ANNUAL REPORT
ERL116 - MOUNT PORTER,
NORTHERN TERRITORY

FOR THE PERIOD 12/9/96 TO 11/9/97
1:250,000 - Pine Creek, SD52-8
1:100,000 - Pine Creek, 5270

VOLUME 1 OF 2

Distribution:
Principal Registrar, NT Dept. Mines & Energy (1)
Exploration Manager, RGC (1)
Homestake Gold of Australia Limited- Perth (2)

Author:
J.I. STEWART
B.Sc.(Hons.), M.Sc., Dip.Ed.,
AM.Aust.I.M.M.
Principal Geologist

CR97/757A
ANNUAL REPORT

ERL116 - MOUNT PORTER,
NORTHERN TERRITORY

FOR THE PERIOD 12/9/96 TO 11/9/97
1:250,000 - Pine Creek, SD52-8
1:100,000 - Pine Creek, 5270

Distribution:
Principal Registrar, NT Dept. Mines & Energy (1)
Exploration Manager, RGC (1)
Homestake Gold of Australia Limited- Perth (2)

Author:
J.I.STEWART
B.Sc.(Hons.),M.Sc.,Dip.Ed.,
AM.Aust.IMM.
Principal Geologist
TABLE OF CONTENTS

SUMMARY

1. INTRODUCTION 1
2. CONCLUSIONS 1
3. HISTORY 1
4. GEOLOGICAL SETTING 2
5. WORK COMPLETED AND EXPENDITURE 4
6. RESULTS AND DISCUSSION 7
7. REFERENCES 9

LIST OF FIGURES

Figure No.

1 Pine Creek Geosyncline - Project Summary
2 Mount Porter - Geological Setting and Tenure
3 Plan Location of 1997 Drilling
4a Geological Cross Section MPDH232 and 235 and 236
4b Assay Cross Section MPDH232 and 235 and 236
5 Geological Cross Section MPDH233
6 Assay Cross Section MPDH233
7a Geological Cross Section MPDH237 (and 234)
7b Assay Cross Section MPDH237 (and 234)
8 View to the SE of Mt Porter (Vulcan Image)

LIST OF APPENDICES

Appendix I MPDH232 Drill Logs and Assays
Appendix II MPDH233
Appendix III MPDH234
Appendix IV MPDH235
Appendix V MPDH236
Appendix VI MPDH237
SUMMARY

Work on ERL116 comprised the drilling of 2,185.8 metres in six diamond drill holes. The search was for a position of major gold enrichment in three target areas; the steeply dipping E-limb structure at the “10,400” Deposit, the MPDH230 follow-up, and on section 11,200N (400 metres south of MPDH231).

The two best gold intercepts were in MPDH234 and 237; 24.0m at 0.42 and 14.0m at 0.58g/t, respectively. The target horizon (Koolpin Facies BIF) was not intercepted down the sub-vertical eastern fold limb at 10,450mN due to drilling difficulties and geological complexities.

Although the work to date continues to show that the Koolpin BIF-horizon is a significant repository of gold, the tenor of metal is of sub-economic nature only. The E-limb structure still remains an untested target.

The joint venture partners plan to reaccess the project for its potential to host positions prospective for a major economic gold deposit.
1. INTRODUCTION

Tenure: Exploration Retention Licence 116 was granted to Renison Goldfields in the 1980’s and renewed on 28 November, 1995 for a period of 5 years. A Joint Venture Agreement to explore the Licence was signed by RGC and Homestake Gold of Australia Limited on 16 March, 1996.

Homestake is currently the manager of the Joint Venture and this report covers the exploration conducted by and on behalf of the Joint Venture in the period 16 March to end October, 1997.

Access: Access to the area is via the sealed Stuart Highway, some 223km from Darwin to the township of Pine Creek, then along the sealed Kakadu Highway for 2km, and finally along the unsealed Francis Creek Road for 17km (Figure 1).

2. CONCLUSIONS

It is recommended that drilling should test the eastern limb of the Main Mount Porter Anticline, under the Hangingwall Dolerite. In a zone from 9,000mN to 12,200mN, there is ample low grade gold mineralisation, over widths of 12 to 20 metres, to suggest the possibility that a significant medium to high grade deposit could be present at depth. Work would need to focus on the blind regions between 10,300 and 10,450mN where the lithostructural circumstances may be optimal for an upgrade in gold tenor.

At this stage the probability of discovering a major gold deposit on the project area is considered to be rather low. The joint venture is in the process of accessing the 1996-97 drill data before it commits to further deep drilling.

3. HISTORY

The Mount Porter prospect was discovered by RGC (Goldfields Exploration Pty Ltd) geologists during a helicopter-borne sampling survey in 1984. Subsequent to the discovery, a number of sampling, mapping and drilling programmes were completed; including 177 RC-percussion drillholes, 24 diamond drillholes and 10 trenches. Ore reserve/feasibility studies were completed in 1992, 1993 and 1995.

In 1993, G.S. Eupene (of Eupene Exploration Enterprises) was commissioned by RGC to prepare the known ore resource for exploitation and to identify targets for possible reserve expansion. A comprehensive review of previous work and the results of the Eupene study were documented in Eupene (1994).
The current Homestake/RGC Joint Venture, in which Homestake can earn a 60 percent interest, was formed with the aim of exploring for major new mineralised positions of the Mount Porter - Cosmo-Howley style either deep in the Mount Porter Central Anticline, on other associated antiform positions, in the Lower Koolpin Formation (eg. under the 10,400 Deposit), and in extension areas of the 10,400 Deposit (i.e. areas “screened” by the Hangingwall Dolerite, under down faulted blocks, and on the steeply dipping eastern limb).

4. GEOLOGICAL SETTING

The rock sequence at Mount Porter belongs to the South Alligator Group (1.85byr.) - see Figure 1b. This is subdivided, in ascending order, into the Koolpin Formation, the Gerowie Tuff and the Mount Bonnie Formation. The Koolpin Formation is apparently underlain by the Mount Partridge Group (namely the Wildman Siltstone and Mundorgie Sandstone) and the Namoona Group (Masson Formation, Coomalie Dolomite etc.) which are essentially shale-siltstone, limestone, calcareous shale and sandstone sequences. The Koolpin Formation is broadly characterised by carbonaceous shales, silicate-sulphide - “iron formations” and mafic sills (Zamu Dolerite). There is evidence from current work that the Lower Koolpin Formation is transitional into an older calcilutite-limestone sequence, which opens the possibility that it may be temporally related to the Mount Partridge Group. The Middle Koolpin sequence, both regionally and locally, consists of the maximum concentration of banded iron, nodular chert units below an essentially pyrrhotitic shale sequence (the Upper Koolpin). It is a well recognised time stratigraphic unit comprising chemically distinctive concentrations of silicate and sulphide Fe (cummingtonite-actinolite, grunerite, garnet, pyrrhotite-pyrite), nodular chert, “tourmalinites” and pyrrhotitic shale (Nicholson & Eupene, 1984).

Overlying the Upper Koolpin sequence is the Gerowie Tuff which consists of white-black siliceous welded tuffs, tuffaceous siltstones (Goulevitch, 1980), grey siltstones and laminated chert. The stratigraphically higher Mount Bonnie sequence consists of a hybrid mixture of Koolpin and Gerowie-like lithologies and fly schoidal (greywacke) sediments of the overlying Burrell Creek Formation (Finniss River Group).

At Mount Porter, the target sequence is the Middle Koolpin Formation. Prior to the 1996 field programme, this unit was best observed in the drilling and mapping of the 10,400 Deposit. Here it consists of a 15 to 45 metre thick unit comprising, in descending order, 15-20 metres carbonaceous shale, 5.5-8.0 metres of chloritic BIF, 2m carbonaceous BIF, 4.0-8.0 metres of chloritic BIF, 5.5 metres chloritic-carbonaceous BIF, >9m of carbonaceous, chloritic BIF hornfels. At the 10,400 Deposit, this sequence is overlain by a medium grained dolerite, some 65 to 70 metres thick. This dolerite position is
reasonably widespread throughout the district. It is a sill and is pre-folding in age. Consequently, it often acts as a geochemical “screen” over the prospective Middle Koolpin horizon. At the 10,400 Deposit itself, the dolerites form a steeply dipping eastern limb and occupy fault blocks to the north and south. In many areas of the Mount Porter Anticline, the dolerites are host to auriferous quartz veining (eg. Figure 4) and/or extensive sericite/carbonate-arsenopyrite alteration.

Gold mineralisation in the “10,400” area is largely confined to the sulphide-silicate facies BIF/chloritic shale/nodular chert package (approximately 15 to 45m in true thickness) on the western limb and fold-nose of the Mount Porter Main Anticline - a stratigraphic length of about 1,200 metres. Although the tenor of gold in this preferred lithological package is in the 0.5 to 1.5 g/t range, the gold-nose area contains a higher grade resource of 248,000 tons grading 3.90 g/t. Geologically, this represents a protore mineralised zone of perhaps 350,000 to 400,000 oz. Au.

In terms of the detailed controls on the gold mineralisation, there is a correlation between higher grades and proximity to the fold-nose. If the Cosmo-Howley deposit is a reasonable guide to ore zone geometry, then the untested, steeply dipping Eastern Limb of Mount Porter must also be considered as a prime exploration target. A reasonable correlation also exists with arsenopyrite concentration and, to a lesser extent, milky-white/grey quartz veins. However, as with the Cosmo-Howley deposit, the gold-arsenopyrite-quartz vein relationship is equivocal. Petrology shows that as much gold is associated with the silicate minerals and pyrrhotite (and their precursors) as it does gold in arsenopyrite or near quartz veins (Stewart, 1996).

A notable feature of the Mount Porter 10,400 Deposit is the spatial relationship with granite. Figure 1 illustrates the regional setting and Figure 2 shows the deposit position to be approximately 600 metres from the Allamber Springs granite contact. In both outcrop and drilling a hornfels zone comprising spotting by both cordierite and andalusite in carbonaceous shale is located up to and below the 10,400 Deposit position.

In terms of spatial position, the 10,400 Deposit is within the influence of the thermal contact aureole of the Allamber Springs granite. Mineralisation is preferentially in the BIF-chert package, directly below a heavily pyrrhotitic, graphitic-carbonaceous shale. Higher gold grades are focused in a fold-nose under a brittle, pre-folding aged, dolerite sill and, perhaps, in the subvertically dipping eastern limb. The dolerite shows brittle-fracture related hydrothermal alteration of the mesothermal style, and the mineralisation contains ample evidence of replacive metasomatism in sulphide mineralogies. There is thus an implication that the reactive, (favourable) source beds, the hangingwall reduced facies rocks, the structural positioning and the distal position from the granite were the critical ingredients required for the focusing of a prograde
Mount Porter/Francis Creek Geological Setting and Tenure

Figure 2

Legend:
- Granite
- Zamu Dolerite
- Burrell Ck Formation (1,870 mil)
- Mt Bonnie Formation
- Gerowie Tuff (1,880 mil)
- Koolpin Formation
- Mt Partridge Group (Widman Siltstone)
- Basement (2,500 mil)

Acacia Resources (Billiton)
McLeary Option HGAL 80%
HGAL/Goldfields J.V. 60%/40%

Scale: 0 - 2 km
granite derived hydrothermal fluid and/or the refocusing and upgrading of precursor, indigenous, stratabound Au-As protore mineralisation.

The aim of the Homestake/RGC exploration Joint Venture for 1997 has been to locate larger deposits of the Mount Porter - Cosmo Howley type in a number of geochemically anomalous positions along the steeply dipping eastern limb of the 3km long antiformal zone on ERL116.

5. WORK COMPLETED AND EXPENDITURE

During the work period, the Joint Venture completed data compilation, modelling of the 10,400 Resource area in VULCAN, surveying of drill collars, and diamond-percussion drilling.

Supervision and execution of the drilling programme was undertaken by Exploremin Pty Ltd of Darwin, and geologist Simon Omotosho of Auserian Exploration (Darwin). Drilling was undertaken by Gaden Drilling of Batchelor; Assaying was completed by AssayCorp of Pine Creek.

The drilling completed is listed as follows:

MOUNT PORTER - MINERALISED INTERCEPTS 1996 & 1997 DRILLING PROGRAMMES

<table>
<thead>
<tr>
<th>HOLE</th>
<th>FROM</th>
<th>TO</th>
<th>WIDTH (m)</th>
<th>Au (ppm)</th>
<th>As (ppm)</th>
<th>METRES DRILLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>224</td>
<td>532</td>
<td>3.0</td>
<td>1.59</td>
<td>947</td>
<td>60</td>
</tr>
<tr>
<td>MPDIH225</td>
<td>532</td>
<td>535</td>
<td>3.0</td>
<td>1.59</td>
<td>947</td>
<td>810</td>
</tr>
<tr>
<td>226</td>
<td>227</td>
<td>59</td>
<td>64</td>
<td>5.0</td>
<td>0.65</td>
<td>1802</td>
</tr>
<tr>
<td>228</td>
<td>210</td>
<td>199</td>
<td>11.0</td>
<td>0.58</td>
<td>661</td>
<td>284.2</td>
</tr>
<tr>
<td>229</td>
<td>89</td>
<td>101</td>
<td>12.0</td>
<td>0.95</td>
<td>1451</td>
<td>315.5</td>
</tr>
<tr>
<td>230</td>
<td>188</td>
<td>201</td>
<td>13.0</td>
<td>0.46</td>
<td>934</td>
<td>337.4</td>
</tr>
<tr>
<td>231</td>
<td>323</td>
<td>330</td>
<td>7.0</td>
<td>0.46</td>
<td>363</td>
<td>62.0</td>
</tr>
<tr>
<td>1997</td>
<td>232</td>
<td>272</td>
<td>1.0</td>
<td>1.74</td>
<td>363</td>
<td>2,569.1</td>
</tr>
<tr>
<td>233</td>
<td>234</td>
<td>36.0</td>
<td>60.0</td>
<td>24.0</td>
<td>489.1</td>
<td>295</td>
</tr>
<tr>
<td>235</td>
<td>236</td>
<td>0.0</td>
<td>26.0</td>
<td>26.0</td>
<td>195.3</td>
<td>60.0</td>
</tr>
<tr>
<td>237</td>
<td>364</td>
<td>378.0</td>
<td>(wedge hole W1 236m)</td>
<td>4.0</td>
<td>0.58</td>
<td>496.2</td>
</tr>
<tr>
<td>346.0</td>
<td>332.0</td>
<td>6.0</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>259.0</td>
<td>263.0</td>
<td>4.0</td>
<td>0.16</td>
<td>414.2</td>
<td>2,185.8</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3 illustrates the location of the drilling. Appendices 1 to 6 contain drill logs and assay certificates. Figures 4 to 8 contain the geological cross sections and assay sections for each of the 1997 drill holes.

The following table lists the expenditure for the period to November, 1997.

MOUNT PORTER ERL116
Exploration Expenditure Report

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALARIES AND WAGES</td>
<td>$21,671</td>
</tr>
<tr>
<td>CONSULTANTS & TECHNICAL</td>
<td>$88,084</td>
</tr>
<tr>
<td>DRILLING</td>
<td>$221,945</td>
</tr>
<tr>
<td>Assaying</td>
<td>$17,048</td>
</tr>
<tr>
<td>Field, Camp Supplies</td>
<td>$11,955</td>
</tr>
<tr>
<td>Surface Works</td>
<td>$9,672</td>
</tr>
<tr>
<td>Tenement Maintenance</td>
<td>$7,576</td>
</tr>
<tr>
<td>Travel, Accommodation, Hire</td>
<td>$12,338</td>
</tr>
<tr>
<td>Vehicles & Field Equipment</td>
<td>$2,265</td>
</tr>
<tr>
<td>Legal</td>
<td>$39</td>
</tr>
<tr>
<td>Support Activities</td>
<td>$10,682</td>
</tr>
<tr>
<td>Environmental/Reclamation</td>
<td>$818</td>
</tr>
<tr>
<td>Overheads</td>
<td>$31,110</td>
</tr>
<tr>
<td>TOTAL: ($A)</td>
<td>435,197</td>
</tr>
</tbody>
</table>

General discussion and results for each drillhole follows:

MPDH232 (10,469.7mN/10,288.9mE) Figures 4a & 4b; Appendix I. This hole was drilled to test the BIF units on the eastern limb of the main Mt Porter anticline at depth adjacent to the 10,400 Zone deposit. It drilled through dolerite from 0 to 255 metres, encountered a major fault zone to 260m and passed directly into footwall calc-silicate hornfels and marble.

The best assay was associated with a massive 10cm band of pyrrhotite; 272 - 273m; 1m at 1.74g/t Au.
View to the SE of Mt. Porter
Low Grade-Envelope Blocks

10,400' Deposit

Figure 8

JTS 12/96
A weak calc-silicate FW sequence and dolerite at the base of the hole, combined with BIF repetition (?) suggests a piercement point just below the crest of the anticline (Goulevitch, pers. comm.).

Weak gold mineralisation was encountered; 14m at 0.58g/t (364-378m); 6m at 0.33g/t (346-352m); 4m at 0.16g/t (259-263m).

Vulcan Imaging of “10,400” Deposit:
Vulcan imaging technology was used to correlate the low grade gold envelope and higher grade drill intercepts of the “10,400” deposit into a 3-D block. It was found that the SW-limb of the zone was mineralised over widths of 15 to 45 metres for 850 to 1,000m length before abutting the Allamber Springs Granite contact. Higher grade mineralisation is confined to the 10,300 to 10,500mN zone where tight folding and faulting abounds. Here the BIF bearing fold nose occurs in overlain subcrop. To the north, it is by a thick Hangingwall Dolerite. The eastern fold limb is not well mineralised south of 10,000mN.

Vulcan imaging showed that potential still lay north and east on the down rake portion of the fold crest and perhaps the eastern limb at 10,400mN; rather than down dip of the SE and SW limbs.

6. RESULTS AND DISCUSSION

During the 1997 drill season, over 2,185.8 metres of drilling were completed in six diamond drill holes.

The holes tested three areas along the eastern flank of the main Mt Porter Anticline over a longitudinal section of about 1,000 metres.

The aim of the 1997 programme was to seek a major upgrade in gold tenor where the primary-protoore auriferous BIF sequence is coincident with a subvertical fault or shear zone following the E-limb of the anticline. Hole MPDH237 (14m at 0.58g/t Au) further showed that the Koolpin BIF unit at Mt Porter is auriferous from at least 9,400mN to beyond 11,600mN (over 2,000 metres). The typical BIF commonly assays 0.4 to 0.6g/t Au over an average width or widths of 7 to 14 metres.

The prime target position, near 10,400mN has proven to be a major drilling problem for both Renison Goldfields and Homestake. That is, it is difficult to achieve piercement points in BIF either down rake or on the sheared E-limb of the 10,400 deposit position.
However, based upon piercing points north of "10,400", at 200 to 300 metre intervals (and the low grade nature of the SW limb) it is most likely that higher grade mineralisation (4 to 12g/t Au) is likely to be in small (<500,000 tons) zones only. Whilst high grade deposits may also be present on the fold nose positions, these represent difficult drill targets and less viable exploration and economic targets.

Subject to completing a more satisfactory test of the E-limb position at 10,400mN it would seem that the Mt Porter BIF mineralisation represents one or both of the following:

a) An auriferous, exhalative banded sulphide, silicate, chert unit at the transition from calcareous shale to pyrrhotitic black shale. With a background or primary gold value of about 0.5g/t this unit could (by structural, thermal and metasomatic processes) be progressively upgraded into a 4 to 6g/t gold deposit; perhaps of the Granites-Tanami style? Further upgrading might, conceivably, be required to attain an endowment of the magnitude present at the Homestake Mine - Lead, Dakota??

b) A chemically reactive BIF unit at the reductive interface between calcareous sediments and graphitic, pyrrhotitic shales. The unit is also more porous and structurally vulnerable between brittle deforming carbonate rocks and ductile and impervious shales. The chert nodule horizons and crystalline, heterogeneous, silicates enhance the permeability of the Koolpin BIFs. This would be the ideal unit to precipitate upward percolating magmatic fluids from the underlying Cullen granite and/or magmatically mobilised intraformational fluids within the Koolpin BIF-facies.

It is tempting to ascribe a major role to the nearby granitoid contact in supplying the thermal gradient necessary to drive magmatic or connate fluids along the Koolpin BIF unit. The Koolpin BIF would act as a metasomatic conduit? The 10,400mN deposit lies approximately 600 to 800m distal to the granite contact at the outer edge of the cordierite-andalusite hornfels zone. In the subsurface the 2km length of the Mt Porter antcline has been subjected to patchy calc-silicate hornfelsing in the footwall to the BIF unit. This footwall position commonly contains Zn and Cu mineralisation, which may be an "inboard" metal zonation from the Au-As positions drilled??

It is suspected that the northerly plunging granite contact is about 600 to 800 metres below the intercepts in MPDH321, 237, 228, 230 etc. That is about 1km (-200m) in the subsurface.
In either case, Homestake has been unable to identify an enhanced zone of fluid-flow with the dimensions that could produce a multi-million ounce, high-grade gold deposit.

The project is currently under review to determine if a more concerted and higher drill-density effort can be justified around the 10,400 deposit.

