RESOLVE SURVEY
FOR
MINEMAKERS LIMITED
GEA 1-7 and ARRUWURRA BLOCKS
NORTHERN TERRITORY, AUSTRALIA

Fugro Airborne Surveys Corp.
Mississauga, Ontario

December 18, 2008
SUMMARY

This report describes the logistics, data acquisition, processing and presentation of results of a RESOLVE airborne geophysical survey carried out for Minemakers Ltd., over a property located near Wonarah, Northern Territory, Australia. Total coverage of the survey block amounted to 882 km. The survey was flown from October 14th to October 18th, 2008.

The purpose of the survey was to provide information that could be used to map the geology and structure of the survey area. This was accomplished by using a RESOLVE multi-coil, multi-frequency electromagnetic system, supplemented by a high sensitivity cesium magnetometer. The information from these sensors was processed to produce maps that display the magnetic and conductive properties of the survey area. A GPS electronic navigation system ensured accurate positioning of the geophysical data with respect to the base maps.

The survey data were processed and compiled in the Fugro Airborne Surveys Toronto office. Map products and digital data were provided in accordance with the scales and formats specified in the Survey Agreement.
CONTENTS

1. INTRODUCTION ... 1.1

2. SURVEY OPERATIONS .. 2.1

3. SURVEY EQUIPMENT .. 3.1
 Electromagnetic System .. 3.1
 In-Flight EM System Calibration .. 3.2
 Airborne Magnetometer .. 3.4
 Magnetic Base Station ... 3.4
 Navigation (Global Positioning System) ... 3.5
 Radar Altimeter ... 3.7
 Barometric Pressure and Temperature Sensors ... 3.8
 Digital Data Acquisition System ... 3.9
 Video Flight Path Recording System .. 3.9

4. QUALITY CONTROL AND IN-FIELD PROCESSING .. 4.1

5. DATA PROCESSING .. 5.1
 Flight Path Recovery .. 5.1
 Electromagnetic Data ... 5.1
 Apparent Resistivity .. 5.2
 Dielectric Permittivity and Magnetic Permeability Corrections 5.3
 Resistivity-depth Sections ... 5.4
 Total Magnetic Field .. 5.6
 Calculated Vertical Magnetic Gradient ... 5.6
 EM Magnetite (optional) ... 5.7
 Magnetic Derivatives (optional) ... 5.7
 Digital Elevation ... 5.8
 Contour, Colour and Shadow Map Displays .. 5.9

6. PRODUCTS .. 6.1
 Base Maps .. 6.1
 Final Products ... 6.2

7. CONCLUSIONS AND RECOMMENDATIONS ... 7.1
APPENDICES

A. List of Personnel
B. Background Information
C. Data Archive Description
D. Data Processing Flowcharts
E. Glossary
1. INTRODUCTION

A RESOLVE electromagnetic/resistivity/magnetic survey was flown for Minemakers Ltd., from July October 14th to October 18th, over eight survey blocks located near Wonarah, Northern Territory, Australia. The survey areas are shown in Figure 2.

Survey coverage consisted of approximately 882 line-km, including 85 line-km of tie lines. Flight lines were flown with a line separation of 100 metres. Tie lines were flown orthogonal to the traverse lines with a line separation of 1000 metres.

The survey employed the RESOLVE electromagnetic system. Ancillary equipment consisted of a magnetometer, radar and barometric altimeters, video camera, digital recorder, and an electronic navigation system. The instrumentation was installed in an AS350-FX2 turbine helicopter (Registration VH-RTV) that was provided by Heli Aust. The helicopter flew at an average airspeed of 131 km/h with an EM sensor height of approximately 35 metres.
Figure 1: Fugro Airborne Surveys RESOLVE EM bird with AS350-B3
2. SURVEY OPERATIONS

The base of operations for the survey was established at Wonarah, Northern Territory. The survey area is shown in Figure 2.

Table 2-1 lists the corner coordinates of the survey area in GDA94, UTM Zone 53S, central meridian 135°.

<table>
<thead>
<tr>
<th>Block</th>
<th>Corners</th>
<th>X-UTM (E)</th>
<th>Y-UTM (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08064-1</td>
<td>1</td>
<td>669069</td>
<td>7789964</td>
</tr>
<tr>
<td>GEA1</td>
<td>2</td>
<td>670724</td>
<td>7792121</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>674438</td>
<td>7788934</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>672782</td>
<td>7786777</td>
</tr>
<tr>
<td>08064-2</td>
<td>1</td>
<td>634401</td>
<td>7768548</td>
</tr>
<tr>
<td>GEA2</td>
<td>2</td>
<td>637469</td>
<td>7768547</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>637472</td>
<td>7765963</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>634399</td>
<td>7765962</td>
</tr>
<tr>
<td>08064-3</td>
<td>1</td>
<td>649035</td>
<td>7795042</td>
</tr>
<tr>
<td>GEA3</td>
<td>2</td>
<td>651744</td>
<td>7795042</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>651744</td>
<td>7792816</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>649035</td>
<td>7792816</td>
</tr>
<tr>
<td>08064-4</td>
<td>1</td>
<td>658656</td>
<td>7786628</td>
</tr>
<tr>
<td>GEA4</td>
<td>2</td>
<td>661121</td>
<td>7790979</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>662690</td>
<td>7789986</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>660224</td>
<td>7785635</td>
</tr>
<tr>
<td>08064-5</td>
<td>1</td>
<td>646179</td>
<td>7773299</td>
</tr>
<tr>
<td>GEA5</td>
<td>2</td>
<td>648633</td>
<td>7773299</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>08064-6</td>
<td>648633</td>
<td>646179</td>
<td>7770964</td>
</tr>
<tr>
<td>GEA6</td>
<td>661609</td>
<td>664628</td>
<td>7781760</td>
</tr>
<tr>
<td></td>
<td>664628</td>
<td>7778827</td>
<td></td>
</tr>
<tr>
<td>08064-7</td>
<td>661609</td>
<td>661668</td>
<td>7781760</td>
</tr>
<tr>
<td>GEA7</td>
<td>658579</td>
<td>661668</td>
<td>7799471</td>
</tr>
<tr>
<td></td>
<td>658579</td>
<td>7796631</td>
<td></td>
</tr>
<tr>
<td>08064-8</td>
<td>636500</td>
<td>641000</td>
<td>7774900</td>
</tr>
<tr>
<td>Arruwurra</td>
<td>644500</td>
<td>7775300</td>
<td></td>
</tr>
<tr>
<td>Block</td>
<td>640000</td>
<td>7771000</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2
Location Map and Sheet Layout
Gea 1-7 and Arruwurra Blocks, Wonarah, Northern Territory, Australia
Job # 08064
The survey specifications were as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gea1</th>
<th>Gea2</th>
<th>Gea3</th>
<th>Gea4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traverse line direction</td>
<td>131°/311°</td>
<td>90°/270°</td>
<td>90°/270°</td>
<td>30°/210°</td>
</tr>
<tr>
<td>Traverse line spacing</td>
<td>100 m</td>
<td>100 m</td>
<td>100 m</td>
<td>100 m</td>
</tr>
<tr>
<td>Tie line direction</td>
<td>41°/221°</td>
<td>0°/180°</td>
<td>0°/180°</td>
<td>120°/300°</td>
</tr>
<tr>
<td>Tie line spacing</td>
<td>1000 m</td>
<td>1000 m</td>
<td>1000 m</td>
<td>1000 m</td>
</tr>
<tr>
<td>Survey line coverage</td>
<td>192 km</td>
<td>93.3 km</td>
<td>71.2 km</td>
<td>109.1 km</td>
</tr>
<tr>
<td>Tie line coverage</td>
<td>14.5 km</td>
<td>8.3 km</td>
<td>7.3 km</td>
<td>10.2 km</td>
</tr>
<tr>
<td>Sample interval</td>
<td>10Hz, 3.3 m @</td>
<td>10Hz, 3.3 m @</td>
<td>10Hz, 3.3 m @</td>
<td>10Hz, 3.3 m @</td>
</tr>
<tr>
<td></td>
<td>120 km/h</td>
<td>120 km/h</td>
<td>120 km/h</td>
<td>120 km/h</td>
</tr>
<tr>
<td>Aircraft mean terrain clearance</td>
<td>58 m</td>
<td>58 m</td>
<td>58 m</td>
<td>58 m</td>
</tr>
<tr>
<td>EM sensor mean terrain clearance</td>
<td>30 m</td>
<td>30 m</td>
<td>30 m</td>
<td>30 m</td>
</tr>
<tr>
<td>Mag sensor mean terrain clearance</td>
<td>30 m</td>
<td>30 m</td>
<td>30 m</td>
<td>30 m</td>
</tr>
<tr>
<td>Navigation (guidance)</td>
<td>±5 m, Real-time</td>
<td>±5 m, Real-time</td>
<td>±5 m, Real-time</td>
<td>±5 m, Real-time</td>
</tr>
<tr>
<td></td>
<td>GPS</td>
<td>GPS</td>
<td>GPS</td>
<td>GPS</td>
</tr>
<tr>
<td>Post-survey flight path</td>
<td>±2 m, Differential</td>
<td>±2 m, Differential</td>
<td>±2 m, Differential</td>
<td>±2 m, Differential</td>
</tr>
<tr>
<td></td>
<td>GPS</td>
<td>GPS</td>
<td>GPS</td>
<td>GPS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gea5</th>
<th>Gea6</th>
<th>Gea7</th>
<th>Arruwurra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traverse line direction</td>
<td>90°/270°</td>
<td>90°/270°</td>
<td>90°/270°</td>
<td>137°/317°</td>
</tr>
<tr>
<td>Traverse line spacing</td>
<td>100 m</td>
<td>100 m</td>
<td>100 m</td>
<td>200 m</td>
</tr>
<tr>
<td>Tie line direction</td>
<td>0°/180°</td>
<td>0°/180°</td>
<td>0°/180°</td>
<td>47°/227°</td>
</tr>
<tr>
<td>Tie line spacing</td>
<td>1000 m</td>
<td>1000 m</td>
<td>1000 m</td>
<td>2000 m</td>
</tr>
<tr>
<td>Survey line coverage</td>
<td>68.6 km</td>
<td>102.6 km</td>
<td>101.1 km</td>
<td>184.1 km</td>
</tr>
<tr>
<td>Tie line coverage</td>
<td>7.6 km</td>
<td>9.4 km</td>
<td>9.1 km</td>
<td>19.0 km</td>
</tr>
<tr>
<td>Sample interval</td>
<td>10Hz, 3.3 m @</td>
<td>10Hz, 3.3 m @</td>
<td>10Hz, 3.3 m @</td>
<td>10Hz, 3.3 m @</td>
</tr>
<tr>
<td></td>
<td>120 km/h</td>
<td>120 km/h</td>
<td>120 km/h</td>
<td>120 km/h</td>
</tr>
<tr>
<td>Aircraft mean terrain clearance</td>
<td>58 m</td>
<td>58 m</td>
<td>58 m</td>
<td>58 m</td>
</tr>
<tr>
<td>EM sensor mean terrain clearance</td>
<td>30 m</td>
<td>30 m</td>
<td>30 m</td>
<td>30 m</td>
</tr>
<tr>
<td>Mag sensor mean terrain clearance</td>
<td>30 m</td>
<td>30 m</td>
<td>30 m</td>
<td>30 m</td>
</tr>
<tr>
<td>Navigation (guidance)</td>
<td>±5 m, Real-time</td>
<td>±5 m, Real-time</td>
<td>±5 m, Real-time</td>
<td>±5 m, Real-time</td>
</tr>
<tr>
<td></td>
<td>GPS</td>
<td>GPS</td>
<td>GPS</td>
<td>GPS</td>
</tr>
<tr>
<td>Post-survey flight path</td>
<td>±2 m, Differential</td>
<td>±2 m, Differential</td>
<td>±2 m, Differential</td>
<td>±2 m, Differential</td>
</tr>
</tbody>
</table>
3. SURVEY EQUIPMENT

This section provides a brief description of the geophysical instruments used to acquire the survey data and the calibration procedures employed. The geophysical equipment was installed in an AS350-FX2 helicopter. This aircraft provides a safe and efficient platform for surveys of this type.

Electromagnetic System

Model: RESOLVE

Type: Towed bird, symmetric dipole configuration operated at a nominal survey altitude of 30 metres. Coil separation is 7.9 metres for 400 Hz, 1800 Hz, 8200 Hz, 40,000 Hz and 140,000 Hz, and 9.0 metres for the 3300 Hz coil-pair.

<table>
<thead>
<tr>
<th>Coil orientations, frequencies and dipole moments</th>
<th>Nominal</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>310 coplanar / 400 Hz</td>
<td>383 Hz</td>
<td></td>
</tr>
<tr>
<td>175 coplanar / 1800 Hz</td>
<td>1825 Hz</td>
<td></td>
</tr>
<tr>
<td>211 coaxial / 3300 Hz</td>
<td>3261 Hz</td>
<td></td>
</tr>
<tr>
<td>70 coplanar / 8200 Hz</td>
<td>7943 Hz</td>
<td></td>
</tr>
<tr>
<td>35 coplanar / 40,000 Hz</td>
<td>38300 Hz</td>
<td></td>
</tr>
<tr>
<td>18 coplanar / 140,000 Hz</td>
<td>129600 Hz</td>
<td></td>
</tr>
</tbody>
</table>

Channels recorded:
- 6 in-phase channels
- 6 quadrature channels
- 2 monitor channels

Sensitivity:
- 0.12 ppm at 400 Hz Cp
- 0.12 ppm at 1800 Hz Cp
- 0.12 ppm at 3300 Hz Cx
- 0.24 ppm at 8200 Hz Cp
- 0.60 ppm at 40,000 Hz Cp
- 0.60 ppm at 140,000 Hz Cp
Sample rate: 10 per second, equivalent to 1 sample every 3.3 m, at a survey speed of 120 km/h.

