

IMPERIAL OIL & GAS PTY LTD Australian Office Level 7, 151 Macquarie Street Sydney NSW 2000 Australia T: +61 2 9251 1846 F: +61 2 9251 0244

Well Completion Report Well BCFSC03 EP 184 McArthur Basin Northern Territory, Australia

|--|

R	lev	Status	Prepared by	Approved By	Date	
0		Final	Geoff Hokin	Geoff Hokin	19/06/2015	
1		Revision	Geoff Hokin	Geoff Hokin	14/12/2015	

Signature of approved person:

Testing todas

Changes to previous version

Section	Page	Change
	18Inclusion of drilling fluids table	
18Inclusion of Cementing Operation table		
18 Inclusion of Bit records table		Inclusion of Bit records table

Contents

License and operator details	3
Prognosed Stratigraphic units penetrated	3
Well prognoses	4
Location and access	6
Well location	6
Summary	7
Introduction	
Geology and previous exploration	8
Trial field geology	9
Previous exploration	10
Nearest Wells	10
Water Bores	12
Well History	13
Rig data	16
Well information	16
Drilling Fluids	17
Cementing Operation	
Bit Record	
The purpose of the well	
Well outcomes	
Sampling	
Geology data	
Well stratigraphy	20
Geology setting	
Hydrocarbon indications	
Conclusion	
Appendix:	
Daily drilling reports	
Lithology Log	
Lithology dictionary	32

Figures:

Figure 1: Location of well BFSC03	6
Figure 2: Location and access of Well BCFSC03	6
Figure 3: dip and strike of the formations	0
Figure 4: time depth curve	4
Figure 5: Schematic of the plug and abandoned	

Table(s):

Table 1: Wireline logging runs. 17

License and operator details

Operator	Imperial Oil & Gas Ltd
Licence Holder	Imperial Oil & Gas Ltd
Project Management	Imperial Oil & Gas Ltd
Report Date	June 2015
Report Author	G. Hokin
Licence Area	EP184
Map References	Map sheet name and graticular block number

- 1:250K Map Sheet Name:
- 1:100K Map Sheet Name:

Urapunga-Roper River Special Urapunga SD53 2482 L

5 Minute Graticular Block Number: 1 Minute Graticular Block Number:

Stratigraphic Units Nagi Formation St Vidgeon Formation

Keywords Shale, organic, drilling, geophysical, wireline logg
--

WELL DATA CARD

Well name BCFSC03	
Location: 0473 968 m E, 8355 030 m N (GDA94 Zone 53L)	Type Structure: St Vidgeon Formation
	Status : Plugged and abandoned
Elevation:	Rig : Hydco 1200 G
RL: 29.0 m	Driller : Drillstralis Pty ltd
KB: 0.89 m	Date spudded : 23/07/2014
Map: 1:250K Urapunga – Roper River	Date TD : 24/07/2014
	Date rig release: 26/07/2014
Datum: GDA 94 Zone 53 L	Total Depth
	Driller : 119.95 m MD
	Logger : 119.40 m MD
	Deviation : 6 degrees
Grid: Easting: 0473 968.862	Casing: Size Shoe
Northing: 8355 030	a)Conductor PVC 8" 6.7 m
	a) Surface HWT $4^{1}/_{2}$ " 50.67 m
	b) Intermediate N/A

Prognosed Stratigraphic units penetrated

Ago	Formation	MDGL (m)		SS (m)		Thickness
Age	Age Formation		to	from	to	(m TVD)
Quaternary	Undifferentiated	0	10	-29	-19	
Palaeo Proterozoic	Nagi Formation	10	50	-19	31	
Palaeo Proterozoic	St Vidgeon Formation	50	100	31	69	

Well prognoses

Well Name: 250k map sheet: Operator: Type of Well: Spud date: Target: Location Coordinates: Grid/Zone: Petroleum Title: Landholder: Proposed TD: Drilling Contractor: Logging Company	BCF SC 03 Urapunga Imperial Oil and Gas Wildcat 24/07/2014 Saint Vidgeon Fm 14°52'44.72''S GDA 94, Zone 53 EP 184 Parks Wildlife Service 100 ± 20m Drillstralis ACS Mining Services		134°45'28.81''E
Elevation in Mtrs: GL.	29 KB	:	0.89m