7. REFERENCES

ANNUAL REPORT
ERL116 - MOUNT PORTER,
NORTHERN TERRITORY

FOR THE PERIOD 12/9/96 TO 11/9/97
1:250,000 - Pine Creek, SD52-8
1:100,000 - Pine Creek, 5270

VOLUME 2 OF 2

FIGURES & APPENDICES

Distribution:
Principal Registrar, NT Dept. Mines & Energy (1)
Exploration Manager, RGC (1)
Homestake Gold of Australia Limited- Perth (2)

Author:
J.I.STEWART
B.Sc.(Hons.),M.Sc.,Dip.Ed.,
AM.Aust.IMM.
Principal Geologist

CR97/757B1
APPENDIX I
EXPLOREMIN PTY LTD - DRILL HOLE LOG

Drill Hole: MPDH-232
Tenement: ERL 116
Prospect: MOUNT PORTER
Map Ref:

AMGS/Grid E: 10289.2
AMGS/Grid N: 10776.3
Azimuth: 272.5°
Inclination: -60°
Commenced: 9/4/97
Completed: 10/4/97
Total Depth: 48m
Hole Size: 4½"
Casing:
Sheet: 1 of
Logged by: S.J.
Drillers: GADEN
Sample Type: RC 2cm composite
Drill Type: HDDMUN-RV-150

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SampNo</th>
<th>Lithology</th>
<th>Colour</th>
<th>Texture</th>
<th>Major Minerals</th>
<th>Minor Minerals</th>
<th>Trace Minerals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>Clay</td>
<td>Red</td>
<td>Finely ground</td>
<td>Clay</td>
<td>Fe oxides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2-4</td>
<td>Sapolitic</td>
<td>Tan</td>
<td>Fine ground</td>
<td>Clay</td>
<td>Fe oxides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>4-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>4-6</td>
<td>Dolomite</td>
<td>Tan - grey</td>
<td>Clay</td>
<td>Prehnite</td>
<td>Fe oxides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>6-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>8-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>8-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>10-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>12-14</td>
<td>Dolomite</td>
<td>Dark grey</td>
<td>Medium grained</td>
<td>Prehnite</td>
<td>Chlorite</td>
<td>Fresh hand dolomite, washed</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>14-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>16-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>18-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>18-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>22-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>22-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPLORMIN PTY LTD - DRILL HOLE LOG

Drill Hole: MPOH-232
Tenement: EAll 116
Prospect: Mount pepper
Map Ref:
AMG Grid E: 10289.2
AMG Grid N: 10476.3
RL Collar: 520.5
Client: NGAL
Commenced: 9/4/97
Completed: 10/4/97
Inclination: -60°
Azimuth: 272°
Total Depth: 48m
Hole Size: 4½”
Sample Type: RC 2m composite
Casing:
Logged by: 5-O
Drillers: GADEN
Drill Type: WORMAN EXPLORER Drilling Rig URH-650
Sheet: 2 of 2

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SampNo</th>
<th>Lithology</th>
<th>Colour</th>
<th>Texture</th>
<th>Mineralogy</th>
<th>Minerals</th>
<th>Trace Minerals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>25</td>
<td>24-25</td>
<td>Dolomite</td>
<td>Dark grey</td>
<td>medium</td>
<td>Pyritic</td>
<td>Feldspar</td>
<td>Chloropyrite</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>MPOH-232 24-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>26-28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>28-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>30-32</td>
<td>Dolomite</td>
<td>Dark grey</td>
<td>medium</td>
<td>Pyritic</td>
<td>Feldspar</td>
<td>Chloropyrite</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td>32-34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>32-34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>35</td>
<td>34-36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>36</td>
<td>34-36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td>36-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>36-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>39</td>
<td>32-39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>40</td>
<td>38-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td>38-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>40-42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>43</td>
<td>40-43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>44</td>
<td>42-44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>45</td>
<td>42-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>46</td>
<td>42-46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>47</td>
<td>42-46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>48</td>
<td>46-48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(EN) - all for last 6m
EXPLORERMIN PTY LTD - DIAMOND DRILL HOLE LOG

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospect: Mount Arthur</td>
<td>RL Collar:</td>
<td>Total Depth: 295m</td>
<td>Hole Size: NQ</td>
<td>Drillers: CADEN</td>
</tr>
<tr>
<td>Map Ref: Pitt Ck 5270</td>
<td>Client: Homestake</td>
<td>Casing: 48m</td>
<td>Sample Type: 11 x 11cm</td>
<td>Drill Type: VDR-650</td>
</tr>
<tr>
<td>Hole Survey - Depth/Unit/Azim</td>
<td>080 m 1 58.5 1 -</td>
<td>58m 1 58.5 1 272</td>
<td>48m 1 58.1 225</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>080</td>
<td>580</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geological Description</th>
<th>Graph Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolerite: Dark green, medium-grained, with magnetite, chlorite, pyroxene, and feldspar, and minor dickite. Each phase is generally defined by outline to form a thin layer.</td>
<td></td>
</tr>
<tr>
<td>with greenish, orange, green, yellow, and brownish, chlorite, pyroxene, and feldspar, and minor dickite. Each phase is generally defined by outline to form a thin layer.</td>
<td></td>
</tr>
<tr>
<td>9.50 ft - 10.44 ft</td>
<td>11.70 ft - 12.44 ft</td>
</tr>
<tr>
<td>9.50 ft - 10.44 ft</td>
<td>11.70 ft - 12.44 ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mineralisation Fe-Si-O (est. %)</th>
<th>Alteration/Metamorphism (est. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyr ph hematite clin calcite pyroxene quartz sillimanite tourmaline biotite muscovite gedrite grt cord and</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>6.0 3.5 2.0 1.5 1.0 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apy</th>
<th>Vms</th>
<th>Depth</th>
<th>Struc</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.30</td>
<td>Fault 35</td>
<td>98.50</td>
<td>Fault 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Hole Survey - Depth/Unit/Azim | 080 m 1 58.5 1 - | 58m 1 58.5 1 272 | 48m 1 58.1 225 |
EXPLOREMIN PTY LTD - DIAMOND DRILL HOLE LOG

Drill Hole: ADH-232
Tenement: F11-16
Prospect: Mason Range
Map Ref: S020730E
Hole Surv - Depth/Inch/Azim: 254.0

Geological Description:

122-190 254.0Ft (ca 39m) from 250.7 Ft end of interval: Carbonate alteration evident, deeply pocky with dark alteration. 70% Carbonate also mantle pocky, extensive calcite oxidation. basalt, dolomite, silt, mica. basaltic gneiss - fusion gneiss

142-254.0Ft Carbonaceous, Slightly Blasted, fine ground graphite in scattered depression. Complete Streaks of matrix alteration, mosaic of mica + altered matrix. montmorillonite + altered matrix, rounded. Some in place reduced to graphite core. matrix py in host rock. matrix also

254.0Ft 294.30 Marble, hole very medium grained rock with 90% Silt altered shales from calcite recrystallisation, altered chloritic and pale green, chloritic alteration. Slight alteration grade to horn. + py in chert to 25cm+ in place. Silicate. Pale grey matrix shown near laminations at 28.4Fe. Al 237.4Cp

Iron ore of size 1.5m. Massive. 208.30 So? 28

294.30 295.0 Disharole green chlorite green, green, green, matrix calcite, 295.0Ft

Electrode 0.9Ft

E.D.
EXPLOREMIN PTY LTD
CORE RECOVERY, RQD, FRACTURE COUNT

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.00</td>
<td>49.10</td>
<td>1.10</td>
<td>1.05</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.10</td>
<td>51.00</td>
<td>1.90</td>
<td>1.90</td>
<td>1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.00</td>
<td>54.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.00</td>
<td>57.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.00</td>
<td>60.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.00</td>
<td>63.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.00</td>
<td>66.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.00</td>
<td>69.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.00</td>
<td>72.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.00</td>
<td>75.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.00</td>
<td>78.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78.00</td>
<td>81.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.00</td>
<td>84.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84.00</td>
<td>87.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.00</td>
<td>90.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.00</td>
<td>93.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93.00</td>
<td>96.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.00</td>
<td>99.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.00</td>
<td>102.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102.00</td>
<td>105.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.00</td>
<td>108.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108.00</td>
<td>111.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111.00</td>
<td>114.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114.00</td>
<td>117.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.00</td>
<td>120.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.00</td>
<td>123.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123.00</td>
<td>126.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.00</td>
<td>129.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129.00</td>
<td>132.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Interval</td>
<td>Recov'd</td>
<td>Length in Sticks >10 cm</td>
<td>No of Open Fractures</td>
<td>No of Strongly Healed Fractures</td>
<td>No of Weakly Healed Fractures</td>
<td>No of open Fractures with slick coat</td>
<td>Comments</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>135.00</td>
<td>138.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138.00</td>
<td>141.00</td>
<td>3.00</td>
<td>3.00</td>
<td>1.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141.00</td>
<td>144.00</td>
<td>3.00</td>
<td>3.00</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144.00</td>
<td>147.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147.00</td>
<td>150.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150.00</td>
<td>153.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153.00</td>
<td>156.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156.00</td>
<td>159.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159.00</td>
<td>162.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162.00</td>
<td>165.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165.00</td>
<td>168.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168.00</td>
<td>171.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171.00</td>
<td>174.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174.00</td>
<td>177.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177.00</td>
<td>180.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180.00</td>
<td>183.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183.00</td>
<td>186.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186.00</td>
<td>189.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189.00</td>
<td>192.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.00</td>
<td>195.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195.00</td>
<td>198.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198.00</td>
<td>201.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.00</td>
<td>204.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204.00</td>
<td>207.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207.00</td>
<td>210.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210.00</td>
<td>213.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213.00</td>
<td>216.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216.00</td>
<td>219.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219.00</td>
<td>222.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222.00</td>
<td>225.00</td>
<td>3.00</td>
<td>3.00</td>
<td>1.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPLOREMIN PTY LTD
CORE RECOVERY, RQD, FRACTURE COUNT

Drill Hole: MV/43-25L
AMS/Grid E: 103389
Tenement: CA-LE 118
AMS/Grid N: 104170
Prospect: MOUNT POLTER
RL Collar:
Azimuth: 272.5° T/NW
Inclination: -60°
Commenced: 9/4/77
Completed: 16/4/77
Total Depth: 295.0 m
Logged by: S. O.
Hole Size:
Drillers: CATERA

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>225.00</td>
<td>228.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.30</td>
<td>2.70</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>228.00</td>
<td>231.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td>3.60</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>231.00</td>
<td>234.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>234.00</td>
<td>237.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>237.00</td>
<td>240.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.68</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>240.00</td>
<td>243.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>243.00</td>
<td>246.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.68</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>246.00</td>
<td>249.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>249.00</td>
<td>252.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.70</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>252.00</td>
<td>255.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.72</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>255.00</td>
<td>257.10</td>
<td>2.10</td>
<td>2.10</td>
<td>0.11</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>257.10</td>
<td>258.00</td>
<td>0.90</td>
<td>0.90</td>
<td>0.00</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>258.00</td>
<td>259.00</td>
<td>0.10</td>
<td>0.10</td>
<td>0.00</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>259.00</td>
<td>259.10</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>259.10</td>
<td>261.00</td>
<td>1.90</td>
<td>1.90</td>
<td>1.00</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>261.00</td>
<td>264.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>264.00</td>
<td>267.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.70</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>267.00</td>
<td>270.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.70</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>270.00</td>
<td>273.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.40</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>273.00</td>
<td>276.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.40</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>276.00</td>
<td>279.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.40</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>279.00</td>
<td>282.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.40</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>282.00</td>
<td>285.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>285.00</td>
<td>288.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>288.00</td>
<td>291.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>291.00</td>
<td>294.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>294.00</td>
<td>297.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

| 297.00 | 300.00 | 3.00 | 3.00 | 2.40 | 3.00 | 1.00 | 0.00 | 0.00 | 0.00 |

E. O. H.
ASSAYCORP

ASSAY CODE: AC 35791

Sample	Au	Au(R)	As
MPDH 232EOH 0-2 | 0.05 | 0.05 | 34 |
MPDH 232EOH 2-4 | 0.02 | 0.02 | 15 |
MPDH 232EOH 4-6 | 0.02 | 0.02 | 21 |
MPDH 232EOH 6-8 | 0.02 | 0.02 | 70 |
MPDH 232EOH 8-10 | 0.02 | 0.03 | 59 |
MPDH 232EOH 10-12 | 0.02 | 0.03 | 37 |
MPDH 232EOH 12-14 | 0.04 | 0.05 | 66 |
MPDH 232EOH 14-16 | 0.01 | 0.01 | 12 |
MPDH 232EOH 16-18 | <0.01 | <0.01 | 24 |
MPDH 232EOH 18-20 | <0.01 | <0.01 | 25 |
MPDH 232EOH 20-22 | 0.01 | 0.02 | 52 |
MPDH 232EOH 22-24 | 0.07 | 0.08 | 100 |
MPDH 232EOH 24-26 | 0.07 | 0.10 | 110 |
MPDH 232EOH 26-28 | 0.02 | 0.02 | 52 |
M*TH 232EOH 28-30 | 0.01 | 0.01 | 68 |
MPDH 232EOH 30-32 | 0.02 | 0.01 | 110 |
MPDH 232EOH 32-34 | <0.01 | <0.01 | 37 |
MPDH 232EOH 34-36 | 0.01 | 0.01 | 52 |
MPDH 232EOH 36-38 | 0.02 | 0.01 | 35 |
MPDH 232EOH 38-40 | 0.01 | 0.01 | 44 |
MPDH 232EOH 40-42 | 0.01 | 0.02 | 28 |
MPDH 232EOH 42-44 | 0.01 | 0.01 | 50 |
MPDH 232EOH 44-46 | 0.02 | 0.01 | 30 |
MPDH 232EOH 46-48 | 0.01 | 0.01 | 50 |

Method | FA50 | FA50 | G300A

Note: This cover sheet is an integral part of the report. This report can only be reproduced in full.

Authorisation: Ray Waddell
Report Date: 15/04/97
Sample Data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(I) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>232 96-97</td>
<td>0.03</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>232 97-98</td>
<td><0.01</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>232 98-99</td>
<td><0.01</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>232 99-100</td>
<td><0.01</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>232 100-101</td>
<td><0.01</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>232 101-102</td>
<td><0.01</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>232 102-103</td>
<td>0.02</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>232 103-104</td>
<td><0.01</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>232 135-137</td>
<td><0.01</td>
<td><0.01</td>
<td>215</td>
</tr>
<tr>
<td>232 137-138</td>
<td>0.02</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>232 138-139</td>
<td>0.02</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>232 139-140</td>
<td><0.01</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>232 140-141</td>
<td><0.01</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>232 141-142</td>
<td>0.01</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>232 142-143</td>
<td>0.01</td>
<td></td>
<td>235</td>
</tr>
<tr>
<td>232 143-144</td>
<td>0.01</td>
<td></td>
<td>540</td>
</tr>
<tr>
<td>232 148-169</td>
<td><0.01</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>232 169-170</td>
<td>0.01</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>232 170-171</td>
<td>0.01</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>232 171-172</td>
<td>0.01</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>232 172-173</td>
<td><0.01</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>232 173-174</td>
<td><0.01</td>
<td><0.01</td>
<td>170</td>
</tr>
<tr>
<td>232 174-175</td>
<td><0.01</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>232 175-176</td>
<td><0.01</td>
<td><0.01</td>
<td>11</td>
</tr>
<tr>
<td>232 176-177</td>
<td><0.01</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Assay Code: AC 36005

Method

- FA50
- FA50
- 8300A

Report Comment: This cover sheet is an integral part of the report. This report can only be reproduced in full.

Authorization: Ray Woolridge

Report Date: 29/04/97
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>232 248-249</td>
<td><0.01</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>232 249-250</td>
<td>0.01</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>232 250-251</td>
<td><0.01</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>232 251-252</td>
<td><0.01</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>232 252-253</td>
<td><0.01</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>232 253-254</td>
<td><0.01</td>
<td></td>
<td>190</td>
</tr>
<tr>
<td>232 254-255</td>
<td><0.01</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>232 255-256</td>
<td><0.01</td>
<td><0.01</td>
<td>110</td>
</tr>
<tr>
<td>232 256-257</td>
<td><0.01</td>
<td><0.01</td>
<td>100</td>
</tr>
<tr>
<td>232 257-258</td>
<td><0.01</td>
<td><0.01</td>
<td>110</td>
</tr>
<tr>
<td>232 258-259</td>
<td>0.01</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>232 259-260</td>
<td>0.01</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>232 260-261</td>
<td><0.01</td>
<td><0.01</td>
<td>8</td>
</tr>
<tr>
<td>232 261-262</td>
<td><0.01</td>
<td><0.01</td>
<td>7</td>
</tr>
<tr>
<td>232 262-263</td>
<td><0.01</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>232 263-264</td>
<td>0.07</td>
<td>0.09</td>
<td>455</td>
</tr>
<tr>
<td>232 264-265</td>
<td>0.09</td>
<td></td>
<td>630</td>
</tr>
<tr>
<td>232 265-266</td>
<td>0.01</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>232 266-267</td>
<td>0.01</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>232 267-268</td>
<td>0.01</td>
<td>0.03</td>
<td>52</td>
</tr>
<tr>
<td>232 268-269</td>
<td>0.04</td>
<td>0.02</td>
<td>23</td>
</tr>
<tr>
<td>232 269-270</td>
<td>0.03</td>
<td>0.03</td>
<td>51</td>
</tr>
<tr>
<td>232 270-271</td>
<td>0.02</td>
<td>0.02</td>
<td>39</td>
</tr>
<tr>
<td>232 271-272</td>
<td>0.05</td>
<td>0.05</td>
<td>100</td>
</tr>
<tr>
<td>232 272-273</td>
<td>1.75</td>
<td>1.73</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>232 273-274</td>
<td>0.03</td>
<td>0.03</td>
<td>100</td>
</tr>
</tbody>
</table>

Method: FA50 FA50 G300A
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SampNo</th>
<th>Lithology</th>
<th>Colour</th>
<th>Texture</th>
<th>Major Minerals</th>
<th>Minor Minerals</th>
<th>Trace Minerals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>25</td>
<td>233/25-26</td>
<td>S1st (?/?)</td>
<td>yb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>SampNo</td>
<td>Lithology</td>
<td>Colour</td>
<td>Texture</td>
<td>Major Minerals</td>
<td>Minor Minerals</td>
<td>Trace Minerals</td>
<td>Comments</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>48</td>
<td>49</td>
<td>23348-50</td>
<td>SV/st (?)</td>
<td>py.</td>
<td>bk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>50-52</td>
<td></td>
<td>Cbc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>52-54</td>
<td></td>
<td>Cbc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>54-56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>55-56</td>
<td></td>
<td>Gr-gr+y+py+bk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>56-58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>58-58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>58-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>60-62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>62-64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>64-66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>66-68</td>
<td></td>
<td>END 66m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>68-70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>70-72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXPOREM IN PTY LTD - DRILL HOLE LOG

Drill Hole: MDPH 233
Tenement: EKL116
Prospect: MT DORTEX
Map Ref: 56/17

AMG/Grid E: 1034706
AMG/Grid N: 106641
RL Collar: 498.6
Client: 1272

Azimuth: 270° AMG
Inclination: -66°
Total Depth: 66m
Casing: 6in PVC
Commened: 9/4/94
Completed: 1/9/95

Sheet: 3 of 4
Logged by: JA
Drillers: GADEWS
Drill Type: UPB250
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph Log</th>
<th>Mineralisation Fe-S-O (est %)</th>
<th>Alteration/Metamorphism (est %)</th>
<th>Apy Vns Depth Struc α β</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.10</td>
<td>73.00</td>
<td>Silstone & Carbonaceous Silstone - Grey, clastic fine grain - laminated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interal consists of banded mixtures of dark grey, sandy-brownish carbonaceous silicate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with occasional darker banding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.00</td>
<td>75.7</td>
<td>Pitchblende, Epidote, Quartzites, Carbonates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit includes black carbonaceous silicate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.7</td>
<td>78.80</td>
<td>Carbonaceous Silstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78.80</td>
<td>81.80</td>
<td>Carbonaceous Silstone, graphite, fine grain, and carbonaceous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Graph Log indicates presence of minerals indicated by symbols.
- Mineralisation Fe-S-O data includes percentage of Fe, S, and O.
- Alteration/Metamorphism data includes estimated percentages of various components.
- Apy Vns indicates apatite and vanadium content percentages.
- Depth and structural data provide additional measurement and orientation information.
EXPOREMIN PTY LTD - DIAMOND DRILL HOLE LOG

Drill Hole: MDH - 233
Tenement: 601 - 116
Prospect: MT PORTER
Map Ref: 88 Creek, 5270
Hole Survs - Depth/Vinic/Azim: 105 1 65 1 275'

Mineralisation
Fe O-C (est %) Alteration/Metamorphism (est %)
Graph Log Apy Vns qz stybes Depth Shive α β

From To Geological Description
75-0 21-0 (cont) felling, rape, veo & dacic intrusives of 291m, 352m. Abundant very mixed quartz, feldspar, biotite, vermicular
75-0 75.3 109p120m. Streaky feldspar, feldspar, biotite, vermicular
75-0 119.5 essentially similar

Apy Vns qz stybes Depth Shive α β
144.5 50 32
180.4 50 15
181.4 50 0.0
184.8 50 15
184.8 50 15
198.2 50 28.5
205.2 50 27.05

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph</th>
<th>Mineralisation Fe-S-O (est %)</th>
<th>Alteration/Metamorphism (est %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>214P</td>
<td>214P</td>
<td>Siltstone: Dark grey fine-grained, mainly matrix but with recognisable bedding at 214m. Interbedded pink ashy shale with top 1m of interval top control in peddland - bottom control in slope.</td>
<td>Log</td>
<td>27% Py</td>
<td>V, Cu, Zn, P</td>
</tr>
<tr>
<td>214P</td>
<td>214P</td>
<td>Carboneous Siltstone: Dark grey-black fine-grained, graphitic, biohernalite, hematite-cracked, brecciated by thin, clear, quartz and carbonated veins with minor pyrite. No obvious over-crust, but veins in control banding.</td>
<td>Log</td>
<td>32% P</td>
<td>V, Cu, Zn, P</td>
</tr>
<tr>
<td>221P</td>
<td>221P</td>
<td>Siltstone: grey-green fine-grained, laminated with massive, 15m thick, 35cm. dolerite interval above 221P interval shows very thin pyrite. Dominated by carbonate, Fe oxides could be contact metamorphic effect with dolerite.</td>
<td>Log</td>
<td>11% P</td>
<td>V, Cu, Zn, P</td>
</tr>
<tr>
<td>222P</td>
<td>222P</td>
<td>Dolerite: Green medium-grained with interbedding of pyroxene, actinolite and talc. By occurs in rare phyllic x-foliation, from 222P to 229P, dolerite in.</td>
<td>Log</td>
<td>51% P</td>
<td>V, Cu, Zn, P</td>
</tr>
</tbody>
</table>
EXPLORMIN PTY LTD - DIAMOND DRILL HOLE LOG

Drill Hole: MDTH-235
Tenement: EBL-116
Prospect: MT BOGGE
Map Ref: River Creek, 5270
Hole Surv.: Depth/Inclin/Azim 246m-1, 61.5° 1, 283°

From To Geological Description

293.9 293.5 (cont) chlorite laced fracture zone.
 micro chalcopyrite phlegm veining.
 Cross 23.5m, 40° E., vein to 2mm at
 24.7m. Shows horizontal parallel with calcite
 Silt. Bottom 5cm of dolomite slightly
 more sulphide. Contact orientation in
 285/35 SW. - huige contact?

293.5-27.0 Cachanacum, Siltstone; Dark grey, black.
 south, graphitic, less mafic.
 bedded, more mafic, less graphitic.
 Sampled, 80, 80, over a zone
 laminated, and on same fracturing.
 At 293.9 measured So = 185/35 W.
 At 293.5 gre talnick of pale
 grey, the band more massive.

293.9-27.0 (cont) weakly graphitic could be sericite
 band or py. sulphide alteration.
 At 258.6
 Exposed in bedding at 10cm
 Mickell. Uplap, dip 50° 190/18 W, Burnum
 Int. So = 200/190, parcellised plagioclase
 Weakening of unit. At 261m, So = 185/35 W.
 So definite halo show development by
 NW-SE fractures. At 249m so in
 parallel to fault, slight sheared with
 a grossly weathered, dipping unit.

Mineralisation Fe-S-O (est %)

Alteration/Metamorphism (est %)

Apy Vns Otu, DMS Depth Struc α β

Graph Log

51°, 21° 51° 21°
EXPLOREMIN PTY LTD - DIAMOND DRILL HOLE LOG

Drill Hole: MPH-233
Tennant: EEL-16
Prospect: MI POLTER.
Map Ref: Wac Creek 5270
Hole Surv - Depth/ft/inch/Azim: 276m 1/61 306 306m 1/60 230

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>277-85</td>
<td>281-40</td>
<td>(cont) Andalusite occurs much less frequently in this carbonatite unit. A similar alteration has been observed in the basal dacite, which contains some carbonatite. The carbonatite is characterized by a greenish-grey, fine-grained matrix containing scattered blebs of olivine and clinopyroxene. The alteration is intense, and the rock is altered to a dark green, medium-grained diabase with some visible carbonatite.</td>
</tr>
<tr>
<td>277-90</td>
<td>279-20</td>
<td>Carbonatite: Blende + Quartz + Calcite + Mica + Dolomite. The carbonatite is characterized by a greenish-grey, fine-grained matrix containing scattered blebs of olivine and clinopyroxene. The alteration is intense, and the rock is altered to a dark green, medium-grained diabase with some visible carbonatite.</td>
</tr>
</tbody>
</table>

Graph:
- Log: Isometric
- Py: Pyrite
- Hem: Hematite
- Bld: Biotite
- Qtz: Quartz
- Mica: Mica
- Calc: Calcite
- Dol: Dolomite
- Qtz: Quartz

Mineralisation:
- Fe-S-O (est %):
- Altered/Metamorphism (est %):

Apy Vms Depth
- Apy: Apatite
- Vms: Vesuvite
- Depth: 277-90

Drill: MPH-233
Commenced: 24/4/77
Completed: 7/6/77
Logged by:
Drillers:
Sample Type: Core 1m intervals
Drill Type: HD2 - ESP
Geologic Description

From 2740 3850 (cont.)