The electromagnetic system utilizes a multi-coil coaxial/coplanar technique to energize conductors in different directions. The coaxial coils are vertical with their axes in the flight direction. The coplanar coils are horizontal. The secondary fields are sensed simultaneously by means of receiver coils that are maximum coupled to their respective transmitter coils. The system yields an in-phase and a quadrature channel from each transmitter-receiver coil-pair.

In-Flight EM System Calibration

Calibration of the system during the survey uses the Fugro AutoCal automatic, internal calibration process. At the beginning and end of each flight, and at intervals during the flight, the system is flown up to high altitude to remove it from any “ground effect” (response from the earth). Any remaining signal from the receiver coils (base level) is measured as the zero level, and is removed from the data collected until the time of the next calibration. Following the zero level setting, internal calibration coils, for which the response phase and amplitude have been determined at the factory, are automatically triggered – one for each frequency. The on-time of the coils is sufficient to determine an accurate response through any ambient noise. The receiver response to each calibration coil “event” is compared to the expected response (from the factory
calibration) for both phase angle and amplitude, and any phase and gain corrections are automatically applied to bring the data to the correct value.

In addition, the outputs of the transmitter coils are continuously monitored during the survey, and the gains are adjusted to correct for any change in transmitter output.

Because the internal calibration coils are calibrated at the factory (on a resistive halfspace) ground calibrations using external calibration coils on-site are not necessary for system calibration. A check calibration may be carried out on-site to ensure all systems are working correctly. All system calibrations will be carried out in the air, at sufficient altitude that there will be no measurable response from the ground.

The internal calibration coils are rigidly positioned and mounted in the system relative to the transmitter and receiver coils. In addition, when the internal calibration coils are calibrated at the factory, a rigid jig is employed to ensure accurate response from the external coils.

Using real time Fast Fourier Transforms and the calibration procedures outlined above, the data are processed in real time, from measured total field at a high sampling rate, to in-phase and quadrature values at 10 samples per second.
Airborne Magnetometer

Model: Scintrex CS3 sensor
Type: Optically pumped cesium vapour
Sensitivity: 0.01 nT
Sample rate: 10 per second

The magnetometer sensor is housed in the EM bird, 28 m below the helicopter.

Magnetic Base Station

Primary
Model: Fugro CF1 base station with timing provided by integrated GPS
Sensor type: Scintrex CS-3

Counter specifications:
- Accuracy: ±0.1 nT
- Resolution: 0.01 nT
- Sample rate: 1 Hz

GPS specifications:
- Model: Marconi Allstar
- Type: Code and carrier tracking of L1 band, 12-channel, C/A code at 1575.42 MHz
- Sensitivity: -90 dBm, 1.0 second update
- Accuracy: Manufacturer’s stated accuracy for differential corrected GPS is 2 metres

Environmental
Monitor specifications:
- Temperature:
 - Accuracy: ±1.5°C max
 - Resolution: 0.0305°C
 - Sample rate: 1 Hz
 - Range: -40°C to +75°C
Barometric pressure:
- Model: Motorola MPXA4115A
- Accuracy: ±3.0º kPa max (-20ºC to 105ºC temp. ranges)
- Resolution: 0.013 kPa
- Sample rate: 1 Hz
- Range: 55 kPa to 108 kPa

Backup
Model: GEM Systems GSM-19T
Type: Digital recording proton precession
Sensitivity: 0.10 nT
Sample rate: 3 second intervals

A digital recorder is operated in conjunction with the base station magnetometer to record the diurnal variations of the earth's magnetic field. The clock of the base station is synchronized with that of the airborne system, using GPS time, to permit subsequent removal of diurnal drift. The Fugro CF1 was the primary magnetic base station. It was located at longitude 136° 23' 44.70" E, latitude 20° 02' 26.74" S (WGS84). The second back-up unit was set up at longitude 135° 49' 31.92" E, latitude 19° 42' 37.12" S (WGS84).

Navigation (Global Positioning System)

Airborne Receiver for Real-time Navigation & Guidance
Model: Novatel OEM4 with PNAV 2100 interface
Type: Code and carrier tracking of L1-C/A code at 1575.42 MHz and L2-P code at 1227.0 MHz. Dual frequency, 24-channel.
Sample rate: 10 Hz update.
Accuracy: Better than 1 metre in differential mode.
Antenna: Mounted on tail of aircraft.

Airborne Receiver for Flight Path Recovery
Model: Novatel OEM4
Type: Code and carrier tracking of L1-C/A code at 1575.42 MHz and L2-P code at 1227.0 MHz. Dual frequency, 24-channel.
Sample rate: 10 Hz update.
Accuracy: Better than 1 metre in differential mode.
Antenna: Mounted on nose of EM bird.

Primary Base Station for Post-Survey Differential Correction
Model: Novatel OEM4
Type: Code and carrier tracking of L1-C/A code at 1575.42 MHz and L2-P code at 1227.0 MHz. Dual frequency, 24-channel.
Sample rate: 0.5 second update.
Accuracy: Manufacturer’s stated accuracy for differential corrected GPS is better than 1 metre.

Secondary GPS Base Station
Model: Marconi Allstar OEM, CMT-1200
Type: Code and carrier tracking of L1 band, 12-channel, C/A code at 1575.42 MHz
Sensitivity: -90 dBm, 1.0 second update
Accuracy: Manufacturer’s stated accuracy for differential corrected GPS
The Novatel OEM4 is a line of sight, satellite navigation system that utilizes time-coded signals from at least four of forty-eight available satellites. Both Russian GLONASS and American NAVSTAR satellite constellations are used to calculate the position and to provide real time guidance to the helicopter. For flight path processing a Novatel OEM4 was used as the mobile receiver. A similar system was used as the primary base station receiver. The mobile and base station raw XYZ data were recorded, thereby permitting post-survey differential corrections for theoretical accuracies of better than 2 metres. A Marconi Allstar GPS unit, part of the CF-1, was used as a secondary (back-up) base station.

Each base station receiver is able to calculate its own latitude and longitude. For this survey, the primary GPS station was located at longitude 135° 49’ 31.92” E, latitude 19° 42’ 37.12” S at an elevation of 269.96 metres above the ellipsoid. The secondary GPS unit was located at longitude 136° 23’ 44.70”, latitude 20° 02’ 26.74’. The GPS records data relative to the WGS84 ellipsoid, which is the basis of the revised North American Datum (NAD83).

Radar Altimeter

Manufacturer: Terra
Model: TRA3000
Type: Short pulse modulation, 4.3 GHz
Sensitivity: 0.3 m
Sample rate: 2 per second

The radar altimeter measures the vertical distance between the helicopter and the ground. This information is used in the processing algorithm that determines conductor depth.

Barometric Pressure and Temperature Sensors

Model: DIGHEM D 1300

Type: Motorola MPX4115AP analog pressure sensor
AD592AN high-impedance remote temperature sensors

Sensitivity:
- Pressure: 150 mV/kPa
- Temperature: 100 mV/°C or 10 mV/°C (selectable)

Sample rate: 10 per second

The D1300 circuit is used in conjunction with one barometric sensor and up to three temperature sensors. Two sensors (baro and temp) are installed in the EM console in the aircraft, to monitor pressure and internal operating temperatures. A third sensor in the bird monitors the external operating temperature.
Digital Data Acquisition System

Manufacturer: Fugro
Model: HELIDAS
Recorder: Compact Flash Card

The stored data are downloaded to the field workstation PC at the survey base, for verification, backup and preparation of in-field products.

Video Flight Path Recording System

Type: Axis 2420 Digital Network Camera
Recorder: Axis 241S Video Server and Tablet Computer
Format: Digital (BIN/BDX)

Fiducial numbers are recorded continuously and are displayed on the margin of each image. This procedure ensures accurate correlation of data with respect to visible features on the ground.
4. QUALITY CONTROL AND IN-FIELD PROCESSING

Digital data for each flight were transferred to the field workstation, in order to verify data quality and completeness. A database was created and updated using Geosoft Oasis Montaj and proprietary Fugro Atlas software. This allowed the field personnel to calculate, display and verify both the positional (flight path) and geophysical data on a screen or printer. Records were examined as a preliminary assessment of the data acquired for each flight.

In-field processing of Fugro survey data consists of differential corrections to the airborne GPS data, verification of EM calibrations, drift correction of the raw airborne EM data, spike rejection and filtering of all geophysical and ancillary data, verification of flight videos, calculation of preliminary resistivity data, diurnal correction, and preliminary leveling of magnetic data.

All data, including base station records, were checked on a daily basis, to ensure compliance with the survey contract specifications. Reflights were required if any of the following specifications were not met.

Navigation - Positional (x,y) accuracy of better than 10 m, with a CEP (circular error of probability) of 95%.
Flight Path - No lines to exceed ±25% departure from nominal line spacing over a continuous distance of more than 1 km, except for reasons of safety.

Clearance - Mean terrain sensor clearance of 30 m, ±10 m, except where precluded by safety considerations, e.g., restricted or populated areas, severe topography, obstructions, tree canopy, aerodynamic limitations, etc.

Airborne Mag - The non-normalized 4th difference will not exceed 1.6 nT over a continuous distance of 1 km excluding areas where this specification is exceeded due to natural anomalies.

Base Mag - Diurnal variations not to exceed 10 nT over a straight line time chord of 1 minute.

EM - Spheric pulses may occur having strong peaks but narrow widths. The EM data area considered acceptable when their occurrence is less than 10 spheric events exceeding the stated noise specification for a given frequency per 100 samples continuously over a distance of 2,000 metres.
<table>
<thead>
<tr>
<th>Frequency</th>
<th>Coil Orientation</th>
<th>Peak to Peak Noise Envelope (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 Hz</td>
<td>horizontal coplanar</td>
<td>10.0</td>
</tr>
<tr>
<td>1800 Hz</td>
<td>horizontal coplanar</td>
<td>10.0</td>
</tr>
<tr>
<td>3300 Hz</td>
<td>vertical coaxial</td>
<td>10.0</td>
</tr>
<tr>
<td>8200 Hz</td>
<td>horizontal coplanar</td>
<td>20.0</td>
</tr>
<tr>
<td>40,000 Hz</td>
<td>horizontal coplanar</td>
<td>40.0</td>
</tr>
<tr>
<td>140,000 Hz</td>
<td>horizontal coplanar</td>
<td>50.0</td>
</tr>
</tbody>
</table>
5. DATA PROCESSING

Flight Path Recovery

The raw range data from at least four satellites are simultaneously recorded by both the base and mobile GPS units. The geographic positions of both units, relative to the model ellipsoid, are calculated from this information. Differential corrections, which are obtained from the base station, are applied to the mobile unit data to provide a post-flight track of the aircraft, accurate to within 2 m. Speed checks of the flight path are also carried out to determine if there are any spikes or gaps in the data.

The corrected WGS84 latitude/longitude coordinates are transformed to the coordinate system used on the final maps. Images or plots are then created to provide a visual check of the flight path.

Electromagnetic Data

EM data are processed at the recorded sample rate of 10 samples/second. Spheric rejection median and Hanning filters are then applied to reduce noise to acceptable levels.
Apparent Resistivity

The apparent resistivities in ohm-m are generated from the in-phase and quadrature EM components for all of the coplanar frequencies, using a pseudo-layer half-space model. The inputs to the resistivity algorithm are the in-phase and quadrature amplitudes of the secondary field. The algorithm calculates the apparent resistivity in ohm-m, and the apparent height of the bird above the conductive source. Any difference between the apparent height and the true height, as measured by the radar altimeter, is called the pseudo-layer and reflects the difference between the real geology and a homogeneous halfspace. This difference is often attributed to the presence of a highly resistive upper layer. Any errors in the altimeter reading, caused by heavy tree cover, are included in the pseudo-layer and do not affect the resistivity calculation. The apparent depth estimates, however, will reflect the altimeter errors. Apparent resistivities calculated in this manner may differ from those calculated using other models.

In areas where the effects of magnetic permeability or dielectric permittivity have suppressed the in-phase responses, the calculated resistivities will be erroneously high. Various algorithms and inversion techniques can be used to partially correct for the effects of permeability and permittivity.

Apparent resistivity maps portray all of the information for a given frequency over the entire survey area. The large dynamic range afforded by the multiple frequencies makes the apparent resistivity parameter an excellent mapping tool.
The preliminary apparent resistivity maps and images are carefully inspected to identify any lines or line segments that might require base level adjustments. Subtle changes between in-flight calibrations of the system can result in line-to-line differences that are more recognizable in resistive (low signal amplitude) areas. If required, manual level adjustments are carried out to eliminate or minimize resistivity differences that can be attributed, in part, to changes in operating temperatures. These leveling adjustments are usually very subtle, and do not result in the degradation of discrete anomalies.