Estimated	Tops		Drilled			
Formation	MD [m]	SS (m)	Thickness [m]	Lithologic desciption		
Quaternary	0	-29	10			
Nagi Fm	10	-19	40	Dolomitic and feldspathic sandstone, dolomitic siltstone, dolarenite.		
Saint Vidgeon Fm	50	31	50+	Carbonaceous-pyritic shale and dolomitic siltstone, dolostone; minor pink chert beds (tuff?).		
Total Depth:	100	69	100 +	·		
Base of oxidation/weathering Water table	50 49					

Geological Justification

The proposed well location is picked between two outcrops of Saint Vidgeon Fm. The well will be collared in the Quaternary sediment cover which is estimated to have a thickness of \sim 10m, then penetrate the Nagi formation for about 40m, before entering the Saint Vidgeon Fm at 50m MD.

Geological Wellsite Program

Sample Program: Chip samples will be caught in ~5 m intervals from Conductor Casing Point to start of coring.

Photograph chip samples and describe in detail.

Responsible Sample Catcher(s): well site geologist

Sample Set(s): *Catch, label, scale and bag as much cuttings as possible; keep in cool place (not refrigerated)*

Coring: during coring operations the entire core has to be described in detail, samples for further analysis are being taken on the ground if target formation is encountered.

Bag and seal without delay once dry

Drilling Objective(s)

The oxidised zone (first 40 m \pm 20 m) will be drilled with a 6-1/4" (= 159 mm) bit. Check for signs of weathering/oxidation in the chip samples.

After no more signs of weathering can be identified drilling is to be switched to HQ coring

[Hole (outside) diameter: 96 mm; Core (inside) diameter: 63.5mm]

Reporting

Morning geology report to NT government by 10 am

All gas and oil shows to be recorded accurately and reported as soon as possible.

Reference: NT Contacts Tab

Completion Report- end of well report to be compiled to meet regulatory requirements for the NT

Logging

Logging Company: ACS Mining Services

Total Tool Length

Parameters measured; Gamma, calliper, Density, full wave sonic, neutron, resistivity, SP and deviation where possible

Desorption canisters

Not applicable

Comment(s):

Cultural heritage induction to be done on all personnel prior to entering site

Mud logger/Wellsite Geologist has the flexibility to stop drilling at anytime

Safety First

Location and access

Well location

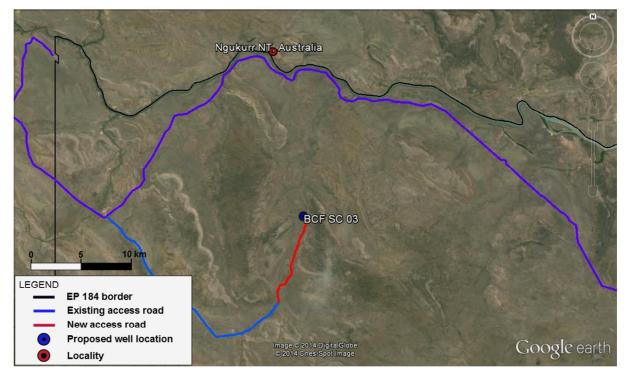


Figure 1: Location of well BFSC03 within EP184 and relative to the community of Ngukurr in the East Arnhem region of the Northern Territory.

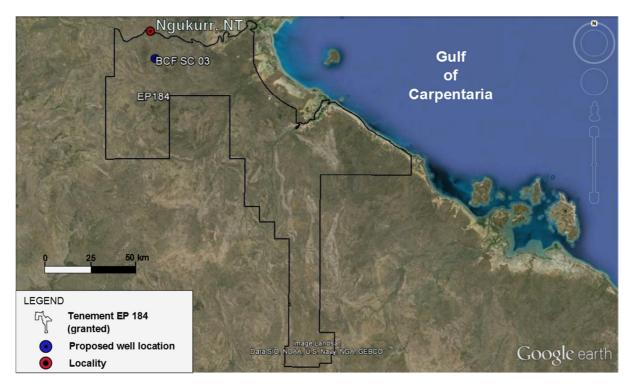


Figure 2: Location and access of Well BCFSC03 within EP184

To access the drill site coming from Darwin follow the Stuart Highway south for 424 km until the turnoff to Roper Bar is reached 5 km south of Mataranka. The single strip, sealed Roper Highway goes to Roper Bar a distance of 175 km. To access the drill site from Roper Bar head to the Roper Highway from the Roper Bar Motel. Turn left and left again after 1 km to access the Nathan River Rd. Head south and turn right after 42 km follow the Old Saint Vidgeon Station access road (named "military road" on topographic maps) for 10km. Once past the old station airstrip turn left onto the access track and follow for 7 km.