Graph Carbonaceous slate. Black graphite.

Mineralisation

Alteration/Metamorphism

Table

<table>
<thead>
<tr>
<th>Depth</th>
<th>Apy</th>
<th>Vns</th>
<th>Depth</th>
<th>Struc</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>3213.20</td>
<td>3224</td>
<td>Carbonate</td>
<td>30</td>
<td>33.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3293.20</td>
<td>324</td>
<td>Carbonate</td>
<td>30</td>
<td>33.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3283.20</td>
<td>321.20</td>
<td>Carbonate</td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3273.60</td>
<td>332.60</td>
<td>Carbonate</td>
<td>30</td>
<td>32.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>325.80</td>
<td>328.20</td>
<td>Carbonate</td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>324.30</td>
<td>324</td>
<td>Carbonate</td>
<td>30</td>
<td>32.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>324.20</td>
<td>324</td>
<td>Carbonate</td>
<td>30</td>
<td>32.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330.30</td>
<td>330.30</td>
<td>Carbonate</td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From 3346.60

Chlorite, chlorite, Bt, Intersets with

- Chlorite, chlorite, Bt, Intersets with
- Chlorite, chlorite, Bt, Intersets with
- Chlorite, chlorite, Bt, Intersets with
- Chlorite, chlorite, Bt, Intersets with
- Chlorite, chlorite, Bt, Intersets with
EXPLOREMIN PTY LTD - DIAMOND DRILL HOLE LOG

Drill Hole: MDHB - 233
Tenement: ECL 116
Prospect: Mt. Talbot
Map Ref: 5270
Hole Surv - Depth/Inch/Azim: 3,844m 1-56 1 280

Graph
Mineralisation
Fe-S-O (test %)
Alteration/Metamorphism (est %)
Apy Vns Depth Struc α β

Mineral Description
Cocktail and decomposed glauconite, glossy, dark green crystals to 3mm of Actinolite.
Possible chalcopyrite up to 2mm.
Fine-grained green hematite consist of chlorite + fine-grained amphibole.
Some, dark grey green hematite
 espect fine-grained Talc / Chlorite.

From To Geological Description
3844 3970 (cm) 1 and decomposed glauconite, glossy, dark green crystals to 3mm of Actinolite.
Possible chalcopyrite up to 2mm.
Fine-grained green hematite consist of chlorite + fine-grained amphibole.
Some, dark grey green hematite
 espect fine-grained Talc / Chlorite.

3970 4000 3cm thick band on the edges of some chert nodules. Hematite wraps around chert nodules that show some po + more rarely, CPY flakes to 1mm within.
Also occurs as more rounded, crumbled, to less on the edges of some chert nodules. Chert also occurs in some hematite in places of 3403 cm
Clay lattice 3cm wide has a medium grained, po well developed of actinolite + rare pyrite. Hand 343cm 069
Chert nodules have less shape were difficult to outline, but the crack by dark green wembe etch in also a pale olive grey, super accurate with flank reaction rims. Fig: accurate actinolite.
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph Log</th>
<th>Mineralisation Fe-O (wt %)</th>
<th>Alteration/Metamorphism</th>
<th>Apy</th>
<th>Vns</th>
<th>Depth</th>
<th>Struc</th>
<th>α</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>33580</td>
<td>38440</td>
<td>(km)</td>
<td>ty on host brick</td>
<td>354</td>
<td>23</td>
<td>940</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dark brown 75% grey chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>extends from outer core within sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>thin creamy oolite 346.7 - 349</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>some composed of pale grey chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with patchy yellow from deposits to 2mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and large nodules of dark grey green</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>almost perfectly foliated opal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>calcite dolomite 348.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Core ORIENTATED from 3478 - 352.3 fm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Similar cleat mineral from 351.4 - 355.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Top 1/2 m calcite occurs as sparse veins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to 11 cm at 90.74A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oriented 354 190/90.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>From 380.3 - 382 rich in dark gray</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>more mosaic + red again with calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>v-prism chert + dolomite - 382 - 383.6 pale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>grey chert mineral + actinolite + quartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>From 385.5 rich becomes well laminated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>once more. + Core ORIENTATED from 372 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>399.6 from 372 - 373.5 core in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dark grey - black, calcite medium +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>quartz. At 372.0 gal + calcite vein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shear zone, thin in same orientation as bedding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graphite beds show movement along So.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Geological Description</td>
<td>Graph Log Depth</td>
<td>Mineralisation</td>
<td>Alteration/Metamorphism</td>
<td>Apy</td>
<td>Vms</td>
<td>Struct</td>
<td>α</td>
<td>β</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---</td>
<td>-----------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>-----</td>
<td>-----</td>
<td>---------</td>
<td>---</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>33680</td>
<td>39980</td>
<td>(cont) Oriented core at 37°5 S.</td>
<td>395.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>So = 210/175. at 384.30 so = 200/90</td>
<td>384.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>From 387.7 - 391.7 core is again</td>
<td>391.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dash grey carbonaceous with weather</td>
<td>395.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 395.6 oriented core so = 190/75V</td>
<td>395.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH 395 see Calcite vein to ½ width</td>
<td>395.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bedding and schists breccia</td>
<td>395.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>From 395.6 get mineralised calcite vein with graphic schists. So thin calcite veins are 1.96 TDA</td>
<td>395.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Some calcite veins have Galena Schists.</td>
<td>395.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Main Chalcopyrite + Pyrite + famesian</td>
<td>395.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dash from 398.8 to end of interval.</td>
<td>398.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Get intense mottled brecciated calcite</td>
<td>395.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calcite breccia also chalcopyrite bottom 90 cm of interval Calcite in mottled graph with some grey calcite veins resemble a mottled faulted contact.</td>
<td>395.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37440</td>
<td>40170</td>
<td>Madstone: Dark grey, v-fine grained mostly massive, some patchy veined.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Torbernite fluorite, sheet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cassiterite spotty to fine, some chert.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Geological Description</td>
<td>Graph Log</td>
<td>Mineralisation Fe-S-O (wt %)</td>
<td>Alteration/Metamorphism (wt %)</td>
<td>Appy Vms & clin</td>
<td>Depth</td>
<td>Struc</td>
<td>α</td>
<td>β</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>-----------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>3970</td>
<td>4060</td>
<td>Chert nodules to 3cm at, 403.4 m</td>
<td>37.12</td>
<td>301</td>
<td>40</td>
<td>400</td>
<td>15</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4060</td>
<td>4070</td>
<td>Chloritic cherty biotite mudstone. This is a mixed interbed of dark grey biotite</td>
<td></td>
<td>4020</td>
<td>90</td>
<td>4000</td>
<td>1500</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with grey granitic laminated mudstone. Some pyrite in laminated portion.</td>
<td></td>
<td>4020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4100</td>
<td>4130</td>
<td>Mudstone/Siltstone, dark grey fine grain, massively bedded. Some pyrite shows some</td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4130</td>
<td>4140</td>
<td>chert nodules, 413.0 m</td>
<td></td>
<td>401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXPLORERMIN PTY LTD - DIAMOND DRILL HOLE LOG

- **Drill Hole:** APEC 233
- **Tenement:** FMD 233
- **Prospect:** APEC 233
- **Map Ref.:** FMD 233
- **Hole Surv.:** Depth/Incl/Azin
- **Commenced:** 19/4/97
- **Completed:** 7/5/97
- **Logged by:** S. II
- **Drillers:** CANADIAN DUGgies

Table:

- **From:** 3970
- **To:** 4060
- **Geological Description:** Chert nodules to 3cm at, 403.4 m
- **Mineralisation Fe-S-O (wt %):** 37.12
- **Alteration/Metamorphism (wt %):** 301
- **Appy Vms & clin:** 40
- **Depth:** 400
- **Struc:** 15

Diagram:

- **Graph Log:** 37.12
- **Mineralisation Fe-S-O (wt %):** 301
- **Alteration/Metamorphism (wt %):** 40
- **Appy Vms & clin:** 40
- **Depth:** 400
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph Log</th>
<th>Mineralisation Fe-S-O (est %)</th>
<th>Alteration/Metamorphism (est %)</th>
<th>Apy</th>
<th>Visc</th>
<th>Depth</th>
<th>Struc</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>437</td>
<td>458.80</td>
<td>(cont) Var v. weakly chloritic, nucleated laminated intervals. Sand on floor 440.8 - 442.5; core oriented from 441.1 & 448.36, core cut at 452.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>458.80</td>
<td>475.50</td>
<td>Marlclay, pale grey, medium grained calcarenite w ith ~ 40% interbeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>475.50</td>
<td>479.50</td>
<td>Marlclay, pale grey, very fine grained, var v. weakly chloritic, sand on floor 476.5 - 478.10 & marl clays, oriented from 476.70 & 478.40; core oriented from 476.90 & 478.50; core cut at 478.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>479.50</td>
<td>497.50</td>
<td>Massive, dark grey, very fine grained, var v. weakly chloritic, sand on floor 486.6 - 490.70 & marl clays, oriented from 486.80 & 490.90; core oriented from 486.90 & 490.10; core cut at 490.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>497.50</td>
<td>577.50</td>
<td>Chlorite, chlorite BIF, dark green, fine grained, well laminated with pale grey, sand on floor 577.5 - 581.60 & marl clays, oriented from 577.60 & 581.70; core oriented from 577.70 & 581.80; core cut at 581.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Geological Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1775</td>
<td>4758</td>
<td>(1007) Pyrrhotite is abundant & occurs as lamellae. Pentalite occurs in rare patches in hematite. Chalsocite also occurs in minor patches. Some chalembite are crushed & not readily thin section. Green glassy, accreted actinolite occurs in patches with paler green clinoids. Crystals sometimes have along the edge of some chalcedony that laminae to thin a composolite green fog digested & unidentifiable. Possible pseudomorph to thin black lamina. 4 core averaged 473.1 - 477.5 & Qubatania, available.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mineralisation

<table>
<thead>
<tr>
<th>Graph Log</th>
<th>Fe-S-O (est %)</th>
<th>Alteration/Metamorphism (est %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2/O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aphy Vugs Depth Struc α β

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

EOH
EXPLOREMIN PTY LTD
CORE RECOVERY, RQD, FRACTURE COUNT

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>65.10</td>
<td>69.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.10</td>
<td>72.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.10</td>
<td>75.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.10</td>
<td>78.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78.10</td>
<td>81.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.10</td>
<td>84.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84.10</td>
<td>87.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.10</td>
<td>90.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.10</td>
<td>93.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93.10</td>
<td>96.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.10</td>
<td>99.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.10</td>
<td>102.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102.10</td>
<td>105.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.10</td>
<td>108.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108.10</td>
<td>111.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111.10</td>
<td>114.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114.10</td>
<td>117.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.10</td>
<td>120.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.10</td>
<td>123.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123.10</td>
<td>126.70</td>
<td>2.60</td>
<td>2.60</td>
<td>1.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.70</td>
<td>128.70</td>
<td>2.30</td>
<td>2.30</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.70</td>
<td>131.20</td>
<td>0.50</td>
<td>0.50</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.20</td>
<td>134.20</td>
<td>3.00</td>
<td>3.00</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134.20</td>
<td>137.20</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.20</td>
<td>140.20</td>
<td>3.00</td>
<td>3.00</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140.20</td>
<td>143.20</td>
<td>3.00</td>
<td>3.00</td>
<td>2.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.20</td>
<td>146.20</td>
<td>3.00</td>
<td>3.00</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146.20</td>
<td>149.20</td>
<td>3.00</td>
<td>3.00</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149.20</td>
<td>152.20</td>
<td>3.00</td>
<td>3.00</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drill Hole: MPD1-233 **Amo/Grid E:** 1034.7 **Azimuth:** 272.5° **Commenced:** 19/4/97 **Logged by:** S.A. **Veterinarian:** J.G. **Prospect:** NCH **RL Collar:** 498.6 **Total Depth:** 487.1 **Hole Size:** ND **Completed:** 7/5/97

Tenement: BRL 116 **Amo/Grid N:** 1066.3 **Inclination:** -65° **Completed:** 7/5/97 **Logged by:** S.A.
Core Recovery, RQD, Fracture Count

Drill Hole: MDH-235
Tenement: EDR 116
Prospect: MT PORTER

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>151.9</td>
<td>153.1</td>
<td>1.2</td>
<td>1.2</td>
<td>1.5</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153.1</td>
<td>155.1</td>
<td>2.0</td>
<td>2.0</td>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155.1</td>
<td>158.1</td>
<td>3.0</td>
<td>3.0</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156.1</td>
<td>157.2</td>
<td>1.1</td>
<td>1.1</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157.2</td>
<td>159.1</td>
<td>2.0</td>
<td>2.0</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159.1</td>
<td>160.9</td>
<td>1.8</td>
<td>1.8</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160.9</td>
<td>162.7</td>
<td>1.8</td>
<td>1.8</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162.7</td>
<td>165.1</td>
<td>3.0</td>
<td>3.0</td>
<td>1.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165.1</td>
<td>168.1</td>
<td>3.0</td>
<td>3.0</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168.1</td>
<td>168.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168.6</td>
<td>171.1</td>
<td>2.5</td>
<td>2.5</td>
<td>2.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171.1</td>
<td>174.6</td>
<td>3.5</td>
<td>3.5</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174.6</td>
<td>176.9</td>
<td>2.3</td>
<td>2.3</td>
<td>1.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176.9</td>
<td>179.1</td>
<td>2.2</td>
<td>2.2</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179.1</td>
<td>182.3</td>
<td>3.2</td>
<td>3.2</td>
<td>1.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182.3</td>
<td>183.1</td>
<td>3.0</td>
<td>3.0</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183.1</td>
<td>186.6</td>
<td>3.5</td>
<td>3.5</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186.6</td>
<td>189.1</td>
<td>2.5</td>
<td>2.5</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189.1</td>
<td>192.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.0</td>
<td>195.1</td>
<td>3.0</td>
<td>3.0</td>
<td>1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195.1</td>
<td>198.1</td>
<td>3.0</td>
<td>3.0</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198.1</td>
<td>201.1</td>
<td>3.0</td>
<td>3.0</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.1</td>
<td>204.1</td>
<td>3.0</td>
<td>3.0</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204.1</td>
<td>207.1</td>
<td>3.0</td>
<td>3.0</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207.1</td>
<td>210.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210.0</td>
<td>213.8</td>
<td>2.9</td>
<td>2.9</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213.8</td>
<td>216.6</td>
<td>3.0</td>
<td>3.0</td>
<td>1.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216.6</td>
<td>219.4</td>
<td>3.0</td>
<td>3.0</td>
<td>1.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219.4</td>
<td>222.1</td>
<td>3.0</td>
<td>3.0</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222.1</td>
<td>225.1</td>
<td>3.0</td>
<td>3.0</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1</td>
<td>228.0</td>
<td>3.0</td>
<td>3.0</td>
<td>1.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPLOREMIN PTY LTD
CORE RECOVERY, RQD, FRACTURE COUNT

Drill Hole: MPDH - 233
Tenement: E22L - 116
Prospect: MT #320-701

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>228.10</td>
<td>231.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231.10</td>
<td>234.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234.10</td>
<td>237.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237.10</td>
<td>240.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240.10</td>
<td>243.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243.10</td>
<td>246.10</td>
<td>3.00</td>
<td>2.90</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246.10</td>
<td>249.90</td>
<td>3.80</td>
<td>2.50</td>
<td>1.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>249.90</td>
<td>252.00</td>
<td>3.10</td>
<td>3.10</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252.00</td>
<td>255.50</td>
<td>1.50</td>
<td>1.50</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255.50</td>
<td>258.90</td>
<td>1.40</td>
<td>1.30</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>258.90</td>
<td>262.40</td>
<td>3.50</td>
<td>3.70</td>
<td>1.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262.40</td>
<td>264.00</td>
<td>2.60</td>
<td>2.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>264.00</td>
<td>267.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267.10</td>
<td>270.10</td>
<td>5.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270.10</td>
<td>272.90</td>
<td>1.90</td>
<td>1.60</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>272.90</td>
<td>273.70</td>
<td>1.80</td>
<td>1.40</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>273.70</td>
<td>275.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>275.10</td>
<td>279.10</td>
<td>3.00</td>
<td>2.95</td>
<td>2.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>279.10</td>
<td>282.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>282.10</td>
<td>285.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285.10</td>
<td>288.10</td>
<td>3.00</td>
<td>2.00</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288.10</td>
<td>291.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>291.00</td>
<td>294.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>294.10</td>
<td>297.10</td>
<td>3.00</td>
<td>3.00</td>
<td>3.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>297.10</td>
<td>300.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300.10</td>
<td>303.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>303.10</td>
<td>306.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Azimuth: 212°
Inclination: -65°
Commenced: 19/4/97
Completed: 7/5/97
Logged by: S.O.
Hole Size: NA
Drillers: GADEN
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>309.10</td>
<td>312.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312.10</td>
<td>315.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315.10</td>
<td>318.10</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>318.10</td>
<td>321.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>321.10</td>
<td>324.10</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>324.10</td>
<td>327.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>327.10</td>
<td>330.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330.10</td>
<td>333.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333.10</td>
<td>336.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>336.10</td>
<td>339.10</td>
<td>3.00</td>
<td>3.00</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>339.10</td>
<td>342.10</td>
<td>3.00</td>
<td>3.00</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>342.10</td>
<td>345.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>345.10</td>
<td>348.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>348.10</td>
<td>351.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.15</td>
<td></td>
<td>Loss of non-open 347.348 - ground away</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>351.10</td>
<td>354.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>354.10</td>
<td>357.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>357.10</td>
<td>360.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360.10</td>
<td>363.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>363.10</td>
<td>366.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>366.10</td>
<td>369.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>369.10</td>
<td>372.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>372.10</td>
<td>375.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>375.10</td>
<td>378.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>378.10</td>
<td>381.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>381.10</td>
<td>384.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>384.10</td>
<td>387.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPLOREMIN PTY LTD
CORE RECOVERY, RQD, FRACTURE COUNT

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length In Sticks</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of Open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>390.10</td>
<td>393.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>393.10</td>
<td>396.70</td>
<td>3.60</td>
<td>4.15</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td>1.00 loss 0.05 from 397-398</td>
<td></td>
</tr>
<tr>
<td>397.70</td>
<td>399.10</td>
<td>1.40</td>
<td>2.30</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>399.10</td>
<td>401.40</td>
<td>2.30</td>
<td>1.50</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401.40</td>
<td>403.70</td>
<td>2.30</td>
<td>0.50</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>403.70</td>
<td>406.00</td>
<td>2.30</td>
<td>3.00</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406.00</td>
<td>408.70</td>
<td>2.70</td>
<td>1.70</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>408.70</td>
<td>411.00</td>
<td>2.30</td>
<td>3.00</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>411.00</td>
<td>414.10</td>
<td>3.10</td>
<td>3.00</td>
<td>1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414.10</td>
<td>417.40</td>
<td>3.30</td>
<td>3.00</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>417.40</td>
<td>419.90</td>
<td>2.50</td>
<td>0.30</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>419.90</td>
<td>422.40</td>
<td>2.50</td>
<td>2.65</td>
<td>0.46</td>
<td></td>
<td>1.00 loss 0.05 from 417-418</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>422.40</td>
<td>423.10</td>
<td>2.70</td>
<td>3.00</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>423.10</td>
<td>425.10</td>
<td>2.00</td>
<td>2.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>425.10</td>
<td>429.10</td>
<td>4.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>429.10</td>
<td>432.10</td>
<td>3.00</td>
<td>3.00</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>432.10</td>
<td>433.10</td>
<td>1.00</td>
<td>1.00</td>
<td>1.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>432.10</td>
<td>433.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>432.10</td>
<td>438.10</td>
<td>1.00</td>
<td>1.00</td>
<td>1.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>436.10</td>
<td>438.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>438.10</td>
<td>441.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>441.10</td>
<td>444.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>444.10</td>
<td>447.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447.10</td>
<td>450.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447.10</td>
<td>451.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>451.10</td>
<td>451.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>451.10</td>
<td>454.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>454.10</td>
<td>454.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>454.10</td>
<td>459.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>459.10</td>
<td>462.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>462.10</td>
<td>465.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>465.10</td>
<td>468.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>468.10</td>
<td>471.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPLORMIN PTY LTD
CORE RECOVERY, RQD, FRACTURE COUNT

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>468.10</td>
<td>471.10</td>
<td>3.00</td>
<td>3.00</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>471.10</td>
<td>474.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>474.10</td>
<td>477.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>477.10</td>
<td>480.10</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>480.10</td>
<td>483.10</td>
<td>3.00</td>
<td>3.00</td>
<td>3.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>483.10</td>
<td>486.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>486.10</td>
<td>489.10</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.O.H.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPLOR MIN PTY LTD - DIAMOND DRILL HOLE LOG

Drill Hole: MDPH - 233 Azimuth: 222.5° XMMG Commenced: 19/4/97 Sheet: 1 of 5
Prospect: MT PORTER Total Depth: -65m Drills: CAKEN
Map Ref: The Cluster 5290 Hole Size: N1 Sample Type: Float 1m intervals Drill Type: UDK 850
Hole Surv - Depth INC/LN/AZIM Casing: 6km Hole 1 - 66 1 - 75m 1 - 65 1 - 75m 2 - 72.5°

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.10</td>
<td>73.80</td>
<td>Silstone - Carbonaceous Silstone - Grey - dark grey, fine grained, laminated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interbedded with banded mucks of sand and grey, weakly carbonaceous silts but not</td>
</tr>
<tr>
<td></td>
<td></td>
<td>darker than grey and carbonaceous silts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bank consists of laminar, banded thick, parallel to bedding. At 76m silts and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>carbonates become fine grained filings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 79.6 see 40cm zone of dolomite - Fg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Areal view revealed quartz, feldspar plagiogr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beach, feldspar. Plagiogr. and micas with muscovite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72.5 - 73.8 see possible carbonates and quartz - albite - chaledonic.</td>
</tr>
<tr>
<td>73.80</td>
<td>81.80</td>
<td>Carbonaceous Silstone - Dark grey - black, fine grained well laminated and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>carbonatic. From ~76cm Pyrite + pyrrhotite occurs and laminar, in several intervals,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in laminar, that is regarded as bedding,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stealer occurs with Andalusite, carbonat.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to low occur scattered heterogeneously and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>go spread, throughout interval,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'Albite needles' with some habit as</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Andalusite which is occur They have c - cross</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sections are probably carbon replaced</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Andalusite crystals - Some minor Sulfur calcite</td>
</tr>
</tbody>
</table>
EXPOREMIN PTY LTD - DIAMOND DRILL HOLE LOG