After the manual leveling process is complete, revised resistivity grids are created. The resulting grids can be subjected to a microleveling technique in order to smooth the data for contouring. The coplanar resistivity parameter has a broad 'footprint' that requires very little filtering.

The calculated resistivities for the five coplanar frequencies are converted to conductivities and are included in the data and grid archives.

Dielectric Permittivity and Magnetic Permeability Corrections

In resistive areas having magnetic rocks, the magnetic and dielectric effects will both generally be present in high-frequency EM data, whereas only the magnetic effect will exist in low-frequency data.
The magnetic permeability is first obtained from the EM data at the lowest frequency, because the ratio of the magnetic response to conductive response is maximized and because displacement currents are negligible. The homogeneous half-space model is used. The computed magnetic permeability is then used along with the in-phase and quadrature response at the highest frequency to obtain the relative dielectric permittivity, again using the homogeneous half-space model. The highest frequency is used because the ratio of dielectric response to conductive response is maximized. The resistivity can then be determined from the measured in-phase and quadrature components of each frequency, given the relative magnetic permeability and relative dielectric permittivity.

Resistivity-depth Sections

The apparent resistivities for all frequencies can be displayed simultaneously as coloured resistivity-depth sections. Usually, only the coplanar data are displayed as the close frequency separation between the coplanar and adjacent coaxial data tends to distort the section. The sections can be plotted using the topographic elevation profile as the surface. The digital terrain values, in metres a.m.s.l., is calculated from the GPS Z-value minus the aircraft radar altimeter.

Resistivity-depth sections can be generated in three formats:

(1) Sengpiel resistivity sections, where the apparent resistivity for each frequency is plotted at the depth of the centroid of the in-phase current flow\(^2\); and,

(2) Differential resistivity sections, where the differential resistivity is plotted at the differential depth\(^3\).

(3) Occam\(^4\) or Multi-layer\(^5\) inversion.

Both the Sengpiel and differential methods are derived from the pseudo-layer half-space model. Both yield a coloured resistivity-depth section that attempts to portray a smoothed approximation of the true resistivity distribution with depth. Resistivity-depth sections are most useful in conductive layered situations, but may be unreliable in areas of moderate to high resistivity where signal amplitudes are weak. In areas where in-phase responses have been suppressed by the effects of magnetite, or adversely affected by cultural features, the computed resistivities shown on the sections may be unreliable.

\(^4\) Constable et al., 1987, Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 52, 289-300.

Both the Occam and multi-layer inversions compute the layered earth resistivity model that would best match the measured EM data. The Occam inversion uses a series of thin, fixed layers (usually 20 x 5m and 10 x 10m layers) and computes resistivities to fit the EM data. The multi-layer inversion computes the resistivity and thickness for each of a defined number of layers (typically 3-5 layers) to best fit the data.

Total Magnetic Field

A fourth difference editing routine was applied to the magnetic data to remove any spikes. The aeromagnetic data were corrected for diurnal variation using the magnetic base station data. The regional magnetic field, calculated for the specific survey location and the time of the survey, is then removed from the resultant total magnetic intensity to yield the residual magnetic intensity. The results were then leveled using tie and traverse line intercepts. Manual adjustments were applied to any lines that required leveling, as indicated by shadowed images of the gridded magnetic data. The manually leveled data were then subjected to a microleveling filter.

Calculated Vertical Magnetic Gradient

The residual magnetic field data were subjected to a processing algorithm that enhances the response of magnetic bodies in the upper 500 m and attenuates the response of deeper bodies. The resulting vertical gradient map provides better definition and resolution of near-surface magnetic units. It also identifies weak magnetic features that may not be
evident on the total field map. However, regional magnetic variations and changes in lithology may be better defined on the residual magnetic field map.

EM Magnetite (optional)

The apparent percent magnetite by weight is computed wherever magnetite produces a negative in-phase EM response. This calculation is more meaningful in resistive areas.

Magnetic Derivatives (optional)

The total magnetic field data can be subjected to a variety of filtering techniques to yield maps or images of the following:

- enhanced magnetics
- second vertical derivative
- reduction to the pole/equator
- magnetic susceptibility with reduction to the pole
- upward/downward continuations
- analytic signal

All of these filtering techniques improve the recognition of near-surface magnetic bodies, with the exception of upward continuation. Any of these parameters can be produced on request.
Digital Elevation

The radar altimeter values (ALTR – aircraft to ground clearance) are subtracted from the differentially corrected and de-spiked GPS-Z values to produce profiles of the height above the ellipsoid along the survey lines. These values are gridded to produce contour maps showing approximate elevations within the survey area. The calculated digital terrain data are then tie-line leveled. Any remaining subtle line-to-line discrepancies are manually removed. After the manual corrections are applied, the digital terrain data are filtered with a microleveling algorithm.

The accuracy of the elevation calculation is directly dependent on the accuracy of the two input parameters, ALTR and GPS-Z. The ALTR value may be erroneous in areas of heavy tree cover, where the altimeter reflects the distance to the tree canopy rather than the ground. The GPS-Z value is primarily dependent on the number of available satellites. Although post-processing of GPS data will yield X and Y accuracies in the order of 1-2 metres, the accuracy of the Z value is usually much less, sometimes in the ±10 metre range. Further inaccuracies may be introduced during the interpolation and gridding process.

Because of the inherent inaccuracies of this method, no guarantee is made or implied that the information displayed is a true representation of the height above sea level. Although this product may be of some use as a general reference, THIS PRODUCT MUST NOT BE USED FOR NAVIGATION PURPOSES.
Contour, Colour and Shadow Map Displays

The geophysical data are interpolated onto a regular grid using a modified Akima spline technique. The resulting grid is suitable for image processing and generation of contour maps. The grid cell size is 20% of the line interval.

Colour maps are produced by interpolating the grid down to the pixel size. The parameter is then incremented with respect to specific amplitude ranges to provide colour "contour" maps.

Monochromatic shadow maps or images are generated by employing an artificial sun to cast shadows on a surface defined by the geophysical grid. There are many variations in the shadowing technique. These techniques can be applied to total field or enhanced magnetic data, magnetic derivatives, resistivity, etc. The shadowing technique is also used as a quality control method to detect subtle changes between lines.
6. PRODUCTS

This section lists the final maps and products that have been provided under the terms of the survey agreement. Other products can be prepared from the existing dataset, if requested. These include magnetic enhancements or derivatives, percent magnetite, resistivities corrected for magnetic permeability and/or dielectric permittivity, digital terrain, resistivity-depth sections, inversions, and overburden thickness. Most parameters can be displayed as contours, profiles, or in colour.

Base Maps

Base maps of the survey area were produced from digital topography. The topographic files were combined with geophysical data for plotting the final maps. All maps were created using the following parameters:

Projection Description:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum:</td>
<td>WGS84</td>
</tr>
<tr>
<td>Ellipsoid:</td>
<td>WGS84</td>
</tr>
<tr>
<td>Projection:</td>
<td>UTM (Zone: 53S)</td>
</tr>
<tr>
<td>Central Meridian:</td>
<td>135° E</td>
</tr>
<tr>
<td>False Northing:</td>
<td>10000000</td>
</tr>
<tr>
<td>False Easting:</td>
<td>500000</td>
</tr>
<tr>
<td>Scale Factor:</td>
<td>0.9996</td>
</tr>
<tr>
<td>WGS84 to Local Conversion:</td>
<td>Molodensky</td>
</tr>
<tr>
<td>Datum Shifts:</td>
<td>DX: 0 DY: 0 DZ: 0</td>
</tr>
</tbody>
</table>
The following parameters are presented on three map sheets, at a scale of 1:20,000. All maps include flight lines and topography, unless otherwise indicated. Preliminary products are not listed.

Final Products

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No. of Map Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Magnetic Field</td>
<td>2</td>
</tr>
<tr>
<td>Calculated Vertical Magnetic Gradient</td>
<td>2</td>
</tr>
<tr>
<td>Apparent Conductivity 400 Hz</td>
<td>2</td>
</tr>
<tr>
<td>Apparent Conductivity 1800 Hz</td>
<td>2</td>
</tr>
<tr>
<td>Apparent Conductivity 8200 Hz</td>
<td>2</td>
</tr>
<tr>
<td>Apparent Conductivity 40,000 Hz</td>
<td>2</td>
</tr>
<tr>
<td>Apparent Conductivity 140,000 Hz</td>
<td>2</td>
</tr>
</tbody>
</table>

Additional Products

- Digital Archive (see Archive Description) 1 DVD-ROM
- Survey Report 2 copies
- Conductivity Depth Images All lines
7. CONCLUSIONS AND RECOMMENDATIONS

This report provides a very brief description of the survey results and describes the equipment, data processing procedures and logistics of the survey.

It is recommended that additional processing of existing geophysical data be considered, in order to extract the maximum amount of information from the survey results. Current software and imaging techniques often provide valuable information on structure and lithology, which may not be clearly evident on the contour and colour maps. These techniques can yield images that define subtle, but significant, structural details.

Respectfully submitted,

FUGRO AIRBORNE SURVEYS CORP.
APPENDIX A

LIST OF PERSONNEL

The following personnel were involved in the acquisition, processing, and presentation of data, relating to a RESOLVE airborne geophysical survey carried out for Minemakers Ltd., near Wonarah, Northern Territory, Australia.

David Miles
Manager, Geophysical Projects
Emily Farquhar
Manager, Geophysical Services
Duane Griffith
Manager, Operations
Graham Konieczny
Manager, Data Processing and Interpretation
Lesley Minty
Project Manager
Lendl Mendes
Geophysical Operator
Darcy McGill
Field Geophysicist
Andy Page
Pilot (Heli Aust)
Elizabeth Bowslaugh
Geophysicist
Lyn Vanderstarren
Drafting Supervisor
Susan Pothiah
Word Processing Operator
Albina Tonello
Secretary/Expeditor

The survey consisted of 882 km of coverage, flown from October 14th to October 18th, 2008.

All personnel are employees of Fugro Airborne Surveys, except for the pilot who is an employee of Heli Aust.
APPENDIX B

BACKGROUND INFORMATION
Fugro electromagnetic responses fall into two general classes, discrete and broad. The discrete class consists of sharp, well-defined anomalies from discrete conductors such as sulphide lenses and steeply dipping sheets of graphite and sulphides. The broad class consists of wide anomalies from conductors having a large horizontal surface such as flatly dipping graphite or sulphide sheets, saline water-saturated sedimentary formations, conductive overburden and rock, kimberlite pipes and geothermal zones. A vertical conductive slab with a width of 200 m would straddle these two classes.

The vertical sheet (half plane) is the most common model used for the analysis of discrete conductors. All anomalies plotted on the geophysical maps are analyzed according to this model. The following section entitled Discrete Conductor Analysis describes this model in detail, including the effect of using it on anomalies caused by broad conductors such as conductive overburden.

The conductive earth (half-space) model is suitable for broad conductors. Resistivity contour maps result from the use of this model. A later section entitled Resistivity Mapping describes the method further, including the effect of using it on anomalies caused by discrete conductors such as sulphide bodies.

Geometric Interpretation

The geophysical interpreter attempts to determine the geometric shape and dip of the conductor. Figure B-1 shows typical HEM anomaly shapes which are used to guide the geometric interpretation.

Discrete Conductor Analysis

The EM anomalies appearing on the electromagnetic map are analyzed by computer to give the conductance (i.e., conductivity-thickness product) in siemens (mhos) of a vertical sheet model. This is done regardless of the interpreted geometric shape of the conductor. This is not an unreasonable procedure, because the computed conductance increases as the electrical quality of the conductor increases, regardless of its true shape. DIGHEM anomalies are divided into seven grades of conductance, as shown in Table B-1. The conductance in siemens (mhos) is the reciprocal of resistance in ohms.
Figure B-1

Typical HEM anomaly shapes
The conductance value is a geological parameter because it is a characteristic of the conductor alone. It generally is independent of frequency, flying height or depth of burial, apart from the averaging over a greater portion of the conductor as height increases. Small anomalies from deeply buried strong conductors are not confused with small anomalies from shallow weak conductors because the former will have larger conductance values.

Table B-1. EM Anomaly Grades

<table>
<thead>
<tr>
<th>Anomaly Grade</th>
<th>Siemens</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>> 100</td>
</tr>
<tr>
<td>6</td>
<td>50 - 100</td>
</tr>
<tr>
<td>5</td>
<td>20 - 50</td>
</tr>
<tr>
<td>4</td>
<td>10 - 20</td>
</tr>
<tr>
<td>3</td>
<td>5 - 10</td>
</tr>
<tr>
<td>2</td>
<td>1 - 5</td>
</tr>
<tr>
<td>1</td>
<td>< 1</td>
</tr>
</tbody>
</table>

Conductive overburden generally produces broad EM responses which may not be shown as anomalies on the geophysical maps. However, patchy conductive overburden in otherwise resistive areas can yield discrete anomalies with a conductance grade (cf. Table B-1) of 1, 2 or even 3 for conducting clays which have resistivities as low as 50 ohm-m. In areas where ground resistivities are below 10 ohm-m, anomalies caused by weathering variations and similar causes can have any conductance grade. The anomaly shapes from the multiple coils often allow such conductors to be recognized, and these are indicated by the letters S, H, and sometimes E on the geophysical maps (see EM legend on maps).