Summary

The exploration well BCF SC 03 was designed and positioned to penetrate and test the carbonaceous-pyritic shale of the Saint Vidgeon Formation in a near outcrop position. The site was selected for proximity to outcrop to reduce the depth of core required to obtain samples for geochemical characterisation and hydrocarbon source rock potential evaluation. The well design provided for open hole drilling to just below the zone of oxidation prognosed to be at ~50 m depth. The hole was to be HQ cored from 50m to total depth (TD). No gas or petroleum reservoir was encountered in the well due to the shallow depth of the core hole. The target formation was not encountered. No samples were taken from this well.

Introduction

Imperial Oil & Gas Ltd, as Tenement Holder and Operator, undertook to drill a vertical pilot and partly cored exploration hole within EP184 in the McArthur Basin of the Northern Territory, approximately 350 km southeast of Darwin and 250 km east of Katherine. This hole was planned as an exploration well targeting the Barney Creek Formation equivalent, the Saint Vidgeon Formation, within the Umbolooga Sub-group of the McArthur Group in the Urapunga fault zone.

The objective of the exploration program was to determine if the Saint Vidgeon Formation contained organic shales of suitable characteristic that could be a hydrocarbon source rock within deeper portions of the basin. And, to provide data on geological structures within the McArthur Group deposits.

In a first stage the shallow well BCFSC03 was drilled to 50.7m using an air percussion hammer. Chip samples were obtained and logged to record the lithology of the encountered rock formation(s). Post this depth the hole was then continuously cored using a HQ coring bit to a measured depth of ~120m.

The core obtained was photographed and lithologically logged however no samples were taken from the core as it did not penetrate any organic shales. On reaching total depth the hole was flushed clean using a high air flow and the hole filled with clean water then downhole geophyscially logged. On completion of the logging the hole was plugged with cement and abandoned in accordance with approvals provided by the Northern territory Department of Mines and Energy.

All operations and equipment used in the program complied with the API standards and Imperial Oil & Gas's Safety Management Systems.

Geology and previous exploration

Regional geology

The regional geology of the McArthur River Basin is well summarised by Jackson *et al.* (1987), Plumb and Roberts (1992), Plumb *et al.* (1990), Madigan and Rawlings (1994) and Pietsch *et al.* (1994).

The Middle Proterozoic McArthur Basin of Central Australia outcrops over an area of $200\ 000\ \text{km}^2$, in the Northern Territory, with a relatively unknown, but large, section which sub-crops below younger sequences.

The Northern McArthur Basin within EP184 is dominated by the Walker Trough and the Urapunga Fault Zone, a north-west trending, extensively faulted zone approximately 50 to 70 km wide.

Gentle warping and folding can be related to the faults. Fold axis generally trend North-North-West and locally east north east and North-West to West North West. It is estimated that during deposition of the McArthur Basin a number of subsidence events due to rifting associated with extension along pre-existing basement structures probably occurred.

The basin contains up to 12 km of relatively undeformed and un-metamorphosed sedimentary rocks comprising clastics, evaporites and carbonates. The stratigraphy is subdivided into four stratigraphic groups separated by regional unconformities. The four stratigraphic groups of the Middle Proterozoic are the Tawallah Group, McArthur Group, Nathan Group, and the Roper Group. An unnamed sequence of Neoproterozoic sediments accumulated over the Roper Group.

The main structural features reflecting the tectonic evolution of the McArthur Basin are; eastwest trending basement ridges such as the Murthy and the Urapunga Ridges; northwesttrending strike-slip faults, such as the Calvert, Mallapunyah and Bulman Faults; and northtrending high angle older normal faults with later inversion, such as the Emu, Tawallah and Four Arches faults.