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.00</td>
<td>21.80</td>
<td>(3.80m) tillite, rare vein and disseminated iron pyrites, 0.29m, 30m. At 29.9m, 2.5m. Apitite, pegmatite, mixed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.50</td>
</tr>
</tbody>
</table>

Mineralisation

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Graph Log</th>
<th>Mineralisation</th>
<th>Alteration/Metamorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.00</td>
<td>21.80</td>
<td></td>
<td>Fe-Si-O (est %)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alteration/Metamorphism (est %)</td>
<td></td>
</tr>
</tbody>
</table>

Alteration/Metamorphism

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Graph Log</th>
<th>Mineralisation</th>
<th>Alteration/Metamorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.00</td>
<td>21.80</td>
<td></td>
<td>Fe-Si-O (est %)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alteration/Metamorphism (est %)</td>
<td></td>
</tr>
</tbody>
</table>

Alteration/Metamorphism

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Graph Log</th>
<th>Mineralisation</th>
<th>Alteration/Metamorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.00</td>
<td>21.80</td>
<td></td>
<td>Fe-Si-O (est %)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alteration/Metamorphism (est %)</td>
<td></td>
</tr>
</tbody>
</table>

Alteration/Metamorphism
<table>
<thead>
<tr>
<th>From To</th>
<th>Geological Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>243.5-246</td>
<td>Chlorite, low-grade structure. Sillite, chlorite, pink pelophy covering.</td>
</tr>
<tr>
<td>246-248</td>
<td>Shiny, bright, pink pelophy covering.</td>
</tr>
<tr>
<td>248-250</td>
<td>Sharp, bright, pink pelophy covering.</td>
</tr>
<tr>
<td>250-252</td>
<td>Sharp, bright, pink pelophy covering.</td>
</tr>
</tbody>
</table>

Graph

<table>
<thead>
<tr>
<th>Graph Log</th>
<th>25.5</th>
<th>25</th>
<th>24.5</th>
<th>24</th>
<th>23.5</th>
<th>23</th>
<th>22.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>114° 11' 15.5"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mineralisation

<table>
<thead>
<tr>
<th>Fe-S-O (est %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.5</td>
</tr>
</tbody>
</table>

Alteration/Metamorphism

<table>
<thead>
<tr>
<th>Apy</th>
<th>Vns</th>
<th>Depth</th>
<th>Struc</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.5</td>
<td>25</td>
<td>190</td>
<td>38</td>
<td>200</td>
<td>251</td>
</tr>
<tr>
<td>252</td>
<td>20</td>
<td>210</td>
<td>256</td>
<td>20</td>
<td>00</td>
</tr>
<tr>
<td>250</td>
<td>20</td>
<td>190</td>
<td>258</td>
<td>20</td>
<td>00</td>
</tr>
<tr>
<td>248</td>
<td>20</td>
<td>190</td>
<td>250</td>
<td>20</td>
<td>00</td>
</tr>
</tbody>
</table>

Notes

- Pole: 255.6° - 286.7°
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph Log</th>
<th>Mineralisation</th>
<th>Alteration/Metamorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td>203.5</td>
<td>214.0</td>
<td>Carbonatite occurs, much less frequently than carbonatite; and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207.0</td>
<td>226.0</td>
<td>Dolerite; dark green medium-grained;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>highly carbonated, and brecciated core;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>phylitic schist with veinlets of phylite; tectonic veins, carbonatite;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>quartz veins and carbonatite breccia;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238.0</td>
<td>240.0</td>
<td>Carbonatite sill: black, fine-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>grained quartzitic in contrast, almost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>massive, brecciated and carbonaceous, with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a bottom layer of carbonated, tectonic veins;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dolerite; dark green medium-grained;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>highly carbonated, and brecciated core;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>phylitic schist with veinlets of phylite; tectonic veins, carbonatite;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>quartz veins and carbonatite breccia;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>274.0</td>
<td>283.0</td>
<td>Dolerite; from steel below &</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dolerite in contact with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dark green medium-grained dolerite in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>quarzitic brecciated; Top 2m of dolerite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of dolerite appear metasedimentary with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>some sub-rounded breccia; from</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>261.5 dolerite looks more mafic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and slightly softer, with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pale, quartz veins to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2cm thick; fine-grained</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dolerite, and mafic, some with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>calcite alteration present.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fe-S-O (est %) | Cbl | Sil | Lew | Chl | Py | Hap | Myg | Bl | Ser | Asm | Ort | Cord |
11.5 | 18.5 | 2.5 | 1.5 | 0.5 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |

<table>
<thead>
<tr>
<th>Any</th>
<th>Ves</th>
<th>Depth</th>
<th>Struc</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPLOREMIN PTY LTD
CORE RECOVERY, RQD, FRACTURE COUNT

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with stick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.10</td>
<td>69.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.10</td>
<td>72.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.10</td>
<td>75.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.10</td>
<td>78.10</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78.10</td>
<td>81.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.10</td>
<td>84.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84.10</td>
<td>87.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.10</td>
<td>90.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.10</td>
<td>93.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93.10</td>
<td>96.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.10</td>
<td>99.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.10</td>
<td>102.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102.10</td>
<td>105.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.10</td>
<td>108.10</td>
<td>3.00</td>
<td>3.00</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108.10</td>
<td>111.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111.10</td>
<td>114.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114.10</td>
<td>117.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.10</td>
<td>120.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.10</td>
<td>123.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123.10</td>
<td>126.10</td>
<td>3.00</td>
<td>2.50</td>
<td>1.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.10</td>
<td>129.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129.10</td>
<td>132.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132.10</td>
<td>135.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135.10</td>
<td>138.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138.10</td>
<td>141.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141.10</td>
<td>144.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144.10</td>
<td>147.10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147.10</td>
<td>150.10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150.10</td>
<td>153.60</td>
<td>1.50</td>
<td>1.50</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPLOREMIN PTY LTD
CORE RECOVERY, ROD, FRACTURE COUNT

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length In Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-10</td>
<td>153-10</td>
<td>1.50</td>
<td>1.50</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153-10</td>
<td>155-10</td>
<td>2.00</td>
<td>2.00</td>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155-10</td>
<td>158-10</td>
<td>1.00</td>
<td>1.00</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158-10</td>
<td>160-10</td>
<td>1.00</td>
<td>1.00</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160-10</td>
<td>160-10</td>
<td>1.00</td>
<td>1.00</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160-10</td>
<td>162-10</td>
<td>2.20</td>
<td>2.20</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162-10</td>
<td>165-10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165-10</td>
<td>168-10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168-10</td>
<td>170-10</td>
<td>3.00</td>
<td>3.00</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170-10</td>
<td>175-10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175-10</td>
<td>190-10</td>
<td>2.00</td>
<td>2.00</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190-10</td>
<td>210-10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-10</td>
<td>225-10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225-10</td>
<td>225-10</td>
<td>3.00</td>
<td>3.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225-10</td>
<td>228-10</td>
<td>3.00</td>
<td>3.00</td>
<td>1.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPLOREMIN PTY LTD

CORE RECOVERY, RQD, FRACTURE COUNT

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>228-10</td>
<td>231-10</td>
<td>3-30</td>
<td>3-30</td>
<td>3-30</td>
<td>1-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231-10</td>
<td>234-10</td>
<td>3-30</td>
<td>3-30</td>
<td>2-90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234-10</td>
<td>237-10</td>
<td>3-30</td>
<td>3-30</td>
<td>2-85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237-10</td>
<td>240-10</td>
<td>3-10</td>
<td>3-10</td>
<td>2-85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240-10</td>
<td>243-10</td>
<td>3-30</td>
<td>3-30</td>
<td>2-85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243-10</td>
<td>246-10</td>
<td>3-30</td>
<td>3-30</td>
<td>2-90</td>
<td>1/55 0-10 from 246-247</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246-10</td>
<td>248-10</td>
<td>2-80</td>
<td>2-80</td>
<td>1-77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>248-10</td>
<td>252-00</td>
<td>3-10</td>
<td>3-10</td>
<td>1-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252-00</td>
<td>255-50</td>
<td>1-50</td>
<td>1-50</td>
<td>0-72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253-50</td>
<td>258-10</td>
<td>1-30</td>
<td>1-30</td>
<td>0-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254-10</td>
<td>257-10</td>
<td>3-10</td>
<td>3-10</td>
<td>1-72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>257-10</td>
<td>259-10</td>
<td>1-10</td>
<td>1-10</td>
<td>0-68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>259-10</td>
<td>261-10</td>
<td>2-10</td>
<td>2-10</td>
<td>1-00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>261-10</td>
<td>264-10</td>
<td>2-20</td>
<td>2-20</td>
<td>1-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>264-10</td>
<td>267-10</td>
<td>3-00</td>
<td>3-00</td>
<td>1-90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267-10</td>
<td>270-10</td>
<td>3-00</td>
<td>3-00</td>
<td>2-85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270-10</td>
<td>272-10</td>
<td>1-90</td>
<td>1-90</td>
<td>0-90</td>
<td>1/55 0-30 from 271-272</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>271-10</td>
<td>273-10</td>
<td>1-10</td>
<td>1-10</td>
<td>0-95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>273-10</td>
<td>276-10</td>
<td>3-00</td>
<td>3-00</td>
<td>2-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>276-10</td>
<td>279-10</td>
<td>3-00</td>
<td>3-00</td>
<td>2-05</td>
<td>1/55 0-05 from 278-279</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>278-10</td>
<td>282-10</td>
<td>3-00</td>
<td>3-00</td>
<td>2-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>282-10</td>
<td>286-10</td>
<td>3-00</td>
<td>3-00</td>
<td>2-95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286-10</td>
<td>290-10</td>
<td>3-00</td>
<td>3-00</td>
<td>2-70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290-10</td>
<td>294-10</td>
<td>3-00</td>
<td>3-00</td>
<td>2-55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>294-10</td>
<td>298-10</td>
<td>3-00</td>
<td>3-00</td>
<td>2-93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>297-10</td>
<td>301-10</td>
<td>3-00</td>
<td>3-00</td>
<td>2-93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300-10</td>
<td>304-10</td>
<td>3-00</td>
<td>3-00</td>
<td>3-00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>303-10</td>
<td>307-10</td>
<td>3-00</td>
<td>3-00</td>
<td>2-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>306-10</td>
<td>310-10</td>
<td>3-00</td>
<td>3-00</td>
<td>2-80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Report Code: AC 30298

Samples Received: 14/01/97
Number of Samples: 50

Homestake Gold of Australia Ltd.
P.O.Box 7780 Cloisters Sq.
Perth WA 6000

Assaycorp Pty Ltd
A.C.R. B92 W92 U11
11th Ward St
Pine Creek NT 0847
Ph (08) 8978 1252
Fax (08) 8978 1310

Reference: 15966
Project: J.Goulavitch
Cost Code:

Sample Preparation:

Sample Data:

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Analytical Method</th>
<th>Digest</th>
<th>Technique</th>
<th>Precision & Accuracy</th>
<th>Detection Limit</th>
<th>Data Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>FA50</td>
<td>FA</td>
<td>AAS</td>
<td>Acc. ± 15 %</td>
<td>0.01 ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>Au(R)</td>
<td>FA50</td>
<td>FA</td>
<td>AAS</td>
<td>Acc. ± 15 %</td>
<td>0.01 ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>As</td>
<td>FA50</td>
<td>FA</td>
<td>AAS</td>
<td>Prec. ± 10 %</td>
<td>1</td>
<td>ppm</td>
</tr>
</tbody>
</table>

Sample Code: AC 30298

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>233</td>
<td>400-401</td>
<td><0.01</td>
<td>29</td>
</tr>
<tr>
<td>233</td>
<td>402-403</td>
<td><0.01</td>
<td>21</td>
</tr>
<tr>
<td>233</td>
<td>404-405</td>
<td><0.01</td>
<td>7</td>
</tr>
<tr>
<td>233</td>
<td>406-407</td>
<td><0.01</td>
<td>17</td>
</tr>
<tr>
<td>233</td>
<td>407-409</td>
<td><0.01</td>
<td>7</td>
</tr>
<tr>
<td>233</td>
<td>408-410</td>
<td><0.01</td>
<td>3</td>
</tr>
<tr>
<td>233</td>
<td>410-411</td>
<td>0.02</td>
<td>3</td>
</tr>
<tr>
<td>233</td>
<td>411-412</td>
<td>0.01</td>
<td>21</td>
</tr>
<tr>
<td>233</td>
<td>412-413</td>
<td>0.01</td>
<td>25</td>
</tr>
<tr>
<td>233</td>
<td>413-414</td>
<td><0.01</td>
<td>19</td>
</tr>
<tr>
<td>233</td>
<td>414-415</td>
<td><0.01</td>
<td>29</td>
</tr>
<tr>
<td>233</td>
<td>417-418</td>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>233</td>
<td>419-420</td>
<td>0.04</td>
<td>13</td>
</tr>
<tr>
<td>233</td>
<td>420-421</td>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>233</td>
<td>421-422</td>
<td>0.02</td>
<td>5</td>
</tr>
<tr>
<td>233</td>
<td>422-423</td>
<td>0.01</td>
<td>14</td>
</tr>
<tr>
<td>233</td>
<td>423-424</td>
<td><0.01 <0.01</td>
<td>8</td>
</tr>
<tr>
<td>233</td>
<td>424-425</td>
<td>0.02</td>
<td>17</td>
</tr>
<tr>
<td>233</td>
<td>425-426</td>
<td>0.01</td>
<td>25</td>
</tr>
<tr>
<td>233</td>
<td>428-429</td>
<td>0.02</td>
<td>19</td>
</tr>
<tr>
<td>233</td>
<td>427-428</td>
<td><0.01</td>
<td>27</td>
</tr>
<tr>
<td>233</td>
<td>428-429</td>
<td>0.01</td>
<td>32</td>
</tr>
<tr>
<td>233</td>
<td>429-430</td>
<td><0.01 <0.01</td>
<td>23</td>
</tr>
<tr>
<td>233</td>
<td>430-431</td>
<td><0.01</td>
<td>5</td>
</tr>
</tbody>
</table>

Method: FA50, FA50, QA50A

Report Comment: This cover sheet is an integral part of the report. This report can only be reproduced in full.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>233 431-432</td>
<td>0.01</td>
<td>-</td>
<td>29</td>
</tr>
<tr>
<td>233 432-433</td>
<td><0.01</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>233 433-434</td>
<td>0.01</td>
<td>-</td>
<td>29</td>
</tr>
<tr>
<td>233 436-437</td>
<td><0.01</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>233 439-440</td>
<td><0.01</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>233 442-443</td>
<td><0.01</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>233 445-446</td>
<td>0.01</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>233 448-449</td>
<td><0.01</td>
<td>-</td>
<td><1</td>
</tr>
<tr>
<td>233 451-452</td>
<td>0.01</td>
<td>-</td>
<td><1</td>
</tr>
<tr>
<td>233 454-455</td>
<td><0.01</td>
<td>-</td>
<td><1</td>
</tr>
<tr>
<td>233 457-458</td>
<td><0.01</td>
<td>-</td>
<td><1</td>
</tr>
<tr>
<td>233 460-461</td>
<td><0.01</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>233 463-464</td>
<td>0.01</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>233 466-467</td>
<td>0.01</td>
<td>-</td>
<td><1</td>
</tr>
<tr>
<td>233 469-470</td>
<td>0.01</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>233 470-471</td>
<td><0.01</td>
<td>0.01</td>
<td>51</td>
</tr>
<tr>
<td>233 471-472</td>
<td>0.01</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>233 472-473</td>
<td>0.02</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>233 473-474</td>
<td>0.01</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>233 474-475</td>
<td>0.04</td>
<td>0.03</td>
<td>315</td>
</tr>
<tr>
<td>233 475-476</td>
<td>0.04</td>
<td>-</td>
<td>35</td>
</tr>
<tr>
<td>233 476-477</td>
<td>0.03</td>
<td>-</td>
<td>403</td>
</tr>
<tr>
<td>233 477-478</td>
<td>0.02</td>
<td>-</td>
<td>29</td>
</tr>
<tr>
<td>233 478-479</td>
<td>0.02</td>
<td>0.03</td>
<td>24</td>
</tr>
<tr>
<td>233 479-480</td>
<td>0.01</td>
<td>-</td>
<td>18</td>
</tr>
</tbody>
</table>

Method | FA50 | FA50 | G300A |

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>233 480-481</td>
<td>0.01</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td>233 481-482</td>
<td>0.01</td>
<td>0.02</td>
<td>3</td>
</tr>
<tr>
<td>233 482-483</td>
<td>0.01</td>
<td>-</td>
<td><1</td>
</tr>
<tr>
<td>233 483-484</td>
<td>0.01</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>233 484-485</td>
<td><0.01</td>
<td><0.01</td>
<td>14</td>
</tr>
<tr>
<td>233 485-486</td>
<td>0.01</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td>233 486-487</td>
<td>0.01</td>
<td>-</td>
<td>34</td>
</tr>
<tr>
<td>233 487-488</td>
<td>0.03</td>
<td>0.02</td>
<td>20</td>
</tr>
<tr>
<td>233 488-489</td>
<td>0.02</td>
<td>-</td>
<td>50</td>
</tr>
</tbody>
</table>

Method | FA50 | FA50 | G300A |
ASSAY CODE: AC 36162

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>233</td>
<td>0.02</td>
<td>0.04</td>
<td>48</td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td><0.01</td>
<td>10</td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td><0.01</td>
<td>10</td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td><0.01</td>
<td>28</td>
</tr>
<tr>
<td>233</td>
<td>0.01</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td><0.01</td>
<td>15</td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td><0.01</td>
<td>23</td>
</tr>
<tr>
<td>233</td>
<td><0.01</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Report Comment: This cover sheet is an integral part of the report. This report can only be reproduced in full.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>233 217-218</td>
<td>0.01</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>233 220-221</td>
<td><0.01</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>233 223-224</td>
<td><0.01</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>233 226-227</td>
<td><0.01</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>233 229-230</td>
<td>0.10</td>
<td>0.16</td>
<td>44</td>
</tr>
<tr>
<td>233 232-233</td>
<td><0.01</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>233 235-236</td>
<td><0.01</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>233 238-239</td>
<td><0.01</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>233 241-242</td>
<td><0.01</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>233 244-245</td>
<td>0.01</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>233 247-248</td>
<td>0.01</td>
<td><0.01</td>
<td>17</td>
</tr>
<tr>
<td>233 250-251</td>
<td><0.01</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>233 253-254</td>
<td>0.01</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>233 256-257</td>
<td>0.02</td>
<td>0.02</td>
<td>11</td>
</tr>
<tr>
<td>233 259-260</td>
<td>0.01</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>233 262-263</td>
<td><0.01</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>233 265-266</td>
<td>0.01</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>233 268-269</td>
<td><0.01</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>233 271-272</td>
<td><0.01</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>233 274-275</td>
<td><0.01</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>233 277-278</td>
<td><0.01</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>233 280-281</td>
<td><0.01</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>233 283-284</td>
<td>0.01</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>233 286-287</td>
<td><0.01</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>233 289-290</td>
<td><0.01</td>
<td><0.01</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>FA50</th>
<th>FA50</th>
<th>G300A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>233 142-143</td>
<td><0.01</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>233 145-146</td>
<td><0.01</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>233 148-149</td>
<td><0.01</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>233 151-152</td>
<td><0.01</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>233 154-155</td>
<td><0.01</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>233 157-158</td>
<td><0.01</td>
<td><0.01</td>
<td>9</td>
</tr>
<tr>
<td>233 160-161</td>
<td><0.01</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>233 163-164</td>
<td><0.01</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>233 166-167</td>
<td><0.01</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>233 169-170</td>
<td><0.01</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>233 172-173</td>
<td><0.01</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>233 175-176</td>
<td><0.01</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>233 178-179</td>
<td><0.01</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>233 181-182</td>
<td><0.01</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>233 184-185</td>
<td><0.01</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>233 187-188</td>
<td><0.01</td>
<td>0.01</td>
<td>13</td>
</tr>
<tr>
<td>233 190-191</td>
<td><0.01</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>233 193-194</td>
<td><0.01</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>233 196-197</td>
<td><0.01</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>233 199-200</td>
<td>0.01</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>233 202-203</td>
<td>0.01</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>233 205-206</td>
<td>0.01</td>
<td><0.01</td>
<td>19</td>
</tr>
<tr>
<td>233 208-209</td>
<td>0.01</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>233 211-212</td>
<td>0.01</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>233 214-215</td>
<td><0.01</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Method | FA50 | FA50 | G300A |</p>
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>233 335-336</td>
<td><0.01</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>233 336-337</td>
<td><0.01</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>233 337-338</td>
<td><0.01</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>233 338-339</td>
<td><0.01</td>
<td><0.01</td>
<td>24</td>
</tr>
<tr>
<td>233 339-340</td>
<td><0.01</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>233 340-341</td>
<td>0.04</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>233 341-342</td>
<td>0.05</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>233 342-343</td>
<td>0.04</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>233 343-344</td>
<td>0.08</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>233 344-345</td>
<td>0.10</td>
<td>0.08</td>
<td>5</td>
</tr>
<tr>
<td>233 345-346</td>
<td>0.17</td>
<td>0.22</td>
<td>6</td>
</tr>
<tr>
<td>233 346-347</td>
<td>0.18</td>
<td>0.15</td>
<td>12</td>
</tr>
<tr>
<td>233 347-348</td>
<td><0.01</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>233 348-349</td>
<td>0.03</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>233 349-350</td>
<td>0.03</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>233 350-351</td>
<td>0.02</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>233 351-352</td>
<td>0.01</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>233 352-353</td>
<td><0.01</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>233 353-354</td>
<td><0.01</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>233 354-355</td>
<td>0.01</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>233 355-356</td>
<td>0.02</td>
<td>0.01</td>
<td>12</td>
</tr>
<tr>
<td>233 356-357</td>
<td>0.02</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>233 357-358</td>
<td><0.01</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>233 358-359</td>
<td><0.01</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>233 359-360</td>
<td><0.01</td>
<td></td>
<td>190</td>
</tr>
</tbody>
</table>

Method: FA50 FA50 G300A
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>233 360-361</td>
<td><0.01</td>
<td>660</td>
<td></td>
</tr>
<tr>
<td>233 361-362</td>
<td>0.01</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>233 362-363</td>
<td><0.01</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>233 363-364</td>
<td><0.01</td>
<td><0.01</td>
<td>40</td>
</tr>
<tr>
<td>233 364-365</td>
<td>0.25</td>
<td>0.24</td>
<td>970</td>
</tr>
<tr>
<td>233 365-366</td>
<td>0.03</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>233 366-367</td>
<td>0.01</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>233 367-368</td>
<td>0.02</td>
<td>0.02</td>
<td>20</td>
</tr>
<tr>
<td>233 368-369</td>
<td><0.01</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>233 369-370</td>
<td><0.01</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>233 370-371</td>
<td><0.01</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>233 371-372</td>
<td><0.01</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>233 372-373</td>
<td><0.01</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>233 373-374</td>
<td><0.01</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>233 374-375</td>
<td><0.01</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>233 375-376</td>
<td><0.01</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>233 376-377</td>
<td><0.01</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>233 377-378</td>
<td><0.01</td>
<td><0.01</td>
<td>8</td>
</tr>
<tr>
<td>233 378-379</td>
<td><0.01</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>233 379-380</td>
<td><0.01</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>233 380-381</td>
<td>0.01</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>233 381-382</td>
<td><0.01</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>233 382-383</td>
<td><0.01</td>
<td><0.01</td>
<td>19</td>
</tr>
<tr>
<td>233 383-384</td>
<td><0.01</td>
<td><0.01</td>
<td>13</td>
</tr>
<tr>
<td>233 384-385</td>
<td><0.01</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Method FA50 FA50 6300A
ASSAYCORP

Report Code: AC 35925
Sample Received: 30/04/97
Number of Samples: 33

Homestake Gold of Australia Ltd.
P.O.Box 1943 Cielsteno Sq.
North WA 6660

Reference: 13849
Project:
Cost Code:

Sample Preparation:

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Analytical Method</th>
<th>Digest</th>
<th>Technique</th>
<th>Precision & Accuracy</th>
<th>Detection Limit</th>
<th>Data Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>FAAS</td>
<td>FA</td>
<td>AAS</td>
<td>Acc. ± 15 X</td>
<td>0.01 ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>As(R)</td>
<td>FAAS</td>
<td>FA</td>
<td>AAS</td>
<td>Acc. ± 15 X</td>
<td>0.01 ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>As</td>
<td>G300A</td>
<td>NA3</td>
<td>AAS</td>
<td>Pres. ± 10 X</td>
<td>1 ppm</td>
<td>ppm</td>
</tr>
</tbody>
</table>

Report Comment: This cover sheet is an integral part of the report. This report can only be reproduced in full.