For bedrock conductors, the higher anomaly grades indicate increasingly higher conductances. Examples: the New Insco copper discovery (Noranda, Canada) yielded a grade 5 anomaly, as did the neighbouring copper-zinc Magusi River ore body; Mattabi (copper-zinc, Sturgeon Lake, Canada) and Whistle (nickel, Sudbury, Canada) gave grade 6; and the Montcalm nickel-copper discovery (Timmins, Canada) yielded a grade 7 anomaly. Graphite and sulphides can span all grades but, in any particular survey area, field work may show that the different grades indicate different types of conductors.

Strong conductors (i.e., grades 6 and 7) are characteristic of massive sulphides or graphite. Moderate conductors (grades 4 and 5) typically reflect graphite or sulphides of a less massive character, while weak bedrock conductors (grades 1 to 3) can signify poorly connected graphite or heavily disseminated sulphides. Grades 1 and 2 conductors may not respond to ground EM equipment using frequencies less than 2000 Hz.

The presence of sphalerite or gangue can result in ore deposits having weak to moderate conductances. As an example, the three million ton lead-zinc deposit of Restigouche Mining Corporation near Bathurst, Canada, yielded a well-defined grade 2 conductor. The 10 percent by volume of sphalerite occurs as a coating around the fine grained massive pyrite, thereby inhibiting electrical conduction. Faults, fractures and shear zones may produce anomalies that typically have low conductances (e.g., grades 1 to 3). Conductive rock formations can yield anomalies of any conductance grade. The conductive materials in
such rock formations can be salt water, weathered products such as clays, original depositional clays, and carbonaceous material.

For each interpreted electromagnetic anomaly on the geophysical maps, a letter identifier and an interpretive symbol are plotted beside the EM grade symbol. The horizontal rows of dots, under the interpretive symbol, indicate the anomaly amplitude on the flight record. The vertical column of dots, under the anomaly letter, gives the estimated depth. In areas where anomalies are crowded, the letter identifiers, interpretive symbols and dots may be obliterated. The EM grade symbols, however, will always be discernible, and the obliterated information can be obtained from the anomaly listing appended to this report.

The purpose of indicating the anomaly amplitude by dots is to provide an estimate of the reliability of the conductance calculation. Thus, a conductance value obtained from a large ppm anomaly (3 or 4 dots) will tend to be accurate whereas one obtained from a small ppm anomaly (no dots) could be quite inaccurate. The absence of amplitude dots indicates that the anomaly from the coaxial coil-pair is 5 ppm or less on both the in-phase and quadrature channels. Such small anomalies could reflect a weak conductor at the surface or a stronger conductor at depth. The conductance grade and depth estimate illustrates which of these possibilities fits the recorded data best.

The conductance measurement is considered more reliable than the depth estimate. There are a number of factors that can produce an error in the depth estimate, including the averaging of topographic variations by the altimeter, overlying conductive overburden, and the location and attitude of the conductor relative to the flight line. Conductor location and attitude can provide an erroneous depth estimate because the stronger part of the conductor may be deeper or to one side of the flight line, or because it has a shallow dip. A heavy tree cover can also produce errors in depth estimates. This is because the depth estimate is computed as the distance of bird from conductor, minus the altimeter reading. The altimeter can lock onto the top of a dense forest canopy. This situation yields an erroneously large depth estimate but does not affect the conductance estimate.

Dip symbols are used to indicate the direction of dip of conductors. These symbols are used only when the anomaly shapes are unambiguous, which usually requires a fairly resistive environment.

A further interpretation is presented on the EM map by means of the line-to-line correlation of bedrock anomalies, which is based on a comparison of anomaly shapes on adjacent lines. This provides conductor axes that may define the geological structure over portions of the survey area. The absence of conductor axes in an area implies that anomalies could not be correlated from line to line with reasonable confidence.

The electromagnetic anomalies are designed to provide a correct impression of conductor quality by means of the conductance grade symbols. The symbols can stand alone with geology when planning a follow-up program. The actual conductance values are printed in the attached anomaly list for those who wish quantitative data. The anomaly ppm and depth are indicated by inconspicuous dots which should not distract from the conductor
patterns, while being helpful to those who wish this information. The map provides an interpretation of conductors in terms of length, strike and dip, geometric shape, conductance, depth, and thickness. The accuracy is comparable to an interpretation from a high quality ground EM survey having the same line spacing.

The appended EM anomaly list provides a tabulation of anomalies in ppm, conductance, and depth for the vertical sheet model. No conductance or depth estimates are shown for weak anomalous responses that are not of sufficient amplitude to yield reliable calculations.

Since discrete bodies normally are the targets of EM surveys, local base (or zero) levels are used to compute local anomaly amplitudes. This contrasts with the use of true zero levels which are used to compute true EM amplitudes. Local anomaly amplitudes are shown in the EM anomaly list and these are used to compute the vertical sheet parameters of conductance and depth.

Questionable Anomalies

The EM maps may contain anomalous responses that are displayed as asterisks (*). These responses denote weak anomalies of indeterminate conductance, which may reflect one of the following: a weak conductor near the surface, a strong conductor at depth (e.g., 100 to 120 m below surface) or to one side of the flight line, or aerodynamic noise. Those responses that have the appearance of valid bedrock anomalies on the flight profiles are indicated by appropriate interpretive symbols (see EM legend on maps). The others probably do not warrant further investigation unless their locations are of considerable geological interest.

The Thickness Parameter

A comparison of coaxial and coplanar shapes can provide an indication of the thickness of a steeply dipping conductor. The amplitude of the coplanar anomaly (e.g., CPI channel) increases relative to the coaxial anomaly (e.g., CXI) as the apparent thickness increases, i.e., the thickness in the horizontal plane. (The thickness is equal to the conductor width if the conductor dips at 90 degrees and strikes at right angles to the flight line.) This report refers to a conductor as thin when the thickness is likely to be less than 3 m, and thick when in excess of 10 m. Thick conductors are indicated on the EM map by parentheses "()". For base metal exploration in steeply dipping geology, thick conductors can be high priority targets because many massive sulphide ore bodies are thick. The system cannot sense the thickness when the strike of the conductor is subparallel to the flight line, when the conductor has a shallow dip, when the anomaly amplitudes are small, or when the resistivity of the environment is below 100 ohm-m.
Resistivity Mapping

Resistivity mapping is useful in areas where broad or flat lying conductive units are of interest. One example of this is the clay alteration which is associated with Carlin-type deposits in the south west United States. The resistivity parameter was able to identify the clay alteration zone over the Cove deposit. The alteration zone appeared as a strong resistivity low on the 900 Hz resistivity parameter. The 7,200 Hz and 56,000 Hz resistivities showed more detail in the covering sediments, and delineated a range front fault. This is typical in many areas of the south west United States, where conductive near surface sediments, which may sometimes be alkalic, attenuate the higher frequencies.

Resistivity mapping has proven successful for locating diatremes in diamond exploration. Weathering products from relatively soft kimberlite pipes produce a resistivity contrast with the unaltered host rock. In many cases weathered kimberlite pipes were associated with thick conductive layers that contrasted with overlying or adjacent relatively thin layers of lake bottom sediments or overburden.

Areas of widespread conductivity are commonly encountered during surveys. These conductive zones may reflect alteration zones, shallow-dipping sulphide or graphite-rich units, saline ground water, or conductive overburden. In such areas, EM amplitude changes can be generated by decreases of only 5 m in survey altitude, as well as by increases in conductivity. The typical flight record in conductive areas is characterized by in-phase and quadrature channels that are continuously active. Local EM peaks reflect either increases in conductivity of the earth or decreases in survey altitude. For such conductive areas, apparent resistivity profiles and contour maps are necessary for the correct interpretation of the airborne data. The advantage of the resistivity parameter is that anomalies caused by altitude changes are virtually eliminated, so the resistivity data reflect only those anomalies caused by conductivity changes. The resistivity analysis also helps the interpreter to differentiate between conductive bedrock and conductive overburden. For example, discrete conductors will generally appear as narrow lows on the contour map and broad conductors (e.g., overburden) will appear as wide lows.

The apparent resistivity is calculated using the pseudo-layer (or buried) half-space model defined by Fraser (1978). This model consists of a resistive layer overlying a conductive half-space. The depth channels give the apparent depth below surface of the conductive material. The apparent depth is simply the apparent thickness of the overlying resistive layer. The apparent depth (or thickness) parameter will be positive when the upper layer is more resistive than the underlying material, in which case the apparent depth may be quite close to the true depth.

6 Resistivity mapping with an airborne multicoil electromagnetic system: Geophysics, v. 43, p.144-172
Appendix B.7 -

The apparent depth will be negative when the upper layer is more conductive than the underlying material, and will be zero when a homogeneous half-space exists. The apparent depth parameter must be interpreted cautiously because it will contain any errors that might exist in the measured altitude of the EM bird (e.g., as caused by a dense tree cover). The inputs to the resistivity algorithm are the in-phase and quadrature components of the coplanar coil-pair. The outputs are the apparent resistivity of the conductive half-space (the source) and the sensor-source distance. The flying height is not an input variable, and the output resistivity and sensor-source distance are independent of the flying height when the conductivity of the measured material is sufficient to yield significant in-phase as well as quadrature responses. The apparent depth, discussed above, is simply the sensor-source distance minus the measured altitude or flying height. Consequently, errors in the measured altitude will affect the apparent depth parameter but not the apparent resistivity parameter.

The apparent depth parameter is a useful indicator of simple layering in areas lacking a heavy tree cover. Depth information has been used for permafrost mapping, where positive apparent depths were used as a measure of permafrost thickness. However, little quantitative use has been made of negative apparent depths because the absolute value of the negative depth is not a measure of the thickness of the conductive upper layer and, therefore, is not meaningful physically. Qualitatively, a negative apparent depth estimate usually shows that the EM anomaly is caused by conductive overburden. Consequently, the apparent depth channel can be of significant help in distinguishing between overburden and bedrock conductors.

Interpretation in Conductive Environments

Environments having low background resistivities (e.g., below 30 ohm-m for a 900 Hz system) yield very large responses from the conductive ground. This usually prohibits the recognition of discrete bedrock conductors. However, Fugro data processing techniques produce three parameters that contribute significantly to the recognition of bedrock conductors in conductive environments. These are the in-phase and quadrature difference channels (DIFI and DIFQ, which are available only on systems with “common” frequencies on orthogonal coil pairs), and the resistivity and depth channels (RES and DEP) for each coplanar frequency.

The EM difference channels (DIFI and DIFQ) eliminate most of the responses from conductive ground, leaving responses from bedrock conductors, cultural features (e.g., telephone lines, fences, etc.) and edge effects. Edge effects often occur near the perimeter of broad conductive zones. This can be a source of geologic noise. While edge effects yield anomalies on the EM difference channels, they do not produce resistivity anomalies. Consequently, the resistivity channel aids in eliminating anomalies due to edge effects. On the other hand, resistivity anomalies will coincide with the most highly conductive sections of conductive ground, and this is another source of geologic noise. The recognition of a bedrock conductor in a conductive environment therefore is based on the anomalous
Appendix B.8 -

responses of the two difference channels (DIFI and DIFQ) and the resistivity channels (RES). The most favourable situation is where anomalies coincide on all channels.

The DEP channels, which give the apparent depth to the conductive material, also help to determine whether a conductive response arises from surficial material or from a conductive zone in the bedrock. When these channels ride above the zero level on the depth profiles (i.e., depth is negative), it implies that the EM and resistivity profiles are responding primarily to a conductive upper layer, i.e., conductive overburden. If the DEP channels are below the zero level, it indicates that a resistive upper layer exists, and this usually implies the existence of a bedrock conductor. If the low frequency DEP channel is below the zero level and the high frequency DEP is above, this suggests that a bedrock conductor occurs beneath conductive cover.

Reduction of Geologic Noise

Geologic noise refers to unwanted geophysical responses. For purposes of airborne EM surveying, geologic noise refers to EM responses caused by conductive overburden and magnetic permeability. It was mentioned previously that the EM difference channels (i.e., channel DIFI for in-phase and DIFQ for quadrature) tend to eliminate the response of conductive overburden.

Magnetite produces a form of geological noise on the in-phase channels. Rocks containing less than 1% magnetite can yield negative in-phase anomalies caused by magnetic permeability. When magnetite is widely distributed throughout a survey area, the in-phase EM channels may continuously rise and fall, reflecting variations in the magnetite percentage, flying height, and overburden thickness. This can lead to difficulties in recognizing deeply buried bedrock conductors, particularly if conductive overburden also exists. However, the response of broadly distributed magnetite generally vanishes on the in-phase difference channel DIFI. This feature can be a significant aid in the recognition of conductors that occur in rocks containing accessory magnetite.

EM Magnetite Mapping

The information content of HEM data consists of a combination of conductive eddy current responses and magnetic permeability responses. The secondary field resulting from conductive eddy current flow is frequency-dependent and consists of both in-phase and quadrature components, which are positive in sign. On the other hand, the secondary field resulting from magnetic permeability is independent of frequency and consists of only an in-phase component which is negative in sign. When magnetic permeability manifests itself by decreasing the measured amount of positive in-phase, its presence may be difficult to recognize. However, when it manifests itself by yielding a negative in-phase anomaly (e.g., in the absence of eddy current flow), its presence is assured. In this latter case, the negative component can be used to estimate the percent magnetite content.
A magnetite mapping technique, based on the low frequency coplanar data, can be complementary to magnetometer mapping in certain cases. Compared to magnetometry, it is far less sensitive but is more able to resolve closely spaced magnetite zones, as well as providing an estimate of the amount of magnetite in the rock. The method is sensitive to 1/4% magnetite by weight when the EM sensor is at a height of 30 m above a magnetitic half-space. It can individually resolve steep dipping narrow magnetite-rich bands which are separated by 60 m. Unlike magnetometry, the EM magnetite method is unaffected by remanent magnetism or magnetic latitude.