Differential subsidence of the Walker Trough probably started during deposition of the Lower McArthur Group and continued, to a lesser extent, during the deposition of the Nathan Group (Jackson, *et.al.*, 1987). Thickening of the Roper Group, to 5 km on the Bauhinia Shelf, west of the Abner Range area reflects a shift of the basin depocenter during the deposition of the Roper Group.

The Tawallah Group is the lowermost of the four major sequences; it is up to 4 500 m thick and represents the economic or effective basement. The Tawallah Group consists mainly of sandstones with subordinate finer grained clastics, volcanics and rare carbonates.

The McArthur and Nathan Groups overlay the Tawallah Group; they have a combined thickness of between 3 000 and 5 500 m. They are mostly stromatolitic and evaporitic dolostones interbedded with lesser siltstones and shales.

The McArthur and Nathan Group sediments were deposited in a variety of environments including marginal marine, lagoonal, lacustrine and fluvial. The McArthur and Nathan Groups are potentially a source of the hydrocarbons encountered in wells.

The uppermost unit, the Roper Group varies between 2 500 and 4 000 m in thickness. The Roper Group thickens to the southwest. It consists of alternating quartz arenites, siltstones and shales. The Roper Group unconformably overlies the McArthur and the Nathan Groups.

The sedimentary sequences within the Roper Group have significant lateral extent, with more uniform facies when compared to the underlying successions, of the Tawallah, McArthur and Nathan Groups. The estimated age of the Roper Group is at least 1 430 Ma. An un-named succession of sandstones and shales of probable Neo-Proterozoic age, overlays the Roper Group, these have a maximum thickness in excess of 600 m.

Organically rich source rocks with the potential to generate both oil and gas are present in several intervals within thick shales of the McArthur Group such as the Barney Creek and Yalco Formations and Caranbirini Member of the Lynott Formation; and in the Upper Roper Group, in the Velkerri and Kyalla Formations.

Recognised reservoirs are developed at various levels within carbonates of the McArthur Group; these are potentially sealed by shales in Barney Creek and Lynott Formations or by thick evaporites at the base of the Balbirini Dolomite. Traditionally the Barney Creek Formation is considered the major source rock, but the Lynott and Yalgoo formations have also good generating potential and are currently in the oil window. Carbonate reservoirs in the McArthur Group are the major objectives in the Batten Trough area covered by EP184. Good vuggy porosities have been observed in the Coxco Dolomite, Reward Dolomite, and the Barney Creek Formation.

The proposed exploration targets four-way dip closed features and fault bounded anticlines. Structural plays, mostly anticline features, are the major targets for oil and gas exploration in the folded Batten Trough.

Trial field geology

No seismic exists in proximity to this location though historical acquired seismic exists to the south of this location. In 2013 a gravity survey was acquired by the Northern Territory Geological Survey (NTGS) over the southern McArthur Basin and released in 2014 (Dhu *et al* 2014). The survey covers an area of approximately 75 000 km² south of Roper.

The scope of the project was to better the understanding of the framework architecture of the McArthur Basin. A Bouguer anomaly map was produced, that confirms northwest-trending structures that are consistent with the strike of the major faults including the Mallapunyah and Calvert Hills Fault (southeast) and the Bulman Fault (north). These results are congruent with the findings in known seismic lines that indicate two 4 way closed structures present in the Ngukurr area lying also along a NW –SE direction. Gravity inversion was used for modelling the pre-sedimentation basin architecture of the greater McArthur Basin by L. Ailleres *et al* 2014. Preliminary results show a series of basement cover interfaces that are geologically consistent. The outcome is an estimate of depth to basement (Ailleres *et al* 2014).

2D Formation modelling undertaken of the region was undertaken using historical data available from the Northern territory geological Survey. This data was combined with additional information obtained through field outcrop mapping and the determination of dip and strike of outcrops and faults with cross section interpretation of the historical seismic.

The BCF SC 03 well is positioned to test the nearby Saint Vidgeon Formation outcrop at depth for geochemical characterisation and hydrocarbon source rock potential. Formation modelling is based on surface outcrop mapping and determination of dip and strike of outcrops and faults with cross section interpretation of the seismic.