Authorisation: Ray Woodbridge
Report Dated: 23/04/97
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPDH-233 0-2</td>
<td>0.01</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>MPDH-233 2-4</td>
<td>0.01</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MPDH-233 4-6</td>
<td>0.01</td>
<td><0.01</td>
<td>10</td>
</tr>
<tr>
<td>MPDH-233 6-8</td>
<td>0.01</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>MPDH-233 8-10</td>
<td>0.01</td>
<td>0.01</td>
<td>23</td>
</tr>
<tr>
<td>MPDH-233 10-12</td>
<td>0.01</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>MPDH-233 12-14</td>
<td>0.01</td>
<td>0.01</td>
<td>28</td>
</tr>
<tr>
<td>MPDH-233 14-16</td>
<td><0.01</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>MPDH-233 16-18</td>
<td><0.01</td>
<td><0.01</td>
<td>29</td>
</tr>
<tr>
<td>MPDH-233 18-20</td>
<td><0.01</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>MPDH-233 20-22</td>
<td><0.01</td>
<td><0.01</td>
<td>68</td>
</tr>
<tr>
<td>MPDH-233 22-24</td>
<td><0.01</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>MPDH-233 24-26</td>
<td>0.01</td>
<td><0.01</td>
<td>20</td>
</tr>
<tr>
<td>MPDH-233 28-28</td>
<td><0.01</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>MPDH-233 28-30</td>
<td><0.01</td>
<td>0.01</td>
<td>68</td>
</tr>
<tr>
<td>MPDH-233 30-32</td>
<td><0.01</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>MPDH-233 32-34</td>
<td>0.01</td>
<td><0.01</td>
<td>23</td>
</tr>
<tr>
<td>MPDH-233 34-36</td>
<td>0.01</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>MPDH-233 38-38</td>
<td>0.02</td>
<td>0.01</td>
<td>7</td>
</tr>
<tr>
<td>MPDH-233 38-40</td>
<td><0.01</td>
<td></td>
<td><1</td>
</tr>
<tr>
<td>MPDH-233 40-42</td>
<td><0.01</td>
<td></td>
<td><1</td>
</tr>
<tr>
<td>MPDH-233 42-44</td>
<td><0.01</td>
<td><0.01</td>
<td>8</td>
</tr>
<tr>
<td>MPDH-233 44-48</td>
<td>0.03</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>MPDH-233 48-48</td>
<td>0.01</td>
<td><0.01</td>
<td>32</td>
</tr>
<tr>
<td>MPDH-233 48-50</td>
<td><0.01</td>
<td>0.01</td>
<td>52</td>
</tr>
</tbody>
</table>

Method: FA50 FA50 G300A
APPENDIX III
EXPLOREMIN PTY LTD - DRILL HOLE LOG

Drill Hole: HPCL-234
Tenement: EPL-116
Prospect: Mt Porter
RL Collar:
Client: Homestake

- **AMG/Grid E:** 9837,4
- **AMG/Grid N:** 1195,3
- **Azimuth:** 238°
- **Inclination:** -80°
- **Commenced:** 9/3/1997
- **Completed:** 10/15/1997
- **Total Depth:** 60m
- **Hole Size:** 4-1/2"
- **Casing:** 6m poly
- **Sample Type:** RC, 2m composite
- **Drill Type:** UMD-650

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SampNo</th>
<th>Lithology</th>
<th>Colour</th>
<th>Texture</th>
<th>Major Minerals</th>
<th>Minor Minerals</th>
<th>Trace Minerals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td>Siltstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>4-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>6-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>8-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>10-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>12-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>14-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>16-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>18-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>20-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>22-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:
- Some minor quartz chips
- Some carbonstone chips
- 90% Quartz, 10% Silica.
EXPLOREMINE PTY LTD - DRILL HOLE LOG

Drill Hole: MP1-234
Tenement: EAL-116
Prospect: Mt Aftet
RL Collar:
Map Ref:
Client: Homestake
Commenced: 9/5/97
Completed: 10/5/97
Hole Size: 4
Casing: 6m poly
Sample Type: 1m composite

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SampNo</th>
<th>Lithology</th>
<th>Colour</th>
<th>Texture</th>
<th>Major Minerals</th>
<th>Minor Minerals</th>
<th>Trace Minerals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>25</td>
<td></td>
<td>Siltstone</td>
<td>Red brown</td>
<td>fine grain</td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>20% Quartz chips</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>40% Quartz chips</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>26 26</td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>Soft clay clay</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>26 26</td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>32 32</td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>32 32</td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>34</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>35</td>
<td>36</td>
<td>34 34</td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>36 36</td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>38</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>39</td>
<td>40</td>
<td>38 38</td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>40 40</td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>42</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>43</td>
<td>44</td>
<td>42 42</td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>44</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>45</td>
<td>46</td>
<td>44 44</td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>46</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
<tr>
<td>47</td>
<td>48</td>
<td>46 46</td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide</td>
<td>Quartz</td>
<td>Clay</td>
<td>70% Quartz chips</td>
</tr>
</tbody>
</table>

Sheet: 2 of 3
Logged by: S.O.
Drillers: C.A.D.
Drill Type: GMD-650/590
EXPLORMIN Pty Ltd - Drill Hole Log

- **Drill Hole:** MML-234
- **Tenement:** BML-116
- **Prospect:** Mt. Wather
- **Map Ref.:** Pink Creek 5270

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SampNo</th>
<th>Lithology</th>
<th>Colour</th>
<th>Texture</th>
<th>Major Minerals</th>
<th>Minor Minerals</th>
<th>Trace minerals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>49</td>
<td>50</td>
<td>Dolomite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron oxide on cracked features</td>
</tr>
<tr>
<td>50</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slightly altered dolomite</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>50-52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>52-54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>56</td>
<td>54-56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>58</td>
<td>56-58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>59</td>
<td>57-58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>60</td>
<td>58-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **E.O.H.**

- **Total Depth:** 60m
- **Casing:** 6m poly
- **Azimuth:** 238°
- **Inclination:** -80°
- **Commenced:** 9/5/97
- **Completed:** 10/5/97
- **Hole Size:** 4 1/2"
- **Sample Type:** RC 2m composite

- **Logged by:** S.A.
- **Drillers:** GAEW
- **Drill Type:** UDR-650

Notes:
- 30m - 78° Dip.
- 60m - 77° Dip.
ASSAYCORP

Report Code: AC 36253
Sample Received: 31/05/97
Number of Samples: 30

Homestake Gold of Australia Ltd.
P.O.Box 7130 Claisebrook Sq.
Perth WA 6850

Reference: 19854
Project:
Cost Code:

ASSAYCORP Pty Ltd
A.C.R. 082 922 811
174 Ward St
Pine Creek NT 0847
Ph (08) 8976 1302
Fax (08) 8976 1310

Report Distribution
J. Goulavitch
J. Stewart

Page 1 of 3

Sample Preparation:

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Analytical Method</th>
<th>Digest</th>
<th>Technique</th>
<th>Precision & Accuracy</th>
<th>Detection Limit</th>
<th>Data Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>FA50</td>
<td>FA</td>
<td>AAS</td>
<td>Acc. & 15 %</td>
<td>0.01</td>
<td>ppm</td>
</tr>
<tr>
<td>Au(5)</td>
<td>FA50</td>
<td>FA</td>
<td>AAS</td>
<td>Acc. & 15 %</td>
<td>0.01</td>
<td>ppm</td>
</tr>
<tr>
<td>As</td>
<td>G900A</td>
<td>MA3</td>
<td>AAS</td>
<td>Proc. & 10 %</td>
<td>1</td>
<td>ppm</td>
</tr>
</tbody>
</table>

Report Comment: This cover sheet is an integral part of the report. This report can only be reproduced in full
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPRC 234 0-2</td>
<td>0.20</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>MPRC 234 2-4</td>
<td>0.21</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>MPRC 234 4-6</td>
<td>0.20</td>
<td>0.18</td>
<td>36</td>
</tr>
<tr>
<td>MPRC 234 6-8</td>
<td>0.27</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>MPRC 234 8-10</td>
<td>0.26</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>MPRC 234 10-12</td>
<td>0.23</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>MPRC 234 12-14</td>
<td>0.26</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>MPRC 234 14-16</td>
<td>0.12</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>MPRC 234 16-18</td>
<td>0.46</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>MPRC 234 18-20</td>
<td>0.22</td>
<td>0.28</td>
<td>86</td>
</tr>
<tr>
<td>MPRC 234 20-22</td>
<td>0.27</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>MPRC 234 22-24</td>
<td>0.38</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>MPRC 234 24-26</td>
<td>0.12</td>
<td></td>
<td>976</td>
</tr>
<tr>
<td>MPRC 234 26-28</td>
<td>0.03</td>
<td></td>
<td>1307</td>
</tr>
<tr>
<td>MPRC 234 28-30</td>
<td>0.05</td>
<td></td>
<td>340</td>
</tr>
<tr>
<td>MPRC 234 30-32</td>
<td><0.01</td>
<td>0.02</td>
<td>280</td>
</tr>
<tr>
<td>MPRC 234 32-34</td>
<td>0.09</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>MPRC 234 34-36</td>
<td><0.01</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>MPRC 234 36-38</td>
<td>0.83</td>
<td>0.80</td>
<td>250</td>
</tr>
<tr>
<td>MPRC 234 38-40</td>
<td>1.20</td>
<td>1.19</td>
<td>1272</td>
</tr>
<tr>
<td>MPRC 234 40-42</td>
<td>0.39</td>
<td>0.44</td>
<td>155</td>
</tr>
<tr>
<td>MPRC 234 42-44</td>
<td>0.14</td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>MPRC 234 44-46</td>
<td>0.24</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>MPRC 234 46-48</td>
<td>0.76</td>
<td>0.71</td>
<td>210</td>
</tr>
<tr>
<td>MPRC 234 48-50</td>
<td>0.22</td>
<td></td>
<td>140</td>
</tr>
</tbody>
</table>

Method: FA50 FA50 G300A
APPENDIX IV
Drill Hole Log

Drill Hole: MPDN-235
AMG/Grid E: 103421
AMG/Grid N: 104648
Azimuth: 272°
Inclination: -70°
Commenced: 11/5/97
Completed: 17/5/97
Total Depth: 90m pre-collar
Hole Size: 4/4
Sample Type: RC
Sheet: 1 of 4
Logged by: S.O.
Drillers: CANON
Drill Type: CDP-650

Lithology Data

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SampNo</th>
<th>Lithology</th>
<th>Colour</th>
<th>Texture</th>
<th>Major Minerals</th>
<th>Minor Minerals</th>
<th>Trace Minerals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td>Clay</td>
<td>Orange-brown</td>
<td>fine grained clay</td>
<td>Iron oxides</td>
<td></td>
<td></td>
<td>Mine oxidised silica clay</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td>Clay + silstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td></td>
<td>Sapolik</td>
<td>Grey-brown</td>
<td></td>
<td>Iron oxides</td>
<td>Clay + iron oxides</td>
<td>Sample Recovery</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td></td>
<td>Sapolik</td>
<td>Red-brown</td>
<td>Fine grained clay + iron oxides</td>
<td></td>
<td></td>
<td>Lithology undetectable on heavily oxidised Red</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td></td>
<td>Carbonaceous Siltstone</td>
<td>Dark grey</td>
<td>Fine grained Graphite</td>
<td>Iron oxides</td>
<td>Iron oxides in some chips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>SampNo</td>
<td>Lithology</td>
<td>Colour</td>
<td>Texture</td>
<td>Major Minerals</td>
<td>Minor Minerals</td>
<td>Trace Minerals</td>
<td>Comments</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td></td>
<td>Cadamereena Schists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXPOREMIND PTY LTD - DRILL HOLE LOG

Drill Hole: *MWB-235*
Tenement: *EAC-116*
AMG/Grid E: *10342.1*
AMG/Grid N: *10464.8*
Azimuth: *272°*
Inclination: *-10°*
Commenced: *11/5/97*
Completed: *17/5/97*
Prospect: *Mount Fishers*
RL Collar: *Homescape*
Total Depth: *90m covered*
Casing: *6m poly*
Hole Size: *4½"
Sample Type: *NC*
Sheet: *2 of 4*
Logged by: *5-2*
Drillers: *Caden*
Drill Type: *U32-630*
EXPLOREMIN PTY LTD - DRILL HOLE LOG

Drill Hole: NPDH-235
Tenement: CDL-116
Prospect: MOUNT PORTER
Map Ref: Ani Creek S270

AMG/Grid E: 1034421
AMG/Grid N: 1046498
RL Collar: HOMESTAKE
Client: Homestake

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SampNo</th>
<th>Lithology</th>
<th>Colour</th>
<th>Texture</th>
<th>Major Minerals</th>
<th>Minor Minerals</th>
<th>Trace Minerals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>49</td>
<td></td>
<td>Carbonaceous Shale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>50</td>
<td></td>
<td>Width 25% 48-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Azimuth: 222° **A’MIG**
Inclination: 70°
Total Depth: 5446 m
Casing: 6m Poly

Commenced: 11/5/97
Completed: 7/5/97
Hole Size: 4.5"
Sample Type: RC

Logged by: S G
Drillers: CAPEW

Drill Type: LMD-650
EXPLOREMIN Pty Ltd - Drill Hole Log

Drill Hole: MROH-235
Tenement: EML 46
Prospect: Mount Poona
AMG/Grid E: 102.3 420.1
AMG/Grid N: 104.6 64.8
Azimuth: 272°
Inclination: -70°
Commenced: 11/5/97
Completed: 17/5/97
Total Depth: 90m
Hole Size: 3.5"
Casing: 6m
Client: Amestance
Loggers: W.A.
Drillers: Caden
Drill Type: U02-650

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SampNo</th>
<th>Lithology</th>
<th>Colour</th>
<th>Texture</th>
<th>Major Minerals</th>
<th>Minor Minerals</th>
<th>Trace Minerals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>73</td>
<td>MROH-235 12-72</td>
<td>Cadenevino Siltite</td>
<td>Black</td>
<td>Fei grain</td>
<td>Graphite</td>
<td>1.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>76</td>
<td>MROH-235 12-76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>78</td>
<td>MROH-235 12-78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>79</td>
<td>MROH-235 12-79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>80</td>
<td>MROH-235 12-80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>81</td>
<td>MROH-235 12-81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>MROH-235 12-82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>83</td>
<td>MROH-235 12-83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>84</td>
<td>MROH-235 12-84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>85</td>
<td>MROH-235 12-85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>86</td>
<td>MROH-235 12-86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>87</td>
<td>MROH-235 12-87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>88</td>
<td>MROH-235 12-88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>89</td>
<td>MROH-235 12-89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>90</td>
<td>MROH-235 12-90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

END Rc Core NR
EXPLORMIN PTY LTD - DIAMOND DRILL HOLE LOG

- **Drill Hole:** M6DH-235
- **Tentative:** E67-16
- **Prospect:** MOUNT POOPER
- **Map Ref:** MOUNT POOPER
- **Hole Surv - Depth/incl/Azim:** 0m 1-68 1 - 30m 1-68 1 - 60m 1-71 1 - 90m 1-74 1 -
- **Client:** Homestake

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph Log</th>
<th>Mineralisation Fe-S-O (est %)</th>
<th>Alteration/Metamorphism (est %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>13.50</td>
<td>Carbonaceous Siltstone, dark grey, black, fine-grained, graphitic, white, andesitic tuffs, to 2m thick. Structure in white with thin fractures.</td>
<td>B</td>
<td>5%</td>
<td>4:1</td>
</tr>
<tr>
<td>13.50</td>
<td>21.20</td>
<td>Carbonaceous Siltstone, dark grey, black, fine-grained, graphitic, white, andesitic tuffs, to 2m thick. Structure in white with thin fractures.</td>
<td>B</td>
<td>5%</td>
<td>4:1</td>
</tr>
</tbody>
</table>

Notes:
- Black, fine-grained, graphitic, white, andesitic tuffs, to 2m thick. Structure in white with thin fractures.
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph Log</th>
<th>Mineralisation (Fe-SiO₂ (est %))</th>
<th>Alteration/Metamorphism (est %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.00</td>
<td>135.00</td>
<td>(24.5) oo phylctite with tuffaceous fillings. Fossils are oriented from 115.3 - 117.4' E. Oriented core at 17m. S = 135/38W.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135.00</td>
<td>167.20</td>
<td>Dolerite. Dark olivit green, medium grained, craguline, massive. 17m. Oriented core at 17m. S = 135/38W.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167.20</td>
<td>183.30</td>
<td>Carbonaceous Substrate. Dark grey-bluish.fine grained, medium to coarse-grained. Alteration from fossil fibre is that it lacks the manganese, sulphide, vein/fillings. 50% numerically black Carbon.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Fossils are oriented from 115.3 - 117.4' E.
- Oriented core at 17m. S = 135/38W.
- Dolerite: Dark olivit green, medium grained, craguline, massive.
- Carbonaceous Substrate: Dark grey-bluish, fine grained, medium to coarse-grained.
EXPOREMIN PTY LTD - DIAMOND DRILL HOLE LOG

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph</th>
<th>Mineralization (wt %) Fes-Os</th>
<th>Alteration/Metamorphism (wt %)</th>
<th>Apy</th>
<th>Vms</th>
<th>84% Depth</th>
<th>Struc</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>8250</td>
<td>9550</td>
<td>(cont) Patau contact conformable with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Footing top hole. Bottom 3m of mineral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Start to see minor quartz± chlorite veins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Associated with possible stock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HOLE TERRAINISED DUE TO RADICAL DEVIATION IN REQUIRED DIP.
EXPLOREMIN PTY LTD

CORE RECOVERY, RQD, FRACTURE COUNT

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov’d</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.00</td>
<td>90.30</td>
<td>0.30</td>
<td>0.25</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.30</td>
<td>93.30</td>
<td>3.00</td>
<td>3.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93.30</td>
<td>96.30</td>
<td>3.00</td>
<td>3.00</td>
<td>2.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.30</td>
<td>99.30</td>
<td>3.00</td>
<td>3.00</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.30</td>
<td>105.30</td>
<td>6.00</td>
<td>6.00</td>
<td>5.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.30</td>
<td>108.3</td>
<td>3.00</td>
<td>3.00</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108.3</td>
<td>111.3</td>
<td>3.00</td>
<td>3.00</td>
<td>2.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111.3</td>
<td>114.3</td>
<td>3.00</td>
<td>3.00</td>
<td>2.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114.3</td>
<td>117.3</td>
<td>3.00</td>
<td>3.00</td>
<td>2.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.3</td>
<td>120.0</td>
<td>2.77</td>
<td>2.77</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.0</td>
<td>123.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123.1</td>
<td>126.2</td>
<td>3.1</td>
<td>3.1</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.2</td>
<td>129.3</td>
<td>3.1</td>
<td>3.1</td>
<td>2.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129.3</td>
<td>132.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132.3</td>
<td>135.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135.3</td>
<td>138.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138.3</td>
<td>141.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141.3</td>
<td>144.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144.3</td>
<td>147.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147.3</td>
<td>150.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150.3</td>
<td>153.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153.3</td>
<td>156.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156.3</td>
<td>159.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159.3</td>
<td>162.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162.3</td>
<td>165.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165.3</td>
<td>168.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168.3</td>
<td>171.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171.3</td>
<td>174.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174.3</td>
<td>177.3</td>
<td>3.0</td>
<td>3.0</td>
<td>2.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177.3</td>
<td>180.2</td>
<td>2.9</td>
<td>2.75</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Interval</td>
<td>Recov'd</td>
<td>Length in Sticks >10 cm</td>
<td>No of Open Fractures</td>
<td>No of Strongly Healed Fractures</td>
<td>No of Weakly Healed Fractures</td>
<td>No of open Fractures with stick coat</td>
<td>Comments</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>------------------------------</td>
<td>-------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>180.2</td>
<td>183.3</td>
<td>3'1</td>
<td>3.1</td>
<td>2.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E.O.H</td>
</tr>
<tr>
<td>183.3</td>
<td>186.3</td>
<td>3'0</td>
<td>2.82</td>
<td>2.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186.3</td>
<td>189.3</td>
<td>3'0</td>
<td>3.0</td>
<td>2.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189.3</td>
<td>192.3</td>
<td>3'0</td>
<td>3.0</td>
<td>2.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.3</td>
<td>195.3</td>
<td>3'0</td>
<td>2.85</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSAY CODE: AC 36260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPDH 235 0-2</td>
<td>0.01</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>MPDH 235 2-4</td>
<td><0.01</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>MPDH 235 4-6</td>
<td><0.01</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>MPDH 235 6-8</td>
<td><0.01</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>MPDH 235 8-10</td>
<td><0.01</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>MPDH 235 10-12</td>
<td><0.01</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>MPDH 235 12-14</td>
<td>0.01</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>MPDH 235 14-16</td>
<td>0.01</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>MPDH 235 16-18</td>
<td><0.01</td>
<td><0.01</td>
<td>91</td>
</tr>
<tr>
<td>MPDH 235 18-20</td>
<td>0.01</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>MPDH 235 20-22</td>
<td>0.01</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>MPDH 235 22-24</td>
<td>0.01</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>MPDH 235 24-26</td>
<td>0.02</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>MPDH 235 26-28</td>
<td>0.01</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>MPDH 235 28-30</td>
<td>0.01</td>
<td><0.01</td>
<td>29</td>
</tr>
<tr>
<td>MPDH 235 30-32</td>
<td><0.01</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>MPDH 235 32-34</td>
<td><0.01</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>MPDH 235 34-36</td>
<td><0.01</td>
<td>0.01</td>
<td>9</td>
</tr>
<tr>
<td>MPDH 235 36-38</td>
<td>0.01</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>MPDH 235 38-40</td>
<td>0.01</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>MPDH 235 40-42</td>
<td>0.01</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>MPDH 235 42-44</td>
<td>0.01</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>MPDH 235 44-46</td>
<td><0.01</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>MPDH 235 46-48</td>
<td><0.01</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>MPDH 235 48-50</td>
<td><0.01</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

| ASSAY CODE: AC 36260 |

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPDH 235 50-52</td>
<td><0.01</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>MPDH 235 52-54</td>
<td><0.01</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>MPDH 235 54-56</td>
<td><0.01</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>MPDH 235 56-58</td>
<td><0.01</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>MPDH 235 58-60</td>
<td><0.01</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>MPDH 235 60-62</td>
<td>0.01</td>
<td><0.01</td>
<td>10</td>
</tr>
<tr>
<td>MPDH 235 62-64</td>
<td><0.01</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>MPDH 235 64-66</td>
<td><0.01</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>MPDH 235 66-68</td>
<td><0.01</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>MPDH 235 68-70</td>
<td><0.01</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>MPDH 235 70-72</td>
<td><0.01</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>MPDH 235 72-74</td>
<td><0.01</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>MPDH 235 74-76</td>
<td>0.01</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>MPDH 235 76-78</td>
<td>0.01</td>
<td>0.01</td>
<td>15</td>
</tr>
<tr>
<td>MPDH 235 78-80</td>
<td><0.01</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>MPDH 235 80-82</td>
<td><0.01</td>
<td><0.01</td>
<td>11</td>
</tr>
<tr>
<td>MPDH 235 82-84</td>
<td><0.01</td>
<td><0.01</td>
<td>10</td>
</tr>
<tr>
<td>MPDH 235 84-86</td>
<td>0.02</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>MPDH 235 86-88</td>
<td><0.01</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>MPDH 235 88-90</td>
<td><0.01</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>FA50</th>
<th>FA50</th>
<th>G300A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX V
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>46m</td>
<td>50.20</td>
<td>Carboamonnaceous Siltstone. Dark grey-brown fine-grained siltstone with thin, gray, East and West trending, another 20m at 13% incl.</td>
</tr>
</tbody>
</table>