The EM magnetite mapping technique provides estimates of magnetite content which are usually correct within a factor of 2 when the magnetite is fairly uniformly distributed. EM magnetite maps can be generated when magnetic permeability is evident as negative in-phase responses on the data profiles.

Like magnetometry, the EM magnetite method maps only bedrock features, provided that the overburden is characterized by a general lack of magnetite. This contrasts with resistivity mapping which portrays the combined effect of bedrock and overburden.

The Susceptibility Effect

When the host rock is conductive, the positive conductivity response will usually dominate the secondary field, and the susceptibility effect will appear as a reduction in the in-phase, rather than as a negative value. The in-phase response will be lower than would be predicted by a model using zero susceptibility. At higher frequencies the in-phase conductivity response also gets larger, so a negative magnetite effect observed on the low frequency might not be observable on the higher frequencies, over the same body. The susceptibility effect is most obvious over discrete magnetite-rich zones, but also occurs over uniform geology such as a homogeneous half-space.

High magnetic susceptibility will affect the calculated apparent resistivity, if only conductivity is considered. Standard apparent resistivity algorithms use a homogeneous half-space model, with zero susceptibility. For these algorithms, the reduced in-phase response will, in most cases, make the apparent resistivity higher than it should be. It is important to note that there is nothing wrong with the data, nor is there anything wrong with the processing algorithms. The apparent difference results from the fact that the simple geological model used in processing does not match the complex geology.

7 Magnetic susceptibility and permeability are two measures of the same physical property. Permeability is generally given as relative permeability, μ_r, which is the permeability of the substance divided by the permeability of free space ($4\pi \times 10^{-7}$). Magnetic susceptibility k is related to permeability by $k=\mu_r^{-1}$. Susceptibility is a unitless measurement, and is usually reported in units of 10^6. The typical range of susceptibilities is -1 for quartz, 130 for pyrite, and up to 5×10^5 for magnetite, in 10^6 units (Telford et al, 1986).
Measuring and Correcting the Magnetite Effect

Theoretically, it is possible to calculate (forward model) the combined effect of electrical conductivity and magnetic susceptibility on an EM response in all environments. The difficulty lies, however, in separating out the susceptibility effect from other geological effects when deriving resistivity and susceptibility from EM data.

Over a homogeneous half-space, there is a precise relationship between in-phase, quadrature, and altitude. These are often resolved as phase angle, amplitude, and altitude. Within a reasonable range, any two of these three parameters can be used to calculate the half space resistivity. If the rock has a positive magnetic susceptibility, the in-phase component will be reduced and this departure can be recognized by comparison to the other parameters.

The algorithm used to calculate apparent susceptibility and apparent resistivity from HEM data, uses a homogeneous half-space geological model. Non half-space geology, such as horizontal layers or dipping sources, can also distort the perfect half-space relationship of the three data parameters. While it may be possible to use more complex models to calculate both rock parameters, this procedure becomes very complex and time-consuming. For basic HEM data processing, it is most practical to stick to the simplest geological model.

Magnetite reversals (reversed in-phase anomalies) have been used for many years to calculate an “FeO” or magnetite response from HEM data (Fraser, 1981). However, this technique could only be applied to data where the in-phase was observed to be negative, which happens when susceptibility is high and conductivity is low.

Applying Susceptibility Corrections

Resistivity calculations done with susceptibility correction may change the apparent resistivity. High-susceptibility conductors, that were previously masked by the susceptibility effect in standard resistivity algorithms, may become evident. In this case the susceptibility corrected apparent resistivity is a better measure of the actual resistivity of the earth. However, other geological variations, such as a deep resistive layer, can also reduce the in-phase by the same amount. In this case, susceptibility correction would not be the best method. Different geological models can apply in different areas of the same data set. The effects of susceptibility, and other effects that can create a similar response, must be considered when selecting the resistivity algorithm.

Susceptibility from EM vs Magnetic Field Data

The response of the EM system to magnetite may not match that from a magnetometer survey. First, HEM-derived susceptibility is a rock property measurement, like
resistivity. Magnetic data show the total magnetic field, a measure of the potential field, not the rock property. Secondly, the shape of an anomaly depends on the shape and direction of the source magnetic field. The electromagnetic field of HEM is much different in shape from the earth’s magnetic field. Total field magnetic anomalies are different at different magnetic latitudes; HEM susceptibility anomalies have the same shape regardless of their location on the earth.

In far northern latitudes, where the magnetic field is nearly vertical, the total magnetic field measurement over a thin vertical dike is very similar in shape to the anomaly from the HEM-derived susceptibility (a sharp peak over the body). The same vertical dike at the magnetic equator would yield a negative magnetic anomaly, but the HEM susceptibility anomaly would show a positive susceptibility peak.

Effects of Permeability and Dielectric Permittivity

Resistivity algorithms that assume free-space magnetic permeability and dielectric permittivity, do not yield reliable values in highly magnetic or highly resistive areas. Both magnetic polarization and displacement currents cause a decrease in the in-phase component, often resulting in negative values that yield erroneously high apparent resistivities. The effects of magnetite occur at all frequencies, but are most evident at the lowest frequency. Conversely, the negative effects of dielectric permittivity are most evident at the higher frequencies, in resistive areas.

The table below shows the effects of varying permittivity over a resistive (10,000 ohm-m) half space, at frequencies of 56,000 Hz (DIGHEM) and 102,000 Hz (RESOLVE).

<table>
<thead>
<tr>
<th>Freq (Hz)</th>
<th>Coil</th>
<th>Sep (m)</th>
<th>Thres (ppm)</th>
<th>Alt (m)</th>
<th>In Phase</th>
<th>Quad Phase</th>
<th>App Res</th>
<th>App Depth (m)</th>
<th>Permittivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>56,000</td>
<td>CP</td>
<td>6.3</td>
<td>0.1</td>
<td>30</td>
<td>7.3</td>
<td>35.3</td>
<td>10118</td>
<td>-1.0</td>
<td>1 Air</td>
</tr>
<tr>
<td>56,000</td>
<td>CP</td>
<td>6.3</td>
<td>0.1</td>
<td>30</td>
<td>3.6</td>
<td>36.6</td>
<td>19838</td>
<td>-13.2</td>
<td>5 Quartz</td>
</tr>
<tr>
<td>56,000</td>
<td>CP</td>
<td>6.3</td>
<td>0.1</td>
<td>30</td>
<td>-1.1</td>
<td>38.3</td>
<td>81832</td>
<td>-25.7</td>
<td>10 Epidote</td>
</tr>
<tr>
<td>56,000</td>
<td>CP</td>
<td>6.3</td>
<td>0.1</td>
<td>30</td>
<td>-10.4</td>
<td>42.3</td>
<td>76620</td>
<td>-25.8</td>
<td>20 Granite</td>
</tr>
<tr>
<td>56,000</td>
<td>CP</td>
<td>6.3</td>
<td>0.1</td>
<td>30</td>
<td>-19.7</td>
<td>46.9</td>
<td>71550</td>
<td>-26.0</td>
<td>30 Diabase</td>
</tr>
<tr>
<td>56,000</td>
<td>CP</td>
<td>6.3</td>
<td>0.1</td>
<td>30</td>
<td>-28.7</td>
<td>52.0</td>
<td>66787</td>
<td>-26.1</td>
<td>40 Gabbro</td>
</tr>
<tr>
<td>102,000</td>
<td>CP</td>
<td>7.86</td>
<td>0.1</td>
<td>30</td>
<td>32.5</td>
<td>117.2</td>
<td>9409</td>
<td>-0.3</td>
<td>1 Air</td>
</tr>
<tr>
<td>102,000</td>
<td>CP</td>
<td>7.86</td>
<td>0.1</td>
<td>30</td>
<td>11.7</td>
<td>127.2</td>
<td>25956</td>
<td>-16.8</td>
<td>5 Quartz</td>
</tr>
<tr>
<td>102,000</td>
<td>CP</td>
<td>7.86</td>
<td>0.1</td>
<td>30</td>
<td>-14.0</td>
<td>141.6</td>
<td>97064</td>
<td>-26.5</td>
<td>10 Epidote</td>
</tr>
</tbody>
</table>

Apparent Resistivity Calculations

Effects of Permittivity on In-phase/Quadrature/Resistivity
Methods have been developed (Huang and Fraser, 2000, 2001) to correct apparent resistivities for the effects of permittivity and permeability. The corrected resistivities yield more credible values than if the effects of permittivity and permeability are disregarded.

Recognition of Culture

Cultural responses include all EM anomalies caused by man-made metallic objects. Such anomalies may be caused by inductive coupling or current gathering. The concern of the interpreter is to recognize when an EM response is due to culture. Points of consideration used by the interpreter, when coaxial and coplanar coil-pairs are operated at a common frequency, are as follows:

1. Channels CXPL and CPPL monitor 60 Hz radiation. An anomaly on these channels shows that the conductor is radiating power. Such an indication is normally a guarantee that the conductor is cultural. However, care must be taken to ensure that the conductor is not a geologic body that strikes across a power line, carrying leakage currents.

2. A flight that crosses a "line" (e.g., fence, telephone line, etc.) yields a centre-peaked coaxial anomaly and an m-shaped coplanar anomaly. When the flight crosses the cultural line at a high angle of intersection, the amplitude ratio of coaxial/coplanar response is 2. Such an EM anomaly can only be caused by a line. The geologic body that yields anomalies most closely resembling a line is the vertically dipping thin dike. Such a body, however, yields an amplitude ratio of 1 rather than 2. Consequently, an m-shaped coplanar anomaly with a CXI/CPI amplitude ratio of 2 is virtually a guarantee that the source is a cultural line.

3. A flight that crosses a sphere or horizontal disk yields centre-peaked coaxial and coplanar anomalies with a CXI/CPI amplitude ratio (i.e., coaxial/coplanar) of 1/8. In the absence of geologic bodies of this geometry, the most likely conductor is a metal

See Figure B-1 presented earlier.
rooftop or small fenced yard. Anomalies of this type are virtually certain to be cultural if they occur in an area of culture.

4. A flight that crosses a horizontal rectangular body or wide ribbon yields an m-shaped coaxial anomaly and a centre-peaked coplanar anomaly. In the absence of geologic bodies of this geometry, the most likely conductor is a large fenced area. Anomalies of this type are virtually certain to be cultural if they occur in an area of culture.

5. EM anomalies that coincide with culture, as seen on the camera film or video display, are usually caused by culture. However, care is taken with such coincidences because a geologic conductor could occur beneath a fence, for example. In this example, the fence would be expected to yield an m-shaped coplanar anomaly as in case #2 above. If, instead, a centre-peaked coplanar anomaly occurred, there would be concern that a thick geologic conductor coincided with the cultural line.

6. The above description of anomaly shapes is valid when the culture is not conductively coupled to the environment. In this case, the anomalies arise from inductive coupling to the EM transmitter. However, when the environment is quite conductive (e.g., less than 100 ohm-m at 900 Hz), the cultural conductor may be conductively coupled to the environment. In this latter case, the anomaly shapes tend to be governed by current gathering. Current gathering can completely distort the anomaly shapes, thereby complicating the identification of cultural anomalies. In such circumstances, the interpreter can only rely on the radiation channels and on the camera film or video records.

Magnetic Responses

The measured total magnetic field provides information on the magnetic properties of the earth materials in the survey area. The information can be used to locate magnetic bodies of direct interest for exploration, and for structural and lithological mapping.

The total magnetic field response reflects the abundance of magnetic material in the source. Magnetite is the most common magnetic mineral. Other minerals such as ilmenite, pyrrhotite, franklinite, chromite, hematite, arsenopyrite, limonite and pyrite are also magnetic, but to a lesser extent than magnetite on average.

In some geological environments, an EM anomaly with magnetic correlation has a greater likelihood of being produced by sulphides than one which is non-magnetic. However,

9 It is a characteristic of EM that geometrically similar anomalies are obtained from: (1) a planar conductor, and (2) a wire which forms a loop having dimensions identical to the perimeter of the equivalent planar conductor.
sulphide ore bodies may be non-magnetic (e.g., the Kidd Creek deposit near Timmins, Canada) as well as magnetic (e.g., the Mattabi deposit near Sturgeon Lake, Canada).

Iron ore deposits will be anomalously magnetic in comparison to surrounding rock due to the concentration of iron minerals such as magnetite, ilmenite and hematite. Changes in magnetic susceptibility often allow rock units to be differentiated based on the total field magnetic response. Geophysical classifications may differ from geological classifications if various magnetite levels exist within one general geological classification. Geometric considerations of the source such as shape, dip and depth, inclination of the earth's field and remanent magnetization will complicate such an analysis.

In general, mafic lithologies contain more magnetite and are therefore more magnetic than many sediments which tend to be weakly magnetic. Metamorphism and alteration can also increase or decrease the magnetization of a rock unit.

Textural differences on a total field magnetic contour, colour or shadow map due to the frequency of activity of the magnetic parameter resulting from inhomogeneities in the distribution of magnetite within the rock, may define certain lithologies. For example, near surface volcanics may display highly complex contour patterns with little line-to-line correlation.

