39	90	28	
MCN020a	8	9	339	115	54	5240	66	
MCN020a	9	10	340	-	-	-	-	
MCN032	0	1	221	125	883	2660	2060	
MCN032	1	2	222	1105	47	1100	3950	

Hole	From	То	Sample No.	XRF-Zn ppm	XRF-Pb ppm	Zn ppm	Pb ppm	Comment
MCN032	2	3	223	7488	-	1260	2040	
MCN032	3	4	224	36141	-	715	184	
MCN032	4	5	225	1812	-	495	76	
MCN033	2	3	363	210	-	1380	456	
MCN033	3	4	364	-	31	255	50	
MCN033	4	5	365	149	-	755	246	
MCN033	5	6	366	486	-	1510	30	
MCN033	6	7	367	2758	-	2210	22	
MCN040	0	1	911	1183	824	2340	1420	
MCN040	1	2	912	1497	691	4080	3200	
MCN040	2	3	913	6056	374	8310	952	
MCN040	3	4	914	929	-	1700	48	
MCN040	4	5	915	171	-	330	16	
MCN041	1	2	902	195	101	1520	1800	
MCN041	2	3	903	1571	71	815	128	
MCN041	3	4	904	996	25	2240	76	
MCN041	4	5	905	70	-	260	12	
MCN043	3	4	874	2710	18	1200	106	
MCN043	4	5	875	689	18	575	96	
MCN043	5	6	876	971	16	775	98	
MCN043	6	7	877	200	18	840	228	
MCN043	7	8	878	222	25	290	60	
MCN043	8	9	879	1860	17	660	64	
MCN043	9	10	880	-	19	70	6	
MCN044	3	4	644	787	-	3080	316	
MCN044	4	5	645	52	454	12600	3490	
MCN046	0	1	161	-	1443	1950	3370	
MCN046	1	2	162	796	26	35800	2900	
MCN046	2	3	163	33971	-	28900	1030	
MCN046	3	4	164	35550	-	3680	250	
MCN046	4	5	165	646	-	670	32	
MCN046	5	6	166	262	1029	590	20	
MCN049	0	1	621	-	1188	31400	1550	
MCN049	1	2	622	8759	597	79800	2040	
MCN049	2	3	623	2654	918	20400	842	
MCN049	3	4	624	115026	4090	3690	248	
MCN049	4	5	625	427647	201	1660	310	
MCN049	5	6	626	988	34	1620	282	
MCN049	6	7	627	4507	100	1450	260	
MCN049	7	8	628	2155	37	930	200	
MCN049	8	9	629	238	52	2430	1900	
MCN053	0	1	601	107	663	2260	354	
MCN053	1	2	602	1213	274	1150	128	
MCN053	2	3	603	8415	953	4740	348	
MCN053	3	4	604	2226	417	2490	176	
MCN053	4	5	605	4006	26	1830	202	
MCN053	5	6	606	9460	2611	1070	142	
MCN053	6	7	607	2085	1858	1740	222	

Hole	From	То	Sample No.	XRF-Zn ppm	XRF-Pb ppm	Zn ppm	Pb ppm	Comment
MCN053	7	8	608	2038	114	660	140	
MCN053	8	9	609	5439	1074	1140	200	
MCN053	9	10	610	507	57	825	164	
MCN053	10	11	611	7497	-	90	16	
MCN053	11	12	612	81	-	640	58	
MCN053	12	13	613	1069	-	305	8	
MCN053	13	14	614	104	1179	175	8	
MCN054	1	2	202	-	166	6070	5510	
MCN054	2	3	203	1310	21	3730	1780	
MCN054	3	4	204	387	62	2270	152	
MCN054	4	5	205	2206	-	840	70	
MCN054	5	6	206	624	-	445	72	
MCN054a	0	1	191	-	192	2400	4090	
MCN054a	1	2	192	1917	2233	3930	3650	
MCN054a	2	3	193	4072	133	85400	3130	
MCN054a	3	4	194	1389	96	29700	1100	
MCN054a	4	5	195	30241	-	22800	228	
MCN054a	5	6	196	184499	-	14000	136	
MCN054a	6	7	197	4861	-	15800	384	
MCN054a	7	8	198	4149	1228	2130	50	
MCN054a	8	9	199	270	-	395	16	
MCN058a	0	1	181	2316	55	7040	996	
MCN058a	1	2	182	3456	-	8790	594	
MCN058a	2	3	183	5392	-	6730	122	
MCN058a	3	4	184	3902	-	18200	36	
MCN058a	4	5	185	20927	-	17900	24	
MCN058a	5	6	186	12689	-	15100	10	
MCN058a	6	7	187	10902	-	14700	10	
MCN058a	7	8	188	9640	-	9310	10	
MCN058a	8	9	189	4719	-	4630	10	
MCN059a	0	1	171	-	222	1660	484	
MCN059a	1	2	172	1040	634	2480	1420	
MCN059a	2	3	173	22963	306	2230	854	
MCN059a	3	4	174	324	669	18600	1020	
MCN059a	4	5	175	13704	33	21900	1050	
MCN059a	5	6	176	26656	-	29100	252	
MCN059a	6	7	177	21050	-	20300	260	
MCN059a	7	8	178	3160	271	6470	42	
MCN059a	8	9	179	4684	304	1250	18	

- = Below detection limit