Mineralisation

<table>
<thead>
<tr>
<th>Graph Log</th>
<th>Fe-SiO (wt %)</th>
<th>Alteration/Metamorphism (est %)</th>
<th>Apy</th>
<th>Veg</th>
<th>Depth</th>
<th>Struct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: No RC Log for MPDH-236 kept.
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
</tr>
</thead>
</table>
| 0m | 150m| Rough breccia zone at 84.5m.
| | | 85.0m Renovated breccia zone at 85.3m. |
| | | 86.0m Contact diorite diorite foliation. |
| | | 87.0m Croom affect breccia clay. |
| | | Core is disturbed from 88.5m to 112.5m. |
| | | S0 = 185°/38 W. At 114.0m. |
| | | Sam. quartz + sulphides vein cuts bedding with no displacement. S0 = 185°/38 W. |
| | | Main Ponds 270/275. |
| | | Cored pink sandstone. |
| 0m | | 91.50. |
| | | 91.90. |
| | | 92.30. |
| | | 92.70. |
| | | 93.10. |
| | | 93.50. |
| | | 94.00. |
| | | 94.50. |

<table>
<thead>
<tr>
<th>Depth</th>
<th>Structural</th>
<th>Alteration/Metamorphism (est %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>103m</td>
<td>106</td>
<td>schistose to breccia, some py</td>
</tr>
<tr>
<td>106m</td>
<td>110</td>
<td>schistose to breccia, some py</td>
</tr>
<tr>
<td>110m</td>
<td>113</td>
<td>schistose to breccia, some py</td>
</tr>
<tr>
<td>113m</td>
<td>116</td>
<td>schistose to breccia, some py</td>
</tr>
<tr>
<td>116m</td>
<td>119</td>
<td>schistose to breccia, some py</td>
</tr>
<tr>
<td>119m</td>
<td>122</td>
<td>schistose to breccia, some py</td>
</tr>
<tr>
<td>122m</td>
<td>125</td>
<td>schistose to breccia, some py</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Graph Log</th>
<th>Mineralisation Fe-S-O (est %)</th>
<th>Alteration/Metamorphism (est %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0m</td>
<td>150m</td>
<td>S0</td>
<td>30</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84.5</td>
<td>185°/38 W.</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85.0</td>
<td>185°/38 W.</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>86.0</td>
<td>Contact diorite diorite foliation.</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>87.0</td>
<td>Croom affect breccia clay.</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88.5</td>
<td>185°/38 W.</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90.0</td>
<td>185°/38 W.</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91.5</td>
<td>185°/38 W.</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91.9</td>
<td>185°/38 W.</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92.3</td>
<td>185°/38 W.</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92.7</td>
<td>185°/38 W.</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93.1</td>
<td>185°/38 W.</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93.5</td>
<td>185°/38 W.</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94.0</td>
<td>185°/38 W.</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94.5</td>
<td>185°/38 W.</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95.0</td>
<td>185°/38 W.</td>
<td>210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alteration/Metamorphism</th>
<th>Alteration/Metamorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td>schistose to breccia</td>
<td>schistose to breccia</td>
</tr>
<tr>
<td>some py</td>
<td>some py</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>185°/38 W.</td>
<td>185°/38 W.</td>
</tr>
<tr>
<td>185°/38 W.</td>
<td>185°/38 W.</td>
</tr>
<tr>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td>210</td>
<td>210</td>
</tr>
</tbody>
</table>
EXPLOREMIN PTY LTD - DIAMOND DRILL HOLE LOG

Drill Hole: MPD 236
Tenement: EM311
Prospect: MOUNT PANTHER
Map Ref: DISEY CREEK 570
Hole Surv - Depth/Incl/Asm: 133m 170.5 1.269°

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph Log</th>
<th>Mineralisation Fe-Si (est %)</th>
<th>Alteration/Metamorphism</th>
<th>Apy</th>
<th>Vna</th>
<th>Depth</th>
<th>Struc</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>152</td>
<td>Gomme brown 175m at calcs patchy with calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152-20</td>
<td>184-54</td>
<td>Pale brown 150m -151-70 dark brown with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fine grain and pinkish grey with thin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184-50</td>
<td>271-40</td>
<td>Cardamone sillstone Dark grey -bluish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Calcite: 0.04 - 0.06 m 185.4 - 187.4°
- Bedding still visible at 185.5 ± 185.4°
- At 185.5 ± 185.4°: 0.02 m 185.4-191°
- Gneiss or very fine-grained discordant bedding with recrystallised pink quartz.
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph</th>
<th>Mineralisation Fe-S-O (est %)</th>
<th>Alteration/Metamorphism (est %)</th>
<th>Apy</th>
<th>Vns</th>
<th>Depth</th>
<th>Struc</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>571.40</td>
<td>571.40</td>
<td>Completly rounded. Unmineralised</td>
<td>215.92</td>
<td>52</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>571.40</td>
<td>571.40</td>
<td>Equivalent to same unit seen in MPDH-235</td>
<td>223.01</td>
<td>50</td>
<td>34</td>
<td>90</td>
<td>020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>571.40</td>
<td>571.40</td>
<td></td>
<td>223.40</td>
<td>50</td>
<td>24</td>
<td>75</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>571.40</td>
<td>571.40</td>
<td>No alteration/Mineralisation</td>
<td>224.00</td>
<td>50</td>
<td>24</td>
<td>75</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>571.40</td>
<td>571.40</td>
<td>No alteration/Mineralisation</td>
<td>225.00</td>
<td>50</td>
<td>24</td>
<td>75</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>571.40</td>
<td>571.40</td>
<td>No alteration/Mineralisation</td>
<td>226.00</td>
<td>50</td>
<td>24</td>
<td>75</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>571.40</td>
<td>571.40</td>
<td>No alteration/Mineralisation</td>
<td>227.00</td>
<td>50</td>
<td>24</td>
<td>75</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>571.40</td>
<td>571.40</td>
<td>No alteration/Mineralisation</td>
<td>228.00</td>
<td>50</td>
<td>24</td>
<td>75</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>571.40</td>
<td>571.40</td>
<td>No alteration/Mineralisation</td>
<td>229.00</td>
<td>50</td>
<td>24</td>
<td>75</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>571.40</td>
<td>571.40</td>
<td>No alteration/Mineralisation</td>
<td>230.00</td>
<td>50</td>
<td>24</td>
<td>75</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>571.40</td>
<td>571.40</td>
<td>No alteration/Mineralisation</td>
<td>231.00</td>
<td>50</td>
<td>24</td>
<td>75</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>571.40</td>
<td>571.40</td>
<td>No alteration/Mineralisation</td>
<td>232.00</td>
<td>50</td>
<td>24</td>
<td>75</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Geological Description</td>
<td>Graph Log</td>
<td>Mineralisation Fe-S-O (est %)</td>
<td>Alteration/Metamorphism (est %)</td>
<td>Apy</td>
<td>Vms</td>
<td>Depth</td>
<td>Struc</td>
<td>α</td>
<td>β</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>
| 184.90 | 214.40 | (cont.) From 245 to 246.50 sec. visible. Sam thick po very well preserved overall. At 249.15m, At 248.55m, Sec. Arg ill. 15m further down. At 248.30m Sec. Arg ill. Blank to show. Sam. Calc.
<p>| 264.5 | Fe | 65 SE, 3m of interbedded calc-silicate to pyroxene at base. At 270.57m. Sam. Laminated to thin layers. hosted in nodular shape in phan. Dolerite interbed and calc-silicate showing. | 264.5 | 246.0 D 47 3.50 0.50 | | 214.0 | 32 130 190 |
| 271.90 | 271.40 | Dolerite Contact bedding conformable. Dach and green fine grained chilled margin. 1m to 3m. Sec. Sam. Calcsilicate veins. Bottom Contact is sharp/sulfur bounded. No bottom drill margin or shear. Dolerite incomplete. Bottom faulted out. | 271.90 | 472.8 D 50 26 0.00 | | 271.40 | 47 130 280 |</p>
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2749</td>
<td>2740</td>
<td>Shear in pyrrhotite, goethite 040/50 SE</td>
</tr>
<tr>
<td>2740</td>
<td>2740</td>
<td>Shear in pyrrhotite, goethite 040/50 SE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No significant alteration beyond shear</td>
</tr>
<tr>
<td>2825</td>
<td>2825</td>
<td>Dolomite, top contact conformable, gray, thin, chlorite, porphyritic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charingbildung, possible fault breccia.</td>
</tr>
<tr>
<td>2825</td>
<td>2825</td>
<td>Dolomite, top contact conformable, gray, thin, chlorite, porphyritic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charingbildung, possible fault breccia.</td>
</tr>
<tr>
<td>2840</td>
<td>2840</td>
<td>Dolomite, top contact conformable, gray, thin, chlorite, porphyritic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charingbildung, possible fault breccia.</td>
</tr>
<tr>
<td>2840</td>
<td>2840</td>
<td>Dolomite, top contact conformable, gray, thin, chlorite, porphyritic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charingbildung, possible fault breccia.</td>
</tr>
</tbody>
</table>

Mineralisation

<table>
<thead>
<tr>
<th>Depth</th>
<th>Fe-SiO (est %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.7</td>
<td>50</td>
</tr>
<tr>
<td>24.7</td>
<td>50</td>
</tr>
<tr>
<td>24.7</td>
<td>50</td>
</tr>
</tbody>
</table>

Alteration/Metamorphism

<table>
<thead>
<tr>
<th>Depth</th>
<th>Struc</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.7</td>
<td>50</td>
<td>15</td>
<td>50</td>
</tr>
</tbody>
</table>

Notes

- Shear in pyrrhotite, goethite 040/50 SE
- No significant alteration beyond shear
- Dolomite, top contact conformable, gray, thin, chlorite, porphyritic
- Charingbildung, possible fault breccia.
EXPLOREMIN PTY LTD - DIAMOND DRILL HOLE LOG

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph Log</th>
<th>Mineralisation Fe-S-O (est %)</th>
<th>Alteration/Metamorphism (est %)</th>
<th>Apy Vms Depth Struc α β</th>
</tr>
</thead>
<tbody>
<tr>
<td>286m</td>
<td>491m</td>
<td>(cont) quartz -? post chilled margin</td>
<td>![Graph Image]</td>
<td>![Fe-S-O Graph]</td>
<td>![Alteration Graph]</td>
<td>![Apy Vms Graph]</td>
</tr>
</tbody>
</table>

Notes
- Azimuth: 275.5°
- Inclination: -68°
- Total Depth: 496.2m
- Casing: 46m
- Hole Size: N.A.
- Completed: 21/6/97
- Logged by: S.O.
- Client: Homestake
- Drill Type: MNC-650D
- Sheet: 7 of 8

Drilling Details
- Tenement: 391-16
- Prospect: Mount Apollo
- Hole Surv.: Depth/Incl/azim: 245m/1-67/1-28°
EXPLOREMIN PTY LTD - DIAMOND DRILL HOLE LOG

<table>
<thead>
<tr>
<th>Drill Hole</th>
<th>AME/Grid E</th>
<th>Azimuth</th>
<th>Commenced</th>
<th>Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPDN-236</td>
<td>70339</td>
<td>232.5</td>
<td>17/5/67</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tenement</th>
<th>AME/Grid N</th>
<th>Inclination</th>
<th>Completed</th>
<th>Logged by</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAST-116</td>
<td>10464</td>
<td>48°</td>
<td>21/6/97</td>
<td>S.O.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prospect</th>
<th>RL Collar</th>
<th>Total Depth</th>
<th>Hole Size</th>
<th>Drillers</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOLLART PETERS</td>
<td>022</td>
<td>496.2 (NA)</td>
<td>N.A.</td>
<td>CAPEM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Map Ref:</th>
<th>Client:</th>
<th>Casing:</th>
<th>Sample Type</th>
<th>Drill Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOLE CREEK</td>
<td>HOMESTAKE</td>
<td>46m</td>
<td>14:19:06:05</td>
<td>1:00:6:05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole Survey: Depth/Incl/Azim</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>G15m 1-64 129.2</td>
<td>445m</td>
<td>1-63 129.2</td>
</tr>
<tr>
<td>445m 1-63 129.2</td>
<td>475m</td>
<td>1-63 129.2</td>
</tr>
<tr>
<td>475m 1-63 129.2</td>
<td>495m</td>
<td>1-62 129.1</td>
</tr>
</tbody>
</table>

Geological Description

From 380.3-442, core cut off at 327m 15°7'N.

From 440.3-442, core cut off at 327m 15°7'N.

Red clay, medium grained sandstone, poor quality core.

Red cut off at 218m 15°7'N.

Red cut off at 218m 15°7'N.

End of core cut off at 185m 15°7'N.

Core signed MPDN-236W.
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>46.2</td>
<td>0.2</td>
<td>0.15</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.2</td>
<td>49.2</td>
<td>3.0</td>
<td>2.9</td>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.2</td>
<td>51.9</td>
<td>2.7</td>
<td>2.27</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.9</td>
<td>55.0</td>
<td>3.1</td>
<td>3.1</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.0</td>
<td>58.1</td>
<td>3.1</td>
<td>3.1</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.1</td>
<td>61.2</td>
<td>3.1</td>
<td>3.1</td>
<td>2.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.2</td>
<td>64.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.2</td>
<td>67.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.2</td>
<td>70.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.2</td>
<td>73.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.2</td>
<td>76.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76.2</td>
<td>79.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.2</td>
<td>82.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82.2</td>
<td>85.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85.2</td>
<td>88.2</td>
<td>3.0</td>
<td>2.9</td>
<td>1.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.2</td>
<td>91.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.2</td>
<td>94.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94.2</td>
<td>97.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.2</td>
<td>100.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.2</td>
<td>103.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.2</td>
<td>106.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106.2</td>
<td>109.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109.2</td>
<td>112.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112.2</td>
<td>115.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115.2</td>
<td>118.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118.2</td>
<td>121.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121.2</td>
<td>124.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.2</td>
<td>127.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127.2</td>
<td>130.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130.2</td>
<td>133.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Interval</td>
<td>Recov'd</td>
<td>Length in Sticks >10 cm</td>
<td>No of Open Fractures</td>
<td>No of Strongly Healed Fractures</td>
<td>No of Weakly Healed Fractures</td>
<td>No of open Fractures with stick coat</td>
<td>Comments</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>133-2</td>
<td>136-2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136-2</td>
<td>139-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139-2</td>
<td>142-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142-2</td>
<td>145-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145-2</td>
<td>148-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148-2</td>
<td>151-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-2</td>
<td>154-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154-2</td>
<td>157-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157-2</td>
<td>160-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160-2</td>
<td>163-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163-2</td>
<td>166-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166-2</td>
<td>169-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169-2</td>
<td>172-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172-2</td>
<td>175-2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175-2</td>
<td>178-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178-2</td>
<td>181-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181-2</td>
<td>184-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184-2</td>
<td>187-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187-2</td>
<td>190-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190-2</td>
<td>193-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193-2</td>
<td>196-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>196-2</td>
<td>199-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199-2</td>
<td>202-2</td>
<td>2.6</td>
<td>2.6</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202-2</td>
<td>204-2</td>
<td>3.1</td>
<td>3.1</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204-2</td>
<td>206-2</td>
<td>3.0</td>
<td>3.0</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206-2</td>
<td>208-2</td>
<td>2.1</td>
<td>2.1</td>
<td>1.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208-2</td>
<td>211-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211-2</td>
<td>214-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214-2</td>
<td>217-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217-2</td>
<td>220-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Interval</td>
<td>Recov'd</td>
<td>Length in Sticks >10 cm</td>
<td>No of Open Fractures</td>
<td>No of Strongly Healed Fractures</td>
<td>No of Weakly Healed Fractures</td>
<td>No of open Fractures with slick coat</td>
<td>Comments</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>226.2</td>
<td>236.7</td>
<td>10</td>
<td>2.5</td>
<td>1.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227.1</td>
<td>237.1</td>
<td>10</td>
<td>2.5</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228.1</td>
<td>238.1</td>
<td>10</td>
<td>2.5</td>
<td>2.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>229.2</td>
<td>239.2</td>
<td>10</td>
<td>2.5</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230.2</td>
<td>240.2</td>
<td>10</td>
<td>2.5</td>
<td>2.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231.2</td>
<td>241.2</td>
<td>10</td>
<td>2.5</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232.2</td>
<td>242.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233.2</td>
<td>243.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234.2</td>
<td>244.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235.2</td>
<td>245.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236.2</td>
<td>246.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237.2</td>
<td>247.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238.2</td>
<td>248.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239.2</td>
<td>249.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240.2</td>
<td>250.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241.2</td>
<td>251.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242.2</td>
<td>252.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243.2</td>
<td>253.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244.2</td>
<td>254.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245.2</td>
<td>255.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246.2</td>
<td>256.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247.2</td>
<td>257.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>248.2</td>
<td>258.2</td>
<td>10</td>
<td>2.5</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:
- No comments provided for the data entries.
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length In Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of Open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>307.2</td>
<td>310.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310.2</td>
<td>313.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>313.2</td>
<td>316.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>316.2</td>
<td>319.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>319.2</td>
<td>322.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>322.2</td>
<td>325.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>325.2</td>
<td>328.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>328.2</td>
<td>331.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>331.2</td>
<td>334.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>334.2</td>
<td>337.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>337.2</td>
<td>340.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340.2</td>
<td>343.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>343.2</td>
<td>346.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>346.2</td>
<td>349.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>349.2</td>
<td>352.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>352.2</td>
<td>355.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355.2</td>
<td>358.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>358.2</td>
<td>361.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>361.2</td>
<td>364.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>364.2</td>
<td>367.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>367.2</td>
<td>370.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370.2</td>
<td>373.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>373.2</td>
<td>376.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376.2</td>
<td>379.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>379.2</td>
<td>382.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>382.2</td>
<td>385.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>385.2</td>
<td>388.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>388.2</td>
<td>391.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>391.2</td>
<td>394.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>394.2</td>
<td>397.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Interval</td>
<td>Length in Slicks >10 cm</td>
<td>No of Open Fractures</td>
<td>No of Weakly Healed Fractures</td>
<td>No of Strongly Healed Fractures</td>
<td>No of Open Fractures with slick coat</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>27-2</td>
<td>520-2</td>
<td>2.50</td>
<td>2.43</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52-2</td>
<td>405-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72-2</td>
<td>400-2</td>
<td>3.00</td>
<td>2.73</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPLOREMIN PTY LTD
CORE RECOVERY, RQD, FRACTURE COUNT

- **Drill Hole:** MPOH - 236
- **Tenement:** ERL - 116
- **Prospect:** Mount Porter
- **AMG/Grid E:** 10339
- **AMG/Grid N:** 10464
- **Azimuth:** 272.5
- **Inclination:** -68
- **Commenced:** 19-5-97
- **Completed:** 21-6-97
- **Total Depth:** 496.20
- **Hole Size:** NQ
- **Logged by:** SM
- **Sheet:** 6 of 6
- **Drillers:** CHIRPY

Table

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>#87.2</td>
<td>#90.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#90.2</td>
<td>#93.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#93.2</td>
<td>#96.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#96.2</td>
<td>EDH</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BQ WEDGE</td>
<td></td>
</tr>
</tbody>
</table>
EXPLORERMIN Pty Ltd - Diamond Drill Hole Log

Drill Hole: MDPH-236W
Tenement: EKLU-116
Prospect: MOUNT PORTER
Map Ref: RIC CREEK 5220
Hole Survs - Depth/incl/Azim: 185m-1-70° - 191m-1-67° - 197m-1-68° - 203m-1-68°

Geological Description

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Rock Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>236</td>
<td>Carbonaceous Silstone</td>
<td>Dark grey, fine grained, weakly laminated, possibly karstified, contains thin layers of nodules and nodules of iron oxide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thin lens of disseminated sulphides.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transition zone: Same mineralogy as above, but with more quartz and pyrite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vein-like, parallel to bedding, possibly related to faulting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Occurs as a breccia, parallel to laminar to 2mm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cross-cutting veins to 2mm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Veins filled with quartz and pyrite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Veins filled with quartz and pyrite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Veins filled with quartz and pyrite.</td>
</tr>
</tbody>
</table>

Mineralisation

- **Fe-S-O (est %):** 2%
- **Graphite:** 1.4%
- **Pebbles:** 0.6%
- **Sand:** 0.6%
- **Clay:** 0.6%

Alteration/Metamorphism

- **Fe:** 5%
- **Si:** 2%
- **Mg:** 2%
- **Ca:** 2%
- **Na:** 2%
- **K:** 2%
- **Cl:** 2%
- **H:** 2%

Additional Notes

- **Mineral:** Sphalerite, Pyrite, Chalcopyrite, Galena
- **Structure:** East-West trend
- **Drillers:** GABLE (Skippy)
- **Drill Type:** MDPH-236W
- **Casing:** 220m to 185m
- **Sample Type:** 1.0m intervals