Rock units may be differentiated based on the plan shapes of their total field magnetic responses. Mafic intrusive plugs can appear as isolated "bulls-eye" anomalies. Granitic intrusives appear as sub-circular zones, and may have contrasting rings due to contact metamorphism. Generally, granitic terrain will lack a pronounced strike direction, although granite gneiss may display strike.

Linear north-south units are theoretically not well-defined on total field magnetic maps in equatorial regions due to the low inclination of the earth's magnetic field. However, most stratigraphic units will have variations in composition along strike that will cause the units to appear as a series of alternating magnetic highs and lows.

Faults and shear zones may be characterized by alteration that causes destruction of magnetite (e.g., weathering) that produces a contrast with surrounding rock. Structural breaks may be filled by magnetite-rich, fracture filling material as is the case with diabase dikes, or by non-magnetic felsic material.

Faulting can also be identified by patterns in the magnetic total field contours or colours. Faults and dikes tend to appear as lineaments and often have strike lengths of several kilometres. Offsets in narrow, magnetic, stratigraphic trends also delineate structure. Sharp contrasts in magnetic lithologies may arise due to large displacements along strike-slip or dip-slip faults.
APPENDIX C

DATA ARCHIVE DESCRIPTION
APPENDIX C

ARCHIVE DESCRIPTION

Reference: CDVD00343
of DVD’s: 1
Archive Date: December 19, 2008

This archive contains final data and grids of an airborne geophysical survey conducted by FUGRO AIRBORNE SURVEYS CORP. on behalf of Minemakers Ltd. flown from October 14th to October 18th, 2008.

Job # 08064

***** Disc 1 of 1 ******

\GRIDS

\Geosoft
Grids in Geosoft format with associated .GI files

CVG_GEA*.GRD - Calculated Vertical Magnetic Gradient nT/m
MAG_GEA*.GRD - Total Magnetic Field nT
CON400_GEA*.GRD - Apparent Conductivity 400 Hz coplanar mS/m
CON1800_GEA*.GRD - Apparent Conductivity 1800 Hz coplanar mS/m
CON8200_GEA*.GRD - Apparent Conductivity 8200 Hz coplanar mS/m
CON40K_GEA*.GRD - Apparent Conductivity 40000 Hz coplanar mS/m
CON140K_GEA*.GRD - Apparent Conductivity 140000 Hz coplanar mS/m
CVG_ARRUWURRA.GRD - Calculated Vertical Magnetic Gradient nT/m
MAG_ARRUWURRA.GRD - Total Magnetic Field nT
CON400_ARRUWURRA.GRD - Apparent Conductivity 400 Hz coplanar ohm.m
CON1800_ARRUWURRA.GRD - Apparent Conductivity 1800 Hz coplanar ohm.m
CON8200_ARRUWURRA.GRD - Apparent Conductivity 8200 Hz coplanar ohm.m
CON40K_ARRUWURRA.GRD - Apparent Conductivity 40000 Hz coplanar ohm.m
CON140K_ADD_BLK.GRD - Apparent Conductivity 140000 Hz coplanar ohm.m

Where * is the block number (1-7)

\LINEDATA

GEA*_08064.GDB - Data archive in Geosoft GDB format
GEA*_08064.XYZ - Data archive in Geosoft ASCII format
ARRUWURRA_08064.GDB - Data archive in Geosoft GDB format
ARRUWURRA_08064.XYZ - Data archive in Geosoft ASCII format

Where * is the block number (1-7)

\PDF

CVG_*_.GRD - Calculated Vertical Magnetic Gradient nT/m
MAG_*_.GRD - Total Magnetic Field nT
CON400_*_.GRD - Apparent Conductivity 400 Hz coplanar mS/m
CON1800_*_.GRD - Apparent Conductivity 1800 coplanar mS/m
CON8200_*_.GRD - Apparent Conductivity 8200 coplanar mS/m
CON40K_*_.GRD - Apparent Conductivity 40000 coplanar mS/m
CON140K_*_.GRD - Apparent Conductivity 140000 coplanar mS/m

Where * is A (GEA1,4,6), B (GEA2,5 and ARRUWURRA) or C (GEA3,7)

\REPORT
08064rep.PDF - Logistics Report

\VIDEO
FUGRODVD_MONTAJ7.ZIP - Video viewer used in conjunction with Oasis Montaj
FUGROVIDEOVIEWER.ZIP - Stand alone video viewer
FLT*_0.BDX/.BIN - Digital Flight Video

Where * is the flight number

Geosoft GDB and XYZ ARCHIVE SUMMARY

<table>
<thead>
<tr>
<th># CHANNEL NAME</th>
<th>TIME</th>
<th>UNITS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x</td>
<td>0.1</td>
<td>m</td>
<td>eastings</td>
</tr>
<tr>
<td>2 y</td>
<td>0.1</td>
<td>m</td>
<td>northings</td>
</tr>
<tr>
<td>3 fid</td>
<td>0.1</td>
<td></td>
<td>synchronization counter</td>
</tr>
<tr>
<td>4 latitude</td>
<td>0.1</td>
<td>degrees</td>
<td>latitude</td>
</tr>
<tr>
<td>5 longitude</td>
<td>0.1</td>
<td>degrees</td>
<td>longitude</td>
</tr>
<tr>
<td>6 flight</td>
<td>0.1</td>
<td></td>
<td>flight number</td>
</tr>
<tr>
<td>7 date</td>
<td>0.1</td>
<td></td>
<td>flight date (yyyy/mm/dd)</td>
</tr>
<tr>
<td>8 altrad_bird</td>
<td>0.1</td>
<td>m</td>
<td>bird height above ground from radar altimeter</td>
</tr>
<tr>
<td>9 altrad_heli</td>
<td>0.1</td>
<td>m</td>
<td>helicopter height above ground from radar altimeter</td>
</tr>
<tr>
<td>10 gpsz</td>
<td>0.1</td>
<td>m</td>
<td>survey height above spheroid</td>
</tr>
<tr>
<td>11 dem</td>
<td>0.1</td>
<td>m</td>
<td>terrain with respect to WGS84 datum</td>
</tr>
<tr>
<td>12 diurnal_filt</td>
<td>0.1</td>
<td>nT</td>
<td>ground magnetic intensity</td>
</tr>
<tr>
<td>13 diurnal_cor</td>
<td>0.1</td>
<td>nT</td>
<td>diurnal correction - base removed</td>
</tr>
<tr>
<td>14 mag_raw</td>
<td>0.1</td>
<td>nT</td>
<td>total magnetic field - raw, spike rejected</td>
</tr>
<tr>
<td>15 mag_lag</td>
<td>0.1</td>
<td>nT</td>
<td>total magnetic field - corrected for lag</td>
</tr>
<tr>
<td>16 mag_diu</td>
<td>0.1</td>
<td>nT</td>
<td>total magnetic field - diurnal variation removed</td>
</tr>
<tr>
<td>17 igrf</td>
<td>0.1</td>
<td>nT</td>
<td>international geomagnetic reference field</td>
</tr>
<tr>
<td>18 mag_rmi</td>
<td>0.1</td>
<td>nT</td>
<td>residual magnetic intensity - final</td>
</tr>
<tr>
<td>19 cpi400_r</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar inphase 400 Hz - unlevelled</td>
</tr>
<tr>
<td>20 cpq400_r</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar quadrature 400 Hz - unlevelled</td>
</tr>
<tr>
<td>21 cpi1800_r</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar inphase 1800 Hz - unlevelled</td>
</tr>
<tr>
<td>22 cpq1800_r</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar quadrature 1800 Hz - unlevelled</td>
</tr>
<tr>
<td>23 cxii3300_r</td>
<td>0.1</td>
<td>ppm</td>
<td>coaxial inphase 3300 Hz - unlevelled</td>
</tr>
<tr>
<td>24 cxii3300_r</td>
<td>0.1</td>
<td>ppm</td>
<td>coaxial quadrature 3300 Hz - unlevelled</td>
</tr>
<tr>
<td>25 cpi8200_r</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar inphase 8200 Hz - unlevelled</td>
</tr>
<tr>
<td>26 cpq8200_r</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar quadrature 8200 Hz - unlevelled</td>
</tr>
<tr>
<td>27 cpi40k_r</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar inphase 40 kHz - unlevelled</td>
</tr>
<tr>
<td>28 cpq40k_r</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar quadrature 40 kHz - unlevelled</td>
</tr>
<tr>
<td>29 cpi140k_r</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar inphase 140 kHz - unlevelled</td>
</tr>
<tr>
<td>30 cpq140k_r</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar quadrature 140 kHz - unlevelled</td>
</tr>
<tr>
<td>31 cpi400</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar inphase 400 Hz</td>
</tr>
<tr>
<td>32 cpq400</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar quadrature 400 Hz</td>
</tr>
<tr>
<td>33 cpi1800</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar inphase 1800 Hz</td>
</tr>
<tr>
<td>34 cpq1800</td>
<td>0.1</td>
<td>ppm</td>
<td>coplanar quadrature 1800 Hz</td>
</tr>
<tr>
<td>35 cxii3300</td>
<td>0.1</td>
<td>ppm</td>
<td>coaxial inphase 3300 Hz</td>
</tr>
<tr>
<td>36 cxii3300</td>
<td>0.1</td>
<td>ppm</td>
<td>coaxial quadrature 3300 Hz</td>
</tr>
<tr>
<td>Item</td>
<td>Frequency</td>
<td>Unit</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>--------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>37</td>
<td>cpi8200</td>
<td>0.1 ppm</td>
<td>coplanar inphase 8200 Hz</td>
</tr>
<tr>
<td>38</td>
<td>cpq8200</td>
<td>0.1 ppm</td>
<td>coplanar quadrature 8200 Hz</td>
</tr>
<tr>
<td>39</td>
<td>cpi40k</td>
<td>0.1 ppm</td>
<td>coplanar inphase 40 kHz</td>
</tr>
<tr>
<td>40</td>
<td>cpq40k</td>
<td>0.1 ppm</td>
<td>coplanar quadrature 40 kHz</td>
</tr>
<tr>
<td>41</td>
<td>cpi140k</td>
<td>0.1 ppm</td>
<td>coplanar inphase 140 kHz</td>
</tr>
<tr>
<td>42</td>
<td>cpq140k</td>
<td>0.1 ppm</td>
<td>coplanar quadrature 140 kHz</td>
</tr>
<tr>
<td>43</td>
<td>res400</td>
<td>0.1 ohm·m</td>
<td>apparent resistivity - 400 Hz</td>
</tr>
<tr>
<td>44</td>
<td>res1800</td>
<td>0.1 ohm·m</td>
<td>apparent resistivity - 1800 Hz</td>
</tr>
<tr>
<td>45</td>
<td>res8200</td>
<td>0.1 ohm·m</td>
<td>apparent resistivity - 8200 Hz</td>
</tr>
<tr>
<td>46</td>
<td>res40k</td>
<td>0.1 ohm·m</td>
<td>apparent resistivity - 40 kHz</td>
</tr>
<tr>
<td>47</td>
<td>res140k</td>
<td>0.1 ohm·m</td>
<td>apparent resistivity - 140 kHz</td>
</tr>
<tr>
<td>48</td>
<td>dep400</td>
<td>0.1 m</td>
<td>apparent depth - 400 Hz</td>
</tr>
<tr>
<td>49</td>
<td>dep1800</td>
<td>0.1 m</td>
<td>apparent depth - 1800 Hz</td>
</tr>
<tr>
<td>50</td>
<td>dep8200</td>
<td>0.1 m</td>
<td>apparent depth - 8200 Hz</td>
</tr>
<tr>
<td>51</td>
<td>dep40k</td>
<td>0.1 m</td>
<td>apparent depth - 40 kHz</td>
</tr>
<tr>
<td>52</td>
<td>dep140k</td>
<td>0.1 m</td>
<td>apparent depth - 140 kHz</td>
</tr>
<tr>
<td>53</td>
<td>con400</td>
<td>0.1 mS/m</td>
<td>apparent conductivity - 400 Hz</td>
</tr>
<tr>
<td>54</td>
<td>con1800</td>
<td>0.1 mS/m</td>
<td>apparent conductivity - 1800 Hz</td>
</tr>
<tr>
<td>55</td>
<td>con8200</td>
<td>0.1 mS/m</td>
<td>apparent conductivity - 8200 Hz</td>
</tr>
<tr>
<td>56</td>
<td>con40k</td>
<td>0.1 mS/m</td>
<td>apparent conductivity - 40 kHz</td>
</tr>
<tr>
<td>57</td>
<td>con140k</td>
<td>0.1 mS/m</td>
<td>apparent conductivity - 140 kHz</td>
</tr>
<tr>
<td>58</td>
<td>cppl</td>
<td></td>
<td>coplanar powerline monitor</td>
</tr>
<tr>
<td>59</td>
<td>cpsp</td>
<td></td>
<td>coplanar spherics monitor</td>
</tr>
<tr>
<td>60</td>
<td>cxsp</td>
<td></td>
<td>coaxial spherics monitor</td>
</tr>
</tbody>
</table>

The coordinate system for all grids and the data archive is projected as follows:

- **Datum**: WGS84
- **Spheroid**: WGS84
- **Central meridian**: 135 East (Z53)
- **False easting**: 500000
- **False northing**: 10000000
- **Scale factor**: 0.9996
- **Northern parallel**: N/A
- **Base parallel**: N/A
- **WGS84 to local conversion method**: Molodensky
- **Delta X shift**: 0
- **Delta Y shift**: 0
- **Delta Z shift**: 0

If you have any problems with this archive please contact:

Processing Manager
FUGRO AIRBORNE SURVEYS CORP.
2505 Meadowvale Blvd
Mississauga, Ontario
Canada L5N 5S2
Tel (905) 812-0212
Fax (905) 812-1504
E-mail toronto@fugroairborne.com
APPENDIX D

DATA PROCESSING FLOWCHARTS
APPENDIX D

Processing Flow Chart - Electromagnetic Data

Fugro Airborne Surveys
Electromagnetic Data Processing Flow

- EM System Lag Test Data
- EM Airborne Flight Data
- EM Base Level Picks From Flights to Height
- Load into Oasis database
- Apply base level corrections
- Apply lag correction
- Edit EM data: manual spike removal, spheric removal filter
- Calculate Resistivity, Level EM and do Quality Control:
 - manual level adjustments
 - check phase and gain
 - microlevelling routines (optional)
- Geophysicist selects, interprets, and classifies EM anomalies
- Grids, Colour Maps, Contour Maps

Processing Flow Chart - Magnetic Data

Fugro Airborne Surveys
Magnetic Data Processing Flow

- Magnetic System Lag Test Data
- Magnetic Airborne Flight Data
- Magnetic Base Station Data
- Load into Oasis database
- Apply lag correction
- Edit base station data: spike removal, low pass filter, base station data
- Edit airbase magnetic data: manual spike removal, fourth difference spike removal
- Level magnetic data:
 - base station subtraction
 - magnetic levelling network/tie line intersections
 - manual level adjustments
 - microlevelling routines
 - IGRF or local trend removal Derivatives
- Grids, Colour Maps, Contour Maps
APPENDIX E

GLOSSARY
GLOSSARY OF AIRBORNE GEOPHYSICAL TERMS

Note: The definitions given in this glossary refer to the common terminology as used in airborne geophysics.

altitude attenuation: the absorption of gamma rays by the atmosphere between the earth and the detector. The number of gamma rays detected by a system decreases as the altitude increases.

apparent: the physical parameters of the earth measured by a geophysical system are normally expressed as apparent, as in “apparent resistivity”. This means that the measurement is limited by assumptions made about the geology in calculating the response measured by the geophysical system. Apparent resistivity calculated with HEM, for example, generally assumes that the earth is a homogeneous half-space – not layered.

amplitude: The strength of the total electromagnetic field. In frequency domain it is most often the sum of the squares of in-phase and quadrature components. In multi-component electromagnetic surveys it is generally the sum of the squares of all three directional components.

analytic signal: The total amplitude of all the directions of magnetic gradient. Calculated as the sum of the squares.

anisotropy: Having different physical parameters in different directions. This can be caused by layering or fabric in the geology. Note that a unit can be anisotropic, but still homogeneous.

anomaly: A localized change in the geophysical data characteristic of a discrete source, such as a conductive or magnetic body: something locally different from the background.

B-field: In time-domain electromagnetic surveys, the magnetic field component of the (electromagnetic) field. This can be measured directly, although more commonly it is calculated by integrating the time rate of change of the magnetic field dB/dt, as measured with a receiver coil.

background: The “normal” response in the geophysical data – that response observed over most of the survey area. Anomalies are usually measured relative to the background. In airborne gamma-ray spectrometric surveys the term defines the cosmic, radon, and aircraft responses in the absence of a signal from the ground.

base-level: The measured values in a geophysical system in the absence of any outside signal. All geophysical data are measured relative to the system base level.
base frequency: The frequency of the pulse repetition for a *time-domain electromagnetic* system. Measured between subsequent positive pulses.

bird: A common name for the pod towed beneath or behind an aircraft, carrying the geophysical sensor array.

bucking: The process of removing the strong *signal* from the *primary field* at the *receiver* from the data, to measure the *secondary field*. It can be done electronically or mathematically. This is done in *frequency-domain EM*, and to measure *on-time* in *time-domain EM*.

calibration coil: A wire coil of known size and dipole moment, which is used to generate a field of known *amplitude* and *phase* in the receiver, for system calibration. Calibration coils can be external, or internal to the system. Internal coils may be called Q-coils.

coaxial coils: [CX] Coaxial coils in an HEM system are in the vertical plane, with their axes horizontal and collinear in the flight direction. These are most sensitive to vertical conductive objects in the ground, such as thin, steeply dipping conductors perpendicular to the flight direction. Coaxial coils generally give the sharpest anomalies over localized conductors. (See also *coplanar coils*)

coil: A multi-turn wire loop used to transmit or detect electromagnetic fields. Time varying *electromagnetic* fields through a coil induce a voltage proportional to the strength of the field and the rate of change over time.

compensation: Correction of airborne geophysical data for the changing effect of the aircraft. This process is generally used to correct data in *fixed-wing time-domain electromagnetic* surveys (where the transmitter is on the aircraft and the receiver is moving), and magnetic surveys (where the sensor is on the aircraft, turning in the earth's magnetic field).

component: In *frequency domain electromagnetic* surveys this is one of the two *phase* measurements – *in-phase* or *quadrature*. In “multi-component” electromagnetic surveys it is also used to define the measurement in one geometric direction (vertical, horizontal in-line and horizontal transverse – the Z, X and Y components).

Compton scattering: gamma ray photons will bounce off electrons as they pass through the earth and atmosphere, reducing their energy and then being detected by *radiometric* sensors at lower energy levels. See also *stripping*.

conductance: See *conductivity thickness*
Appendix E.3

conductivity: \(\sigma \) The facility with which the earth or a geological formation conducts electricity. Conductivity is usually measured in milli-Siemens per metre (mS/m). It is the reciprocal of **resistivity**.

conductivity-depth imaging: see **conductivity-depth transform**.

conductivity-depth transform: A process for converting electromagnetic measurements to an approximation of the conductivity distribution vertically in the earth, assuming a **layered earth**. (Macnae and Lamontagne, 1987; Wolfgram and Karlik, 1995)

conductivity thickness: \(\sigma t \) The product of the **conductivity**, and thickness of a large, tabular body. (It is also called the “conductivity-thickness product”) In electromagnetic geophysics, the response of a thin plate-like conductor is proportional to the conductivity multiplied by thickness. For example a 10 metre thickness of 20 Siemens/m mineralization will be equivalent to 5 metres of 40 S/m; both have 200 S conductivity thickness. Sometimes referred to as conductance.

conductor: Used to describe anything in the ground more conductive than the surrounding geology. Conductors are most often clays or graphite, or hopefully some type of mineralization, but may also be man-made objects, such as fences or pipelines.

coplanar coils: [CP] In HEM, the coplanar coils lie in the horizontal plane with their axes vertical, and parallel. These coils are most sensitive to massive conductive bodies, horizontal layers, and the **halfspace**.

cosmic ray: High energy sub-atomic particles from outer space that collide with the earth’s atmosphere to produce a shower of gamma rays (and other particles) at high energies.

counts (per second): The number of **gamma-rays** detected by a gamma-ray **spectrometer**. The rate depends on the geology, but also on the size and sensitivity of the detector.

culture: A term commonly used to denote any man-made object that creates a geophysical anomaly. Includes, but not limited to, power lines, pipelines, fences, and buildings.

current channelling: See current gathering.

current gathering: The tendency of electrical currents in the ground to channel into a conductive formation. This is particularly noticeable at higher frequencies or early time channels when the formation is long and parallel to the direction of current flow. This tends to enhance anomalies relative to inductive currents (see also **induction**). Also known as current channelling.
daughter products: The radioactive natural sources of gamma-rays decay from the original “parent” element (commonly potassium, uranium, and thorium) to one or more lower-energy “daughter” elements. Some of these lower energy elements are also radioactive and decay further. Gamma-ray spectrometry surveys may measure the gamma rays given off by the original element or by the decay of the daughter products.

dB/dt: As the secondary electromagnetic field changes with time, the magnetic field [B] component induces a voltage in the receiving coil, which is proportional to the rate of change of the magnetic field over time.

decay: In time-domain electromagnetic theory, the weakening over time of the eddy currents in the ground, and hence the secondary field after the primary field electromagnetic pulse is turned off. In gamma-ray spectrometry, the radioactive breakdown of an element, generally potassium, uranium, thorium, or one of their daughter products.

decay constant: see time constant.

decay series: In gamma-ray spectrometry, a series of progressively lower energy daughter products produced by the radioactive breakdown of uranium or thorium.

depth of exploration: The maximum depth at which the geophysical system can detect the target. The depth of exploration depends very strongly on the type and size of the target, the contrast of the target with the surrounding geology, the homogeneity of the surrounding geology, and the type of geophysical system. One measure of the maximum depth of exploration for an electromagnetic system is the depth at which it can detect the strongest conductive target – generally a highly conductive horizontal layer.

differential resistivity: A process of transforming apparent resistivity to an approximation of layer resistivity at each depth. The method uses multi-frequency HEM data and approximates the effect of shallow layer conductance determined from higher frequencies to estimate the deeper conductivities (Huang and Fraser, 1996)

dipole moment: [NIA] For a transmitter, the product of the area of a coil, the number of turns of wire, and the current flowing in the coil. At a distance significantly larger than the size of the coil, the magnetic field from a coil will be the same if the dipole moment product is the same. For a receiver coil, this is the product of the area and the number of turns. The sensitivity to a magnetic field (assuming the source is far away) will be the same if the dipole moment is the same.

diurnal: The daily variation in a natural field, normally used to describe the natural fluctuations (over hours and days) of the earth’s magnetic field.
dielectric permittivity: The capacity of a material to store electrical charge, this is most often measured as the relative permittivity \(\varepsilon_r \), or ratio of the material dielectric to that of free space. The effect of high permittivity may be seen in HEM data at high frequencies over highly resistive geology as a reduced or negative in-phase, and higher quadrature data.

drape: To fly a survey following the terrain contours, maintaining a constant altitude above the local ground surface. Also applied to re-processing data collected at varying altitudes above ground to simulate a survey flown at constant altitude.

drift: Long-time variations in the base-level or calibration of an instrument.

eddy currents: The electrical currents induced in the ground, or other conductors, by a time-varying electromagnetic field (usually the primary field). Eddy currents are also induced in the aircraft’s metal frame and skin; a source of noise in EM surveys.

electromagnetic: Comprised of a time-varying electrical and magnetic field. Radio waves are common electromagnetic fields. In geophysics, an electromagnetic system is one which transmits a time-varying primary field to induce eddy currents in the ground, and then measures the secondary field emitted by those eddy currents.

energy window: A broad spectrum of gamma-ray energies measured by a spectrometric survey. The energy of each gamma-ray is measured and divided up into numerous discrete energy levels, called windows.

equivalent (thorium or uranium): The amount of radioelement calculated to be present, based on the gamma-rays measured from a daughter element. This assumes that the decay series is in equilibrium – progressing normally.

exposure rate: in radiometric surveys, a calculation of the total exposure rate due to gamma rays at the ground surface. It is used as a measurement of the concentration of all the radioelements at the surface. See also: natural exposure rate.

fiducial, or fid: Timing mark on a survey record. Originally these were timing marks on a profile or film; now the term is generally used to describe 1-second interval timing records in digital data, and on maps or profiles.

Figure of Merit: (FOM) A sum of the 12 distinct magnetic noise variations measured by each of four flight directions, and executing three aircraft attitude variations (yaw, pitch, and roll) for each direction. The flight directions are generally parallel and perpendicular to planned survey flight directions. The FOM is used as a measure of the manoeuvre noise before and after compensation.

fixed-wing: Aircraft with wings, as opposed to “rotary wing” helicopters.
footprint: This is a measure of the area of sensitivity under the aircraft of an airborne geophysical system. The footprint of an electromagnetic system is dependent on the altitude of the system, the orientation of the transmitter and receiver and the separation between the receiver and transmitter, and the conductivity of the ground. The footprint of a gamma-ray spectrometer depends mostly on the altitude. For all geophysical systems, the footprint also depends on the strength of the contrasting anomaly.

frequency domain: An electromagnetic system which transmits a primary field that oscillates smoothly over time (sinusoidal), inducing a similarly varying electrical current in the ground. These systems generally measure the changes in the amplitude and phase of the secondary field from the ground at different frequencies by measuring the in-phase and quadrature phase components. See also time-domain.

full-stream data: Data collected and recorded continuously at the highest possible sampling rate. Normal data are stacked (see stacking) over some time interval before recording.

gamma-ray: A very high-energy photon, emitted from the nucleus of an atom as it undergoes a change in energy levels.

gamma-ray spectrometry: Measurement of the number and energy of natural (and sometimes man-made) gamma-rays across a range of photon energies.

gradient: In magnetic surveys, the gradient is the change of the magnetic field over a distance, either vertically or horizontally in either of two directions. Gradient data is often measured, or calculated from the total magnetic field data because it changes more quickly over distance than the total magnetic field, and so may provide a more precise measure of the location of a source. See also analytic signal.

ground effect: The response from the earth. A common calibration procedure in many geophysical surveys is to fly to altitude high enough to be beyond any measurable response from the ground, and there establish base levels or backgrounds.

half-space: A mathematical model used to describe the earth — as infinite in width, length, and depth below the surface. The most common halfspace models are homogeneous and layered earth.

heading error: A slight change in the magnetic field measured when flying in opposite directions.