Sheet: 1 of 1

Note: Wedge terminated on dip of hole. Fails to rise to known shallower.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPDH236 248-249</td>
<td>0.01</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>MPDH236 251-252</td>
<td>0.01</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>MPDH236 254-255</td>
<td>0.02</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>MPDH236 257-258</td>
<td>0.02</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>MPDH236 259-260</td>
<td>0.02</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>MPDH236 261-262</td>
<td>0.01</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>MPDH236 263-264</td>
<td>0.01</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>MPDH236 265-266</td>
<td>0.01</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>MPDH236 267-270</td>
<td>0.01</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>MPDH236 269-270</td>
<td>0.02</td>
<td>0.02</td>
<td>20</td>
</tr>
<tr>
<td>MPDH236 271-272</td>
<td>0.01</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>MPDH236 273-274</td>
<td><0.01</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>MPDH236 275-276</td>
<td><0.01</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MPDH236 277-278</td>
<td><0.01</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>MPDH236 279-280</td>
<td>0.01</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>MPDH236 281-282</td>
<td>0.01</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>MPDH236 283-284</td>
<td><0.01</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>MPDH236 285-286</td>
<td>0.02</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>MPDH236 287-288</td>
<td><0.01</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MPDH236 289-290</td>
<td><0.01</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>MPDH236 291-292</td>
<td><0.01</td>
<td><0.01</td>
<td>4</td>
</tr>
<tr>
<td>MPDH236 292-293</td>
<td>< Sample not received ></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPDH236 315-316</td>
<td><0.01</td>
<td><0.01</td>
<td>4</td>
</tr>
<tr>
<td>MPDH236 316-317</td>
<td><0.01</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>MPDH236 317-318</td>
<td>0.01</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Method: FA50 FA50 0300A
APPENDIX VI
EXPLORMIN PTY LTD - DRILL HOLE LOG

Drill Hole: APMH 237
AMG/Grid E: 9958.7
Azimuth: 242.5 TMS
Commenced: 7/4/77
Sheet: 1 of 5

Tenement: EAL 16
AMG/Grid N: 11205.3
Inclination: -65
Completed:
Logged by:
Prospect: Mt Foster
Total Depth: 667 ft

RL Collar: 513.479
Hole Size: 2 1/2"
Drillers:
Map Ref: Pine Creek 5270
Casing: 6m Pby
Sample Type: RC
Drill Type: VTR - 650

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SampNo</th>
<th>Lithology</th>
<th>Colour</th>
<th>Texture</th>
<th>Major Minerals</th>
<th>Minor Minerals</th>
<th>Trace Minerals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>MNH 0-2</td>
<td>Clay / Chert</td>
<td>Red / Brown</td>
<td>Fine Grain</td>
<td>Clay / Sandstone</td>
<td></td>
<td></td>
<td>80% Rock Has Been Silted</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>MNH 2-4</td>
<td>Carbonaceous Siltstone</td>
<td>Grey / Brown</td>
<td>Fine Grain</td>
<td>Clay / Quartz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>MNH 4-6</td>
<td>Siltstone</td>
<td>Brown / Grey</td>
<td>Fine Grain</td>
<td>Chert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>MNH 6-8</td>
<td>Carbonaceous Siltstone</td>
<td>Grey / Brown</td>
<td>Fine Grain</td>
<td>Chert / Clay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>MNH 8-10</td>
<td>Carbonaceous Siltstone</td>
<td>Light Grey / Brown</td>
<td>Fine Grain</td>
<td>Chert / Clay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>MNH 10-12</td>
<td>Carbonaceous Siltstone</td>
<td>Grey / Brown</td>
<td>Fine Grain</td>
<td>Clay / Quartz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>MNH 12-14</td>
<td>Siltstone</td>
<td>Brown / Grey</td>
<td>Fine Grain</td>
<td>Chert / Clay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>MNH 14-16</td>
<td>Siltstone</td>
<td>Grey / Brown</td>
<td>Fine Grain</td>
<td>Iron Oxides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>MNH 16-18</td>
<td>Siltstone</td>
<td>Brown / Grey</td>
<td>Fine Grain</td>
<td>Iron Oxides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>MNH 18-20</td>
<td>Siltstone</td>
<td>Grey / Brown</td>
<td>Fine Grain</td>
<td>Iron Oxides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>MNH 22-24</td>
<td>Siltstone</td>
<td>Grey / Brown</td>
<td>Fine Grain</td>
<td>Iron Oxides</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPLOREMIN PTY LTD - DRILL HOLE LOG

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SampNo</th>
<th>Lithology</th>
<th>Colour</th>
<th>Texture</th>
<th>Major Minerals</th>
<th>Minor Minerals</th>
<th>Trace Minerals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>25</td>
<td></td>
<td>Siltstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>MMH 26-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>MMH 26-28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>MMH 28-30</td>
<td>Siltstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td></td>
<td>Siltstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>MMH 30-32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td></td>
<td>Siltstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>MMH 32-34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>35</td>
<td></td>
<td>Siltstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>36</td>
<td>MMH 34-36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td></td>
<td>Siltstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>MMH 38-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>39</td>
<td></td>
<td>Siltstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>40</td>
<td>MMH 38-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td></td>
<td>Siltstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>MMH 40-42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>43</td>
<td></td>
<td>Siltstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>44</td>
<td>MMH 42-44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>45</td>
<td></td>
<td>Siltstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>46</td>
<td>MMH 44-46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>47</td>
<td></td>
<td>Siltstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>48</td>
<td>MMH 46-48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sheet: 2 of 5
Logged by: MARA L. CARR
Drillers: CROWN
Drill Type: VDR-650
EXPLOREMINT Pty Ltd - Drill Hole Log

Drill Hole: APDN 237
Tenement: ERL 156
Prospect: Mt Pilot
Map Ref: Pine Creek 5270
Client: Homestake

AMG/Grid E: 99589
AMG/Grid N: 112653
Azimuth: 242°
Inclination: -65°
Commenced: 7/6/97
Completed:
Total Depth: 60m Pre Collar
Casing: 6m Pvc
Hole Size: 4½"
Sample Type: RC

Logged by: Shane W. O'Connor
Drillers: C.A. Foskett
Drill Type: UDR-650

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SampNo</th>
<th>Lithology</th>
<th>Colour</th>
<th>Texture</th>
<th>Major Minerals</th>
<th>Minor Minerals</th>
<th>Trace Minerals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>60</td>
<td>APDN 48-50</td>
<td>Carbonaceous Shale/Siltstone</td>
<td>Black</td>
<td>V.f. Grained</td>
<td>Concrete</td>
<td>Py</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>APDN 50-52</td>
<td>Carbonaceous Shale/Siltstone</td>
<td>Black</td>
<td>V.f. Grained</td>
<td>Concrete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>64</td>
<td>APDN 52-54</td>
<td>Carbonaceous Shale/Siltstone</td>
<td>Black-Grey</td>
<td>V.f. Grained</td>
<td>Concrete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>66</td>
<td>APDN 54-56</td>
<td>Carbonaceous Shale/Siltstone</td>
<td>Black-Grey</td>
<td>V.f. Grained</td>
<td>Concrete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>68</td>
<td>APDN 56-58</td>
<td>Carbonaceous Shale/Siltstone</td>
<td>Black-Grey</td>
<td>V.f. Grained</td>
<td>Concrete</td>
<td>Sand (1:140)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>70</td>
<td>APDN 58-60</td>
<td>Carbonaceous Shale/Siltstone</td>
<td>Black-Grey</td>
<td>V.f. Grained</td>
<td>Concrete</td>
<td>Py</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End of RC, Go To NQ</td>
</tr>
</tbody>
</table>

* End of RC, Go To NQ
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph</th>
<th>Mineralisation Fe-S-O (est %)</th>
<th>Alteration/Metamorphism (est %)</th>
<th>Ap'y</th>
<th>Vns</th>
<th>quartz</th>
<th>Depth</th>
<th>Struc</th>
<th>α</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>60m</td>
<td>124.1m</td>
<td>Cementina Silty/shale/mudstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dark grey - black fine grained well</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>laminated to plagiocrystic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laminations defined by pink brecches and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>slight compositional changes such as</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>symplectite core in cummated from 60 - 75m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>94 - 95% FeS2 - 95.5 - 96.3% Micro</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>laminated to 5% FeS2 - 3% mica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dolomitic and stratigraphic setting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>From 106 - 117m avoid muscovite mica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laminated - quartzite-mudstone unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 108m 25% pale grey mica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbonate x band Tuffaceous bands</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>At 104-5m 25% pink shear ?-t ?-r</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bedding parallel to is oriented</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>from 93.5 - 84.2 x 124.1 - 124.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oriented core at 83.2 x = 130/18 NNE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Micro scapolite with gypsum and sulphides</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>veins to thin that oriented core at</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125.2 x = 130/17 NNE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pale grey fine grained mica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>laminated and fine metamorphic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit II fine grained mica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydrothermal alteration from 107m found by</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Faraday magnet along core</td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Geological Description</td>
<td>Graph</td>
<td>Mineralisation (Fe-S-O, est %)</td>
<td>Alteration/Metamorphism (est %)</td>
<td>Apy Vns Car Qtz Qtz cherty Cherty chert</td>
<td>Depth</td>
<td>Struc</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>--</td>
<td>-------</td>
<td>--------------------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>-------</td>
<td>-------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154m</td>
<td>167m</td>
<td>Dolerite - Top contact 3cm brecciated</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td>167</td>
<td>50</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steep 3m+ with collapse clay pug in dolomitic breccia then thought and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dolomitic fragments than thought and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dolomite - Contorted by contact dolomite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Embayments with weathered plagioclase gneiss</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dark greyish, chloritized throughout</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Individual pyroxene in alteration ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>but patchy chloritized dolomite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dolerite strongly intruded 1.5m. Bottom</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact zone at least 2m in gneiss group</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>in chilled margin. Dolerite probably not complete due to chilled top contact</td>
<td></td>
</tr>
<tr>
<td>167m</td>
<td>177m</td>
<td>Carboammoniacal Chertstone - Dark grey chertstone</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>177</td>
<td>30</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fine grained, sharp, laminated.</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Occur in massive greyscale lunomix or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fossils demonstrated in lunomix. only some</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pods. Inland presence works - V Paly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>grey hard laminated to 2mm thick. Thin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>chert breccia, some chert breccia breccia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>deepening seams rounded chert breccia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Top is overlain at least 165m - 175m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contorted bedding at 174.3 + curved</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>one bit and sp internal</td>
<td></td>
</tr>
</tbody>
</table>
EXPLOREMIN PTY LTD - DIAMOND DRILL HOLE LOG

<table>
<thead>
<tr>
<th>Drill Hole:</th>
<th>MDPT 233</th>
<th>AMG/Grid E:</th>
<th>549587.7</th>
<th>Azimuth: 242.5°</th>
<th>JNMB</th>
<th>Commenced: 9/16/97</th>
<th>Sheet: 3 of 10</th>
<th>Logged by: 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenement:</td>
<td>CALL 186</td>
<td>AMG/Grid N:</td>
<td>112635.3</td>
<td>Inclination: -65</td>
<td></td>
<td>Completed: 26/6/97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prospect:</td>
<td>MOUNT ROBERT</td>
<td>RL Collar:</td>
<td>513.649</td>
<td>Total Depth: 414.20m</td>
<td></td>
<td>Hole Size: ND</td>
<td>Driller: PAH</td>
<td></td>
</tr>
<tr>
<td>Map Ref:</td>
<td>PINE GULL 5220</td>
<td>Client:</td>
<td>HomeSteel</td>
<td>Casing: 60m</td>
<td></td>
<td>Sample Type: 41.04G</td>
<td>Drill Type: 41.04G</td>
<td></td>
</tr>
<tr>
<td>Hole Surveys: Depth/Incl/Azim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph</th>
<th>Mineralisation</th>
<th>Alteration/Metamorphism</th>
<th>Apy</th>
<th>Vns</th>
<th>Depth</th>
<th>Stuc</th>
</tr>
</thead>
<tbody>
<tr>
<td>181.50</td>
<td>188.80</td>
<td>Carbonaceous Coaltime, Black, fine</td>
<td>201</td>
<td>Py</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188.80</td>
<td>195.80</td>
<td>Carbonaceous Siltstone</td>
<td>201</td>
<td>Py</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195.80</td>
<td>198.80</td>
<td>Sheared Pelite, Dark, middle green</td>
<td>201</td>
<td>Py</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Graph indicates the type of data recorded, and Mineralisation shows the presence of pyrite ('Py'). Alteration/Metamorphism column is empty. Apy column shows the presence of pyrite, Vns column is blank, Depth column shows depth range, and Stuc column is blank.
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Mineralization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>2,030</td>
<td>Pyrrhotite, Carbonaceous Siltstone, dark grey to black, friable, garnet, associated with pyrite and breccia fragments, sparse, broken dolerite, above, defined partially by siltstone, below. Reported by title holder.</td>
<td>Fe 10.98, S 12.83</td>
</tr>
<tr>
<td>2,026</td>
<td>2,030</td>
<td>Dolerite, Hole, Old seam, pitch medium, Tyrolite, north, wates, west, +, +,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Astrophyllite, green, altered,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chrysoberyl, yellow, altered,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chalcopyrite, green, altered,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calcite, white, altered,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quartz, white, altered,</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alteration/Metamorphism</th>
<th>Apy</th>
<th>Vms</th>
<th>Depth</th>
<th>Struc</th>
<th>a</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fo 85</td>
<td>Fe 10.98</td>
<td>S 12.83</td>
<td>1984</td>
<td>2,030</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph</th>
<th>Log</th>
<th>Fe</th>
<th>S</th>
<th>O</th>
<th>(est %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10.98</td>
<td>12.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Graph</th>
<th>Log</th>
<th>Fe</th>
<th>S</th>
<th>O</th>
<th>Alteration/Metamorphism</th>
<th>Apy</th>
<th>Vms</th>
<th>Depth</th>
<th>Struc</th>
<th>a</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>2,030</td>
<td></td>
</tr>
</tbody>
</table>
EXPOREMIN PTY LTD - DIAMOND DRILL HOLE LOG

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph</th>
<th>Mineralisation Fe-SiO (est %)</th>
<th>Alteration/Metamorphism (est %)</th>
<th>Apy. Vnt. %</th>
<th>Depth</th>
<th>Stru.</th>
</tr>
</thead>
<tbody>
<tr>
<td>248.10</td>
<td>248.10</td>
<td>(2017) 22c. f.m. 249.5 20c. f.m. 206, 22c. f.m. 214.41 20c. f.m. 214.65 20c. f.m. 224.13 20c. f.m. 223.40 20c. f.m. 224.40 20c. f.m. 233.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>248.10</td>
<td>233.30</td>
<td>Chlorite, Cherty BIF Dark green jet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- True Cpy = 224.5
- Depth = 248.72
- Stru. = 35

Additional Observations:
- Rock types include:
 - Green mudstone with pyrite
 - Young chalcopyrite
 - Quartz
d- Green and red mudstone
 - Green claystone
 - Cherty limestone
 - Banded iron formation

Drilling Details:
- **Drill Hole:** MDN-237
- **Tenement:** EUL-116
- **Prospect:** MOUNT FERDIE
- **Map Ref:** AU-3219
- **Hole Surv. - Depth/Incl/Azim:** 270m 1 -51 250°

Logging Information:
- **Logged by:** S.
- **Logged by:** S.
- **Drillers:** GDEN
- **Drill Type:** MDN-65D
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph Log</th>
<th>Mineralisation Fe+Mg (est %)</th>
<th>Alteration/Metamorphism (est %)</th>
<th>Apy</th>
<th>Vss</th>
<th>Depth</th>
<th>Struc</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>248.10</td>
<td>273.30</td>
<td>(cont) thin shears of pyritic bituminous coal within...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with bituminous coal and pyritic bituminous...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>253.40: Indexed in all...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>from 254.7 to 257.2 with dark grey...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with few pyritic bands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>254.7 to 257.2 with dark grey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>257.2 to 273.30 with dark grey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>273.30</td>
<td>279.50</td>
<td>Siltstone. Dark grey, fine granular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with quartz and minor pyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(cont) thin shears of pyritic bituminous coal within...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with bituminous coal and pyritic bituminous...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>281.20: Indexed in all...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>from 281.30 to 284.7 with dark grey...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with few pyritic bands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>281.30 to 284.7 with dark grey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>284.7 to 288.0 with dark grey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288.0</td>
<td>294.00</td>
<td>Siltstone and siltstone. Dark grey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fine granular, massive pyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The log record details the geological description, mineralisation, alteration/metamorphism, and additional notes for each interval. The data includes specific intervals, geological markers, and metamorphic indicators.
EXPLOREMIN PTY LTD - DIAMOND DRILL HOLE LOG

Drill Hole: MPDH-231
AMG/Grid E: 945849
Azimuth: 242.5
Commenced: 5/1/97
Sheet: 7 of 10
Tenement: E91116
AMG/Grid N: 112653
Inclination: 65
Completed: 26/6/97
Logged by:
Prospect: Map 100
RL Collar: 517679
Total Depth: 414.7m
Hole Size: 1"
Map Ref:
Drillers:
Hole Surv.: Depth/inclin/Azim:
Client: Hancocks North
Casing: 62m
Sample Type: 4" core
Drill Type: U82C

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph Log</th>
<th>Mineralisation Fe-Si-O (est %)</th>
<th>Alteration/Metamorphism</th>
<th>Apy</th>
<th>Vms</th>
<th>Depth</th>
<th>Svr</th>
</tr>
</thead>
<tbody>
<tr>
<td>286.80</td>
<td>324.70</td>
<td>(UNIT) Soe, thick laminated sediments, mostly pebbly sands. Some minor vuggy quartz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>314.6</td>
</tr>
<tr>
<td>304.10</td>
<td>328.50</td>
<td>Calcite, Silicate, a chaotic mix of white, pale gray, color and gray, fine grained, chloritic altered and patchy pyrite.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>328.50</td>
<td>315.10</td>
<td>Siltstone, dark gray, fine grained, medium to fine grained. Some minor vug in places (annulose)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Geological Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>345.40</td>
<td>377.60</td>
<td>Chlorite, chlorite BIF, Dolomite, greenschist.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>377.60</td>
<td>384.6</td>
<td>Charnockite, biotite schist, greenschist.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>384.6</td>
<td>391.9</td>
<td>Charnockite, biotite schist, greenschist.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mineralisation
- Fe-O (est %)

<table>
<thead>
<tr>
<th>Alteration/Metamorphism</th>
<th>(est %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tour</td>
<td></td>
</tr>
</tbody>
</table>

Graph
<table>
<thead>
<tr>
<th>Log</th>
<th>Graph</th>
<th>Mineralisation</th>
<th>Alteration/Metamorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sheet: q of 1

Drill Hole: MDTH - 239
Tenement: 12-11
Prospect: Mount Pollock
Map Ref: 52 70
Depth: 1252 m

Commenced: 8/6/97
Completed: 26/6/97
Logged by: 50
Drillers: AGDRW

Sample Type: 1/2 CORE
Drill Type: 44 - 63
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Geological Description</th>
<th>Graph Log</th>
<th>Mineralisation Fe-Si-O (est %)</th>
<th>Alteration/Metamorphism (est %)</th>
<th>Apy</th>
<th>Vns</th>
<th>Depth</th>
<th>Struc</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>398.4</td>
<td>398.8</td>
<td>Sillstone. Grey, fri. gneis, wall</td>
<td>2</td>
<td>1.5</td>
<td>2%</td>
<td>10</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>398.8</td>
<td>414.1</td>
<td>Dolerite. Rep. contact, slight breccia. Black garnet, minor muscovite, kyanite, schist</td>
<td>100</td>
<td>1.5</td>
<td>2%</td>
<td>10</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note: This is the hanging wall section.
Core Recovery, RQD, Fracture Count

Drill Hole: MP04 - 237
AMG/Grid E: 9958.9
Azimuth: 242.5°
Commenced: 8.6.97
Tenement: EAL-16
AMG/Grid N: 11265.3
Inclination: -65°
Completed: 26.6.97
Prospect: Mount Foster
RL Collar: 575.5
Total Depth: 446.2 m
Logged by: Shane Marlow
Drilled by: Gaddes

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov’d</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>60.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td>Core loss between 60.2-61.7</td>
</tr>
<tr>
<td>61.7</td>
<td>61.7</td>
<td>1.5</td>
<td>1.36</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62.2-63.2m</td>
</tr>
<tr>
<td>63.2</td>
<td>63.2</td>
<td>1.5</td>
<td>0.73</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64.2-66.2m</td>
</tr>
<tr>
<td>66.2</td>
<td>67.7</td>
<td>1.5</td>
<td>1.70</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66.2-67.2m</td>
</tr>
<tr>
<td>69.9</td>
<td>69.1</td>
<td>1.2</td>
<td>0.80</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68.2-69.1m</td>
</tr>
<tr>
<td>69.1</td>
<td>71.7</td>
<td>2.6</td>
<td>1.60</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69.3-71.2m</td>
</tr>
<tr>
<td>71.7</td>
<td>72.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Core loss between 73.25-75m</td>
</tr>
<tr>
<td>72.0</td>
<td>72.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Core loss between 77.6-78.2m</td>
</tr>
<tr>
<td>75.0</td>
<td>75.0</td>
<td>2.1</td>
<td>0.86</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Core loss between 86-87m</td>
</tr>
<tr>
<td>76.2</td>
<td>78.2</td>
<td>2.0</td>
<td>1.65</td>
<td>1.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Core loss between 95.5-96.2m</td>
</tr>
<tr>
<td>78.2</td>
<td>80.0</td>
<td>1.8</td>
<td>1.8</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96.2-97m</td>
</tr>
<tr>
<td>80.0</td>
<td>81.2</td>
<td>1.2</td>
<td>1.2</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Core loss between 96-97.2m</td>
</tr>
<tr>
<td>81.2</td>
<td>84.2</td>
<td>3.0</td>
<td>3.17</td>
<td>2.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Core loss between 95.5-96.2m</td>
</tr>
<tr>
<td>84.2</td>
<td>84.2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96.2-97m</td>
</tr>
<tr>
<td>84.7</td>
<td>87.2</td>
<td>2.5</td>
<td>2.13</td>
<td>1.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Core loss between 96.6-97.2m</td>
</tr>
<tr>
<td>87.2</td>
<td>90.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Core loss between 95.5-96.2m</td>
</tr>
<tr>
<td>90.2</td>
<td>93.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96.2-97.2m</td>
</tr>
<tr>
<td>93.2</td>
<td>95.3</td>
<td>2.1</td>
<td>2.1</td>
<td>1.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Core loss between 95.5-96.2m</td>
</tr>
<tr>
<td>95.3</td>
<td>96.2</td>
<td>0.9</td>
<td>0.65</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96.2-97m</td>
</tr>
<tr>
<td>96.2</td>
<td>99.2</td>
<td>3.0</td>
<td>2.7</td>
<td>2.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Core loss between 95.5-96.2m</td>
</tr>
<tr>
<td>99.3</td>
<td>102.1</td>
<td>2.9</td>
<td>2.9</td>
<td>2.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96.3-97m</td>
</tr>
<tr>
<td>102.1</td>
<td>105.2</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98.3-99m</td>
</tr>
<tr>
<td>105.2</td>
<td>108.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108.2</td>
<td>111.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111.2</td>
<td>114.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114.2</td>
<td>117.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.2</td>
<td>120.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.2</td>
<td>123.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXPLOREMIN PTY LTD
CORE RECOVERY, RQD, FRACTURE COUNT

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov’d</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>113.2</td>
<td>116.2</td>
<td>3.0</td>
<td>2.7</td>
<td>2.7</td>
<td>2.71</td>
<td></td>
<td></td>
<td></td>
<td>CORE LOSS BETWEEN 124.1-124.3m</td>
</tr>
<tr>
<td>116.2</td>
<td>119.1</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122.1</td>
<td>125.2</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.2</td>
<td>128.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132.2</td>
<td>141.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.84</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141.2</td>
<td>144.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144.2</td>
<td>147.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147.2</td>
<td>150.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150.2</td>
<td>153.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.94</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>156.0</td>
<td>3.1</td>
<td>3.1</td>
<td>2.97</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154.2</td>
<td>161.7</td>
<td>1.6</td>
<td>1.6</td>
<td>1.39</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156.2</td>
<td>169.2</td>
<td>1.4</td>
<td>1.4</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169.2</td>
<td>171.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.82</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171.2</td>
<td>174.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.7</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174.2</td>
<td>177.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.83</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177.2</td>
<td>180.2</td>
<td>2.0</td>
<td>2.0</td>
<td>1.5</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179.2</td>
<td>180.2</td>
<td>1.0</td>
<td>1.0</td>
<td>0.28</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180.2</td>
<td>183.7</td>
<td>0.5</td>
<td>0.5</td>
<td>Nil</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183.7</td>
<td>185.2</td>
<td>2.5</td>
<td>2.5</td>
<td>0.57</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185.2</td>
<td>186.1</td>
<td>0.9</td>
<td>0.9</td>
<td>0.42</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186.1</td>
<td>185.9</td>
<td>1.8</td>
<td>1.6</td>
<td>0.42</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185.9</td>
<td>186.8</td>
<td>0.9</td>
<td>0.76</td>
<td>0.53</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186.8</td>
<td>189.2</td>
<td>2.4</td>
<td>2.4</td>
<td>1.57</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189.2</td>
<td>191.9</td>
<td>2.7</td>
<td>2.7</td>
<td>0.42</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191.9</td>
<td>192.2</td>
<td>0.3</td>
<td>0.3</td>
<td>Nil</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Core Recovery, RQD, Fracture Count

EXPLOREMIN PTY LTD
CORE RECOVERY, RQD, FRACTURE COUNT

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>192-9</td>
<td>193-9</td>
<td>1.7</td>
<td>1.5</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193-9</td>
<td>195-2</td>
<td>1.3</td>
<td>1.3</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195-2</td>
<td>197-1</td>
<td>1.9</td>
<td>1.9</td>
<td>1.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197-1</td>
<td>198-2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198-2</td>
<td>199-7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199-7</td>
<td>201-2</td>
<td>1.3</td>
<td>1.3</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201-2</td>
<td>204-2</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204-2</td>
<td>206-2</td>
<td>2.0</td>
<td>2.0</td>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206-2</td>
<td>207-2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207-2</td>
<td>209-2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-2</td>
<td>222-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222-2</td>
<td>225-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225-2</td>
<td>238-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238-2</td>
<td>241-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-2</td>
<td>243-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243-2</td>
<td>245-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245-2</td>
<td>247-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247-2</td>
<td>250-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250-2</td>
<td>252-2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252-2</td>
<td>254-6</td>
<td>2.4</td>
<td>2.4</td>
<td>1.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254-6</td>
<td>257-9</td>
<td>3.1</td>
<td>3.1</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>257-9</td>
<td>261-1</td>
<td>3.1</td>
<td>3.1</td>
<td>2.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>261-1</td>
<td>264-1</td>
<td>3.0</td>
<td>3.0</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>264-1</td>
<td>264-6</td>
<td>0.5</td>
<td>0.5</td>
<td>Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>264-6</td>
<td>267-2</td>
<td>2.6</td>
<td>2.6</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Core loss between 192-9 m**
- **Core loss between 245-2 - 247-2 m**
- **Core loss between 252-2 - 254-6 m**
- **Core loss between 261-1 - 264-1 m**

Note: The table provides details of core recovery, RQD, and fracture count for a specific drill hole, including measurements and comments on core loss intervals.
EXPLOREMIN Pty Ltd
Core Recovery, RQD, Fracture Count

Drill Hole: MP116-237 | **AMG/Grid E:** 995879
Tenement: E44/16 | **AMG/Grid N:** 1126531
Prospect: Mount Porter | **RL Collar:** 3782

Commenced: 8.6.97 | **Sheet:** 4 of 5
Completed: 26.6.97 | **Hole Size:** NQ
Azimuth: 241.5° | **Logged by:** SHAH FAROOQ
Inclination: -65° | **Drillers:** GARDEN

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>267.2</td>
<td>268.8</td>
<td>1.6</td>
<td>1.45</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>268.9</td>
<td>270.2</td>
<td>1.4</td>
<td>1.4</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270.2</td>
<td>273.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>273.2</td>
<td>276.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>276.2</td>
<td>279.4</td>
<td>3.0</td>
<td>3.0</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>279.2</td>
<td>292.6</td>
<td>3.0</td>
<td>3.0</td>
<td>2.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>282.2</td>
<td>285.6</td>
<td>3.0</td>
<td>3.0</td>
<td>2.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285.6</td>
<td>288.8</td>
<td>3.0</td>
<td>3.0</td>
<td>2.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288.8</td>
<td>291.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>291.2</td>
<td>294.9</td>
<td>1.7</td>
<td>1.7</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>294.2</td>
<td>295.6</td>
<td>1.4</td>
<td>1.3</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>295.6</td>
<td>297.5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>297.5</td>
<td>300</td>
<td>0.5</td>
<td>0.5</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>303.1</td>
<td>3.1</td>
<td>3.1</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>303.1</td>
<td>306.2</td>
<td>3.1</td>
<td>2.95</td>
<td>1.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>306.2</td>
<td>309.2</td>
<td>3.0</td>
<td>3.0</td>
<td>1.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>309.2</td>
<td>312.2</td>
<td>3.0</td>
<td>3.0</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312.2</td>
<td>315.2</td>
<td>3.0</td>
<td>3.0</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315.2</td>
<td>318.2</td>
<td>3.0</td>
<td>3.0</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>318.2</td>
<td>320.8</td>
<td>2.6</td>
<td>2.18</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320.8</td>
<td>323.9</td>
<td>3.1</td>
<td>3.1</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>323.9</td>
<td>326</td>
<td>2.1</td>
<td>2.1</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>326</td>
<td>329</td>
<td>0.8</td>
<td>0.7</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>329</td>
<td>332</td>
<td>1.8</td>
<td>1.8</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>332</td>
<td>335</td>
<td>1.6</td>
<td>1.6</td>
<td>1.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>338</td>
<td>0.2</td>
<td>0.2</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>338</td>
<td>340</td>
<td>3.0</td>
<td>3.0</td>
<td>2.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>343</td>
<td>3.0</td>
<td>3.0</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>343</td>
<td>346</td>
<td>3.0</td>
<td>3.0</td>
<td>2.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>346</td>
<td>349</td>
<td>3.0</td>
<td>3.0</td>
<td>1.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core Loss between 295.2 - 316m

Core Loss between 303.1 - 304m

Core Loss between 314.4 - 315.2m

Core Loss between 315.2 - 316m

Core Loss between 819 - 820.8m
EXPLOREMINE Pty Ltd
Core Recovery, RQD, Fracture Count

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Interval</th>
<th>Recov'd</th>
<th>Length in Sticks >10 cm</th>
<th>No of Open Fractures</th>
<th>No of Strongly Healed Fractures</th>
<th>No of Weakly Healed Fractures</th>
<th>No of open Fractures with slick coat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>342.2</td>
<td>344.2</td>
<td>2.0</td>
<td>2.0</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>344.2</td>
<td>346.2</td>
<td>1.0</td>
<td>0.8</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>346.2</td>
<td>348.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>348.2</td>
<td>350.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350.2</td>
<td>352.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>352.2</td>
<td>354.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>354.2</td>
<td>356.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356.2</td>
<td>358.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>358.2</td>
<td>360.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360.2</td>
<td>362.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>362.2</td>
<td>364.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>364.2</td>
<td>366.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>366.2</td>
<td>368.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>368.2</td>
<td>370.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370.2</td>
<td>372.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>372.2</td>
<td>374.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>374.2</td>
<td>376.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>376.2</td>
<td>378.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>378.2</td>
<td>380.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>380.2</td>
<td>382.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>382.2</td>
<td>384.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>384.2</td>
<td>386.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>386.2</td>
<td>388.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>388.2</td>
<td>390.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>390.2</td>
<td>392.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>392.2</td>
<td>394.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>394.2</td>
<td>396.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>396.2</td>
<td>398.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>398.2</td>
<td>400.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400.2</td>
<td>402.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402.2</td>
<td>404.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>404.2</td>
<td>406.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406.2</td>
<td>408.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>408.2</td>
<td>410.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410.2</td>
<td>412.2</td>
<td>3.0</td>
<td>3.0</td>
<td>2.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E.O.N.
Report Data

Analytical Method

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Method</th>
<th>Digest</th>
<th>Technique</th>
<th>Precision & Accuracy</th>
<th>Detection Limit</th>
<th>Date Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>FASO</td>
<td>FA</td>
<td>AAS</td>
<td>Acc. ± 15%</td>
<td>0.01 ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>Au(III)</td>
<td>FASO</td>
<td>Fa</td>
<td>AAS</td>
<td>Acc. ± 15%</td>
<td>0.01 ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>Ag</td>
<td>S8000</td>
<td>HAB</td>
<td>AAS</td>
<td>Proc. ± 10%</td>
<td>1 ppm</td>
<td>ppm</td>
</tr>
</tbody>
</table>

Report Comment: This cover sheet is an integral part of the report. This report can only be reproduced in full.

Authorization: Ray Woolridge

Report Dated: 23/06/87
ASSAY CORP

ASSAY CODE: AC 36771

Page 2 of 3

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>237 0-2</td>
<td><0.01</td>
<td>0.01</td>
<td>65</td>
</tr>
<tr>
<td>237 2-4</td>
<td>0.01</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>237 4-6</td>
<td>0.01</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>237 6-8</td>
<td><0.01</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>237 8-10</td>
<td><0.01</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>237 10-12</td>
<td><0.01</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>237 12-14</td>
<td><0.01</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>237 14-16</td>
<td><0.01</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>237 16-18</td>
<td><0.01</td>
<td>0.01</td>
<td>48</td>
</tr>
<tr>
<td>237 18-20</td>
<td><0.01</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>237 20-22</td>
<td><0.01</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>237 22-24</td>
<td><0.01</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>237 24-30</td>
<td>0.01</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>237 26-28</td>
<td>0.01</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>237 28-30</td>
<td>0.01</td>
<td>0.01</td>
<td>45</td>
</tr>
<tr>
<td>237 30-32</td>
<td>0.01</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>237 32-34</td>
<td><0.01</td>
<td>>0.01</td>
<td>480</td>
</tr>
<tr>
<td>237 34-36</td>
<td>0.01</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>237 36-38</td>
<td>0.01</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>237 38-40</td>
<td><0.01</td>
<td>>0.01</td>
<td>33</td>
</tr>
<tr>
<td>237 40-42</td>
<td><0.01</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>237 42-44</td>
<td>0.01</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>237 44-48</td>
<td>0.01</td>
<td>0.01</td>
<td>28</td>
</tr>
<tr>
<td>237 48-50</td>
<td><0.01</td>
<td><0.01</td>
<td>84</td>
</tr>
<tr>
<td>237 48-50</td>
<td><0.01</td>
<td><0.01</td>
<td>35</td>
</tr>
</tbody>
</table>

Method
- FA50
- FA50
- G300A

ASSAY CORP

ASSAY CODE: AC 36771

Page 3 of 3

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>237 50-52</td>
<td><0.01</td>
<td><0.01</td>
<td>43</td>
</tr>
<tr>
<td>237 52-54</td>
<td>0.01</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>237 54-56</td>
<td>0.01</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>237 56-58</td>
<td>0.01</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>237 58-60</td>
<td><0.01</td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

Method
- FA50
- FA50
- G300A

<table>
<thead>
<tr>
<th>Report Code: AC 37027</th>
<th>ASSAYCODE: AC 37027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homestake Gold of Australia Ltd.</td>
<td>ASSAYCORP</td>
</tr>
<tr>
<td>P.O.Box 7189 Cloisters St.</td>
<td>Page 2 of 5</td>
</tr>
<tr>
<td>Perth WA 6450</td>
<td></td>
</tr>
<tr>
<td>Reference: 12986</td>
<td></td>
</tr>
<tr>
<td>Project:</td>
<td></td>
</tr>
<tr>
<td>Coats Code:</td>
<td></td>
</tr>
</tbody>
</table>

Sample Preparation:

<table>
<thead>
<tr>
<th>Assay Code: AC 37027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>237 117-118</td>
</tr>
<tr>
<td>237 116-118</td>
</tr>
<tr>
<td>237 119-120</td>
</tr>
<tr>
<td>237 120-121</td>
</tr>
<tr>
<td>237 121-122</td>
</tr>
<tr>
<td>237 122-123</td>
</tr>
<tr>
<td>237 123-124</td>
</tr>
<tr>
<td>237 124-125</td>
</tr>
<tr>
<td>237 125-126</td>
</tr>
<tr>
<td>237 126-127</td>
</tr>
<tr>
<td>237 127-128</td>
</tr>
<tr>
<td>237 128-129</td>
</tr>
<tr>
<td>237 129-130</td>
</tr>
<tr>
<td>237 164-165</td>
</tr>
<tr>
<td>237 165-166</td>
</tr>
<tr>
<td>237 166-167</td>
</tr>
<tr>
<td>237 167-168</td>
</tr>
<tr>
<td>237 168-169</td>
</tr>
<tr>
<td>237 169-170</td>
</tr>
<tr>
<td>237 170-171</td>
</tr>
<tr>
<td>237 171-172</td>
</tr>
<tr>
<td>237 174-175</td>
</tr>
<tr>
<td>237 177-178</td>
</tr>
<tr>
<td>237 180-181</td>
</tr>
<tr>
<td>237 182-184</td>
</tr>
</tbody>
</table>

Method FA50 FA50 Q300A
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(H) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>237 186-187</td>
<td><0.01</td>
<td><0.01</td>
<td>41</td>
</tr>
<tr>
<td>237 188-190</td>
<td>0.02</td>
<td>0.02</td>
<td>70</td>
</tr>
<tr>
<td>237 192-193</td>
<td>0.01</td>
<td>0.01</td>
<td>44</td>
</tr>
<tr>
<td>237 240-249</td>
<td>0.02</td>
<td>0.02</td>
<td>70</td>
</tr>
<tr>
<td>237 249-250</td>
<td>0.03</td>
<td>0.03</td>
<td>91</td>
</tr>
<tr>
<td>237 250-251</td>
<td>0.03</td>
<td>0.03</td>
<td>660</td>
</tr>
<tr>
<td>237 251-252</td>
<td>0.03</td>
<td>0.03</td>
<td>230</td>
</tr>
<tr>
<td>237 252-253</td>
<td>0.02</td>
<td>0.02</td>
<td>72</td>
</tr>
<tr>
<td>237 253-254</td>
<td>0.42</td>
<td>0.44</td>
<td>103</td>
</tr>
<tr>
<td>237 254-255</td>
<td>0.12</td>
<td>0.15</td>
<td>130</td>
</tr>
<tr>
<td>237 255-256</td>
<td>0.02</td>
<td>0.02</td>
<td>66</td>
</tr>
<tr>
<td>237 256-257</td>
<td>0.03</td>
<td>0.03</td>
<td>101</td>
</tr>
<tr>
<td>237 257-258</td>
<td>0.03</td>
<td>0.03</td>
<td>74</td>
</tr>
<tr>
<td>237 258-259</td>
<td>0.09</td>
<td>0.10</td>
<td>210</td>
</tr>
<tr>
<td>237 259-260</td>
<td>0.18</td>
<td>0.16</td>
<td>69</td>
</tr>
<tr>
<td>237 260-261</td>
<td>0.17</td>
<td>0.17</td>
<td>3</td>
</tr>
<tr>
<td>237 261-262</td>
<td>0.21</td>
<td>0.21</td>
<td>74</td>
</tr>
<tr>
<td>237 262-263</td>
<td>0.11</td>
<td>0.11</td>
<td>50</td>
</tr>
<tr>
<td>237 263-264</td>
<td>0.06</td>
<td>0.07</td>
<td>59</td>
</tr>
<tr>
<td>237 264-265</td>
<td>0.01</td>
<td>0.01</td>
<td>46</td>
</tr>
<tr>
<td>237 265-266</td>
<td>0.04</td>
<td>0.04</td>
<td>40</td>
</tr>
<tr>
<td>237 266-267</td>
<td>0.08</td>
<td>0.08</td>
<td>78</td>
</tr>
<tr>
<td>237 267-268</td>
<td>0.05</td>
<td>0.05</td>
<td>48</td>
</tr>
<tr>
<td>237 268-269</td>
<td><0.01</td>
<td><0.01</td>
<td>44</td>
</tr>
<tr>
<td>237 269-270</td>
<td>0.14</td>
<td>0.12</td>
<td>37</td>
</tr>
</tbody>
</table>

Method: FA50 FA50 G300A
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>237 295-296</td>
<td><0.01</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>237 298-297</td>
<td><0.01</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>237 297-298</td>
<td><0.01</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>237 298-299</td>
<td>0.01</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>237 299-300</td>
<td>0.01</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>237 300-301</td>
<td><0.01</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>237 301-302</td>
<td>0.01</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>237 302-303</td>
<td>0.02</td>
<td>0.02</td>
<td>28</td>
</tr>
<tr>
<td>237 303-304</td>
<td>0.01</td>
<td><0.01</td>
<td>220</td>
</tr>
<tr>
<td>237 304-305</td>
<td>0.01</td>
<td></td>
<td>1890</td>
</tr>
<tr>
<td>237 305-306</td>
<td>0.01</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>237 306-307</td>
<td>0.04</td>
<td>0.04</td>
<td>3305</td>
</tr>
<tr>
<td>237 307-308</td>
<td>0.02</td>
<td></td>
<td>2920</td>
</tr>
<tr>
<td>237 308-309</td>
<td><0.01</td>
<td><0.01</td>
<td>48</td>
</tr>
<tr>
<td>237 309-310</td>
<td><0.01</td>
<td><0.01</td>
<td>52</td>
</tr>
</tbody>
</table>

Method: FA50 FA50 G300A
Sample Preparation:

<table>
<thead>
<tr>
<th>Sample Preparation</th>
<th>Page 1 of 6</th>
</tr>
</thead>
</table>

Assay Data:

<table>
<thead>
<tr>
<th>Assay</th>
<th>Analytical Method</th>
<th>Digest</th>
<th>Technique</th>
<th>Precision & Accuracy</th>
<th>Detection Limit</th>
<th>Data Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>FA50</td>
<td>FA</td>
<td>AAS</td>
<td>Acc. ± 10 %</td>
<td>0.01 ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>Au(R)</td>
<td>FA60</td>
<td>FA</td>
<td>AAS</td>
<td>Acc. ± 10 %</td>
<td>0.01 ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>As</td>
<td>G200A</td>
<td>WA3</td>
<td>AAS</td>
<td>Prec. ± 10 %</td>
<td>1 ppm</td>
<td>ppm</td>
</tr>
</tbody>
</table>

Report Comment: This cover sheet is an integral part of the report. This report can only be reproduced in full.

Assay Code: AC 37185

- **Sample**
 - Au
 - Au(R)
 - As

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au</th>
<th>Au(R)</th>
<th>As</th>
</tr>
</thead>
<tbody>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>140</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>130</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>220</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>62</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>60</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>28</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>30</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>40</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>79</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>150</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>100</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>103</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>38</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>66</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>95</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>16</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>54</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>78</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>12</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>38</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>9</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>10</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>5</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>20</td>
</tr>
<tr>
<td>237</td>
<td>0.01</td>
<td><0.01</td>
<td>38</td>
</tr>
</tbody>
</table>

Method

- FA50
- FA50
- G300A
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>237 325-326</td>
<td><0.01</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>237 326-327</td>
<td><0.01</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>237 327-328</td>
<td><0.01</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>237 328-329</td>
<td><0.01</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>237 329-330</td>
<td><0.01</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>237 330-331</td>
<td><0.01</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>237 331-332</td>
<td><0.01</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>237 332-333</td>
<td>0.08</td>
<td>0.05</td>
<td>180</td>
</tr>
<tr>
<td>237 333-334</td>
<td>0.09</td>
<td>0.08</td>
<td>98</td>
</tr>
<tr>
<td>237 334-335</td>
<td>0.07</td>
<td>0.08</td>
<td>150</td>
</tr>
<tr>
<td>237 335-336</td>
<td>0.02</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>237 336-337</td>
<td><0.01</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>237 337-338</td>
<td><0.01</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>237 338-339</td>
<td>0.04</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>237 339-340</td>
<td>0.03</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>237 340-341</td>
<td>0.05</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>237 341-342</td>
<td>0.14</td>
<td>0.15</td>
<td>200</td>
</tr>
<tr>
<td>237 342-343</td>
<td>0.14</td>
<td>0.12</td>
<td>145</td>
</tr>
<tr>
<td>237 343-344</td>
<td>0.07</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>237 344-345</td>
<td>0.03</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>237 345-346</td>
<td>0.07</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>237 346-347</td>
<td>0.59</td>
<td>0.60</td>
<td>120</td>
</tr>
<tr>
<td>237 347-348</td>
<td>0.80</td>
<td>0.82</td>
<td>33</td>
</tr>
<tr>
<td>237 348-349</td>
<td>0.13</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>237 349-350</td>
<td>0.19</td>
<td>0.20</td>
<td>80</td>
</tr>
</tbody>
</table>

Method: FA50 FA50 G300A

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(R) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>237 350-351</td>
<td>0.13</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>237 351-352</td>
<td>0.10</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>237 352-353</td>
<td>0.04</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>237 353-354</td>
<td>0.07</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>237 354-355</td>
<td>0.01</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>237 355-356</td>
<td><0.01</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>237 356-357</td>
<td>0.01</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>237 357-358</td>
<td>0.06</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>237 358-359</td>
<td>0.01</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>237 359-360</td>
<td><0.01</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>237 360-361</td>
<td><0.01</td>
<td><0.01</td>
<td>31</td>
</tr>
<tr>
<td>237 361-362</td>
<td><0.01</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>237 362-363</td>
<td>0.02</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>237 363-364</td>
<td>0.02</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>237 364-365</td>
<td>0.19</td>
<td>0.16</td>
<td>47</td>
</tr>
<tr>
<td>237 365-366</td>
<td>0.01</td>
<td><0.01</td>
<td>88</td>
</tr>
<tr>
<td>237 366-367</td>
<td>0.16</td>
<td>0.13</td>
<td>100</td>
</tr>
<tr>
<td>237 367-368</td>
<td>1.97</td>
<td>1.80</td>
<td>105</td>
</tr>
<tr>
<td>237 368-369</td>
<td>0.11</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>237 369-370</td>
<td>0.03</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>237 370-371</td>
<td><0.01</td>
<td><0.01</td>
<td>47</td>
</tr>
<tr>
<td>237 371-372</td>
<td>0.28</td>
<td>0.25</td>
<td>140</td>
</tr>
<tr>
<td>237 372-373</td>
<td>0.10</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>237 373-374</td>
<td>0.21</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>237 374-375</td>
<td>0.21</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Method: FA50 FA50 G300A
<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppm)</th>
<th>Au(N) (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>237 400-401</td>
<td>0.03</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>237 403-404</td>
<td>0.06</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>237 406-407</td>
<td><0.01</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>237 409-410</td>
<td><0.01</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>237 412-413</td>
<td>0.02</td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

GH12	0.02		520
GH13	1.22	1.20	1540
GH14	0.02		400

Method FA50 FA50 G300A