HEM: Helicopter ElectroMagnetic, This designation is most commonly used for helicopter-borne, frequency-domain electromagnetic systems. At present, the transmitter and receivers are normally mounted in a bird carried on a sling line beneath the helicopter.
herringbone pattern: A pattern created in geophysical data by an asymmetric system, where the anomaly may be extended to either side of the source, in the direction of flight. Appears like fish bones, or like the teeth of a comb, extending either side of centre, each tooth an alternate flight line.

homogeneous: This is a geological unit that has the same physical parameters throughout its volume. This unit will create the same response to an HEM system anywhere, and the HEM system will measure the same apparent resistivity anywhere. The response may change with system direction (see anisotropy).

HTEM: Helicopter Time-domain ElectroMagnetic, This designation is used for the new generation of helicopter-borne, time-domain electromagnetic systems.

in-phase: the component of the measured secondary field that has the same phase as the transmitter and the primary field. The in-phase component is stronger than the quadrature phase over relatively higher conductivity.

induction: Any time-varying electromagnetic field will induce (cause) electrical currents to flow in any object with non-zero conductivity. (see eddy currents)

induction number: also called the “response parameter”, this number combines many of the most significant parameters affecting the EM response into one parameter against which to compare responses. For a layered earth the response parameter is \(\mu \omega \sigma \), and for a large, flat, conductor it is \(\mu \omega \sigma t \), where \(\mu \) is the magnetic permeability, \(\omega \) is the angular frequency, \(\sigma \) is the conductivity, \(t \) is the thickness (for the flat conductor) and \(h \) is the height of the system above the conductor.

inductive limit: When the frequency of an EM system is very high, or the conductivity of the target is very high, the response measured will be entirely in-phase with no quadrature (phase angle =0). The in-phase response will remain constant with further increase in conductivity or frequency. The system can no longer detect changes in conductivity of the target.

infinite: In geophysical terms, an ‘infinite’ dimension is one much greater than the footprint of the system, so that the system does not detect changes at the edges of the object.

International Geomagnetic Reference Field: [IGRF] An approximation of the smooth magnetic field of the earth, in the absence of variations due to local geology. Once the IGRF is subtracted from the measured magnetic total field data, any remaining variations are assumed to be due to local geology. The IGRF also predicts the slow changes of the field up to five years in the future.

inversion, or inverse modeling: A process of converting geophysical data to an earth model, which compares theoretical models of the response of the earth to the data
measured, and refines the model until the response closely fits the measured data (Huang and Palacky, 1991)

layered earth: A common geophysical model which assumes that the earth is horizontally layered – the physical parameters are constant to infinite distance horizontally, but change vertically.

magnetic permeability: μ This is defined as the ratio of magnetic induction to the inducing magnetic field. The relative magnetic permeability $[\mu_r]$ is often quoted, which is the ratio of the rock permeability to the permeability of free space. In geology and geophysics, the magnetic susceptibility is more commonly used to describe rocks.

magnetic susceptibility: $[k]$ A measure of the degree to which a body is magnetized. In SI units this is related to relative magnetic permeability by $k=\mu_r-1$, and is a dimensionless unit. For most geological material, susceptibility is influenced primarily by the percentage of magnetite. It is most often quoted in units of 10^{-6}. In HEM data this is most often apparent as a negative in-phase component over high susceptibility, high resistivity geology such as diabase dikes.

manoeuvre noise: variations in the magnetic field measured caused by changes in the relative positions of the magnetic sensor and magnetic objects or electrical currents in the aircraft. This type of noise is generally corrected by magnetic compensation.

model: Geophysical theory and applications generally have to assume that the geology of the earth has a form that can be easily defined mathematically, called the model. For example steeply dipping conductors are generally modeled as being infinite in horizontal and depth extent, and very thin. The earth is generally modeled as horizontally layered, each layer infinite in extent and uniform in characteristic. These models make the mathematics to describe the response of the (normally very complex) earth practical. As theory advances, and computers become more powerful, the useful models can become more complex.

natural exposure rate: in radiometric surveys, a calculation of the total exposure rate due to natural-source gamma rays at the ground surface. It is used as a measurement of the concentration of all the natural radioelements at the surface. See also: exposure rate.

noise: That part of a geophysical measurement that the user does not want. Typically this includes electronic interference from the system, the atmosphere (sferics), and man-made sources. This can be a subjective judgment, as it may include the response from geology other than the target of interest. Commonly the term is used to refer to high frequency (short period) interference. See also drift.

Occam’s inversion: an inversion process that matches the measured electromagnetic data to a theoretical model of many, thin layers with constant thickness and varying resistivity (Constable et al, 1987).
off-time: In a *time-domain electromagnetic* survey, the time after the end of the *primary field pulse*, and before the start of the next pulse.

on-time: In a *time-domain electromagnetic* survey, the time during the *primary field pulse*.

overburden: In engineering and mineral exploration terms, this most often means the soil on top of the unweathered bedrock. It may be sand, glacial till, or weathered rock.

Phase, phase angle: The angular difference in time between a measured sinusoidal electromagnetic field and a reference – normally the primary field. The phase is calculated from \(\tan^{-1}(\text{in-phase} / \text{quadrature}) \).

physical parameters: These are the characteristics of a geological unit. For electromagnetic surveys, the important parameters are *conductivity*, *magnetic permeability* (or *susceptibility*) and *dielectric permittivity*; for magnetic surveys the parameter is magnetic susceptibility, and for gamma ray spectrometric surveys it is the concentration of the major radioactive elements: potassium, uranium, and thorium.

permittivity: see *dielectric permittivity*.

permeability: see *magnetic permeability*.

primary field: the EM field emitted by a transmitter. This field induces *eddy currents* in (energizes) the conductors in the ground, which then create their own *secondary fields*.

pulse: In time-domain EM surveys, the short period of intense *primary* field transmission. Most measurements (the *off-time*) are measured after the pulse. *On-time* measurements may be made during the pulse.

quadrature: that component of the measured *secondary field* that is phase-shifted 90° from the *primary field*. The quadrature component tends to be stronger than the *in-phase* over relatively weaker *conductivity*.

Q-coils: see *calibration coil*.

radioelements: This normally refers to the common, naturally-occurring radioactive elements: potassium (K), uranium (U), and thorium (Th). It can also refer to man-made radioelements, most often cobalt (Co) and cesium (Cs)

radiometric: Commonly used to refer to *gamma ray* spectrometry.
radon: A radioactive daughter product of uranium and thorium, radon is a gas which can leak into the atmosphere, adding to the non-geological background of a gamma-ray spectrometric survey.

receiver: the signal detector of a geophysical system. This term is most often used in active geophysical systems – systems that transmit some kind of signal. In airborne electromagnetic surveys it is most often a coil. (see also, transmitter)

resistivity: \(\rho \) The strength with which the earth or a geological formation resists the flow of electricity, typically the flow induced by the primary field of the electromagnetic transmitter. Normally expressed in ohm-metres, it is the reciprocal of conductivity.

resistivity-depth transforms: similar to conductivity depth transforms, but the calculated conductivity has been converted to resistivity.

resistivity section: an approximate vertical section of the resistivity of the layers in the earth. The resistivities can be derived from the apparent resistivity, the differential resistivities, resistivity-depth transforms, or inversions.

Response parameter: another name for the induction number.

secondary field: The field created by conductors in the ground, as a result of electrical currents induced by the primary field from the electromagnetic transmitter. Airborne electromagnetic systems are designed to create and measure a secondary field.

Sengpiel section: a resistivity section derived using the apparent resistivity and an approximation of the depth of maximum sensitivity for each frequency.

sferic: Lightning, or the electromagnetic signal from lightning, it is an abbreviation of “atmospheric discharge”. These appear to magnetic and electromagnetic sensors as sharp “spikes” in the data. Under some conditions lightning storms can be detected from hundreds of kilometres away. (see noise)

signal: That component of a measurement that the user wants to see – the response from the targets, from the earth, etc. (See also noise)

skin depth: A measure of the depth of penetration of an electromagnetic field into a material. It is defined as the depth at which the primary field decreases to 1/e of the field at the surface. It is calculated by approximately 503 x \(\sqrt{\text{resistivity/frequency}} \). Note that depth of penetration is greater at higher resistivity and/or lower frequency.

spectrometry: Measurement across a range of energies, where amplitude and energy are defined for each measurement. In gamma-ray spectrometry, the number of gamma rays are measured for each energy window, to define the spectrum.
Appendix E.11 -

spectrum: In *gamma ray spectrometry*, the continuous range of energy over which gamma rays are measured. In *time-domain electromagnetic* surveys, the spectrum is the energy of the *pulse* distributed across an equivalent, continuous range of frequencies.

spheric: see *sferic*.

stacking: Summing repeat measurements over time to enhance the repeating *signal*, and minimize the random *noise*.

stripping: Estimation and correction for the gamma ray photons of higher and lower energy that are observed in a particular *energy window*. See also *Compton scattering*.

susceptibility: See *magnetic susceptibility*.

tau: \([\tau]\) Often used as a name for the *time constant*.

TDEM: *time domain electromagnetic*.

thin sheet: A standard model for electromagnetic geophysical theory. It is usually defined as a thin, flat-lying conductive sheet, *infinite* in both horizontal directions. (see also *vertical plate*)

tie-line: A survey line flown across most of the *traverse lines*, generally perpendicular to them, to assist in measuring *drift* and *diurnal* variation. In the short time required to fly a tie-line it is assumed that the drift and/or diurnal will be minimal, or at least changing at a constant rate.

time constant: The time required for an *electromagnetic* field to decay to a value of \(1/e\) of the original value. In *time-domain* electromagnetic data, the time constant is proportional to the size and *conductance* of a tabular conductive body. Also called the decay constant.

Time channel: In *time-domain electromagnetic* surveys the decaying *secondary field* is measured over a period of time, and the divided up into a series of consecutive discrete measurements over that time.

time-domain: *Electromagnetic* system which transmits a pulsed, or stepped *electromagnetic* field. These systems induce an electrical current (*eddy current*) in the ground that persists after the *primary field* is turned off, and measure the change over time of the *secondary field* created as the currents decay. See also *frequency-domain*.

total energy envelope: The sum of the squares of the three *components* of the *time-domain electromagnetic secondary field*. Equivalent to the *amplitude* of the secondary field.

transient: Time-varying. Usually used to describe a very short period pulse of *electromagnetic* field.

transmitter: The source of the *signal* to be measured in a geophysical survey. In airborne *EM* it is most often a *coil* carrying a time-varying electrical current, transmitting the *primary field*. (see also *receiver*)

traverse line: A normal geophysical survey line. Normally parallel traverse lines are flown across the property in spacing of 50 m to 500 m, and generally perpendicular to the target geology.

vertical plate: A standard model for electromagnetic geophysical theory. It is usually defined as thin conductive sheet, *infinite* in horizontal dimension and depth extent. (see also *thin sheet*)

waveform: The shape of the *electromagnetic pulse* from a *time-domain* electromagnetic transmitter.

window: A discrete portion of a *gamma-ray spectrum* or *time-domain electromagnetic decay*. The continuous energy spectrum or *full-stream* data are grouped into windows to reduce the number of samples, and reduce *noise*.

Version 1.5, November 29, 2005
Greg Hodges,
Chief Geophysicist
Fugro Airborne Surveys, Toronto
Appendix E.13 - Common Symbols and Acronyms

- **k** Magnetic susceptibility
- **ε** Dielectric permittivity
- **μ, μ_r** Magnetic permeability, relative permeability
- **ρ, ρ_a** Resistivity, apparent resistivity
- **σ, σ_a** Conductivity, apparent conductivity
- **τ** Tau, or time constant
- **Ωm** ohm-metres, units of resistivity
- **AGS** Airborne gamma ray spectrometry.
- **CDT** Conductivity-depth transform, conductivity-depth imaging (Macnae and Lamontagne, 1987; Wolfgram and Karlik, 1995)
- **CPI, CPQ** Coplanar in-phase, quadrature
- **CPS** Counts per second
- **CTP** Conductivity thickness product
- **CXI, CXQ** Coaxial, in-phase, quadrature
- **FOM** Figure of Merit
- **fT** femtoteslas, normal unit for measurement of B-Field
- **EM** Electromagnetic
- **keV** kilo electron volts – a measure of gamma-ray energy
- **MeV** mega electron volts – a measure of gamma-ray energy 1MeV = 1000keV
- **NIA** dipole moment: turns x current x Area
- **nT** nanotesla, a measure of the strength of a magnetic field
- **nG/h** nanoGreys/hour – gamma ray dose rate at ground level
- **ppm** parts per million – a measure of secondary field or noise relative to the primary or radioelement concentration.
- **pT/s** picoteslas per second: Units of decay of secondary field, dB/dt
- **S** siemens – a unit of conductance
- **x:** the horizontal component of an EM field parallel to the direction of flight.
- **y:** the horizontal component of an EM field perpendicular to the direction of flight.
- **z:** the vertical component of an EM field.
Appendix E.14

References:

Yin, C. and Fraser, D.C. (2002), The effect of the electrical anisotropy on the responses of helicopter-borne frequency domain electromagnetic systems, Submitted to Geophysical Prospecting