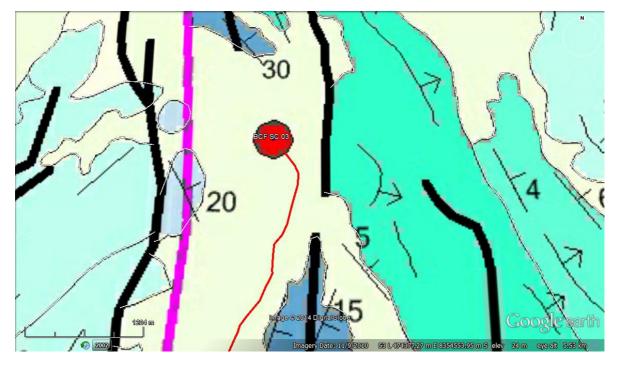


Figure 3: dip and strike of the formations with the drill site marked in red.

Previous exploration

A search of the NT Drill Holes data base for hydrocarbon and mineral holes has shown previous limited shallow drilling in close proximity to the proposed location by the Bureau of Mineral Resources, Pacific Oil & Gas and Rio Tinto.

The nearest existing wells found in the records are seven mineral wells drilled by Rio Tinto in 1997 (DD97WG01 and DD97WG02) and 1998 (DD98WG03- DD98WG07). The nearest existing petroleum well(s) are in the Urapunga area to the West of the proposed location, Urapunga 4 to 6. Also of significance are the petroleum wells, Alexander-1 and Scarborough-1 drilled to the south of BCF SC 03 in 1987 by Pacific Oil & Gas and encountered hydrocarbons in the Velkerri Formation, as well as Shea-1 to the West.

Nearest Wells

The diamond core hole DD97WG01 and DD97WG02 were drilled in 1997 by Rio Tinto at the Mt Birch prospect to explore for strata bound base metal mineralisation, within the Mid Proterozoic Vizard and Nathan Groups. The two wells lie only 130 m apart and 11 km north of the proposed drill location BCF SC 03.

The diamond core hole **DD97WG01** was drilled to 81.9 m. The well was collard in the Nagi Formation at 468808 mE and 836489 mS. The well was drilled at an inclination of -60° with an azimuth of 215°. and went into the St Vidgeon around 23 m. The hole intersected a fault zone at 20 m within the upper St Vidgeon Formation dolomites and siltstones. Core loss and poor sample return were frequent. The rock was silicified from 76 m down hole.

The diamond core hole **DD97WG02** (COREDAT ID: 3422) was collared It was collared in the lower Nagi Formation of the Vizard Group, a quartz sandstone and conglomerate. The top of the water table was encountered at 49 m. No significant water influx was recorded in the Drill Hole Ledger (Report CR19980574_1998_GA). At 25.6 m the well went into the Saint Vidgeon Formation, the Barney Creek Formation equivalent in the Urapunga Fault Zone, where it terminated at a depth of 179.2 m MD after 14 days of drilling. The lithology of the

Nagi Formation is dominated by a medium grained, quartz and feldspar rich sandstone and quartz-lithic conglomerate. The main lithology of the Saint Vidgeon Formation are shale and sandstone. The dominant colour in the top part is light to dark grey and changes to varieties of pink at around 55 m. Weathering is reported throughout the entire well with minor sections described as fresh and/or silicified. Core loss occurred frequently.

Five diamond core holes (**DD98WG003 - 007**) were drilled by Rio Tinto in 1998 at Mountain Creek prospect, approx. 10 km south of BCF SC 03. All five wells were interpreted to lie entirely in the Knuckey Formation (Pnk) of the Nathan Group, but frequent intersection of pinkite (pink tuff layers) might indicate intersection of Saint Vidgeon or Nagi Formation instead.

Diamond hole **DD98WG003** consisted of 36 m of RC collar with a diamond core tail extending to 236.2 m. Drilling took 8 days, the top of the water table was intersected at 45 m

Diamond hole **DD98WG004** was drilled to 217.7 m. The base of weathering was at 33 m and primarily dark-grey carbonaceous carbonates of the Knuckey Formation was intersecting.

DD98WG005 was originally drilled with a 42 m RC pre-collar and diamond tail to 74.4 m, but very broken and faulted ground forced re-drilling of this hole about 2 m away with 118 m RC pre-collar and a diamond tail of 165.8 m. Strong fracturing and faulting forced the abandonment of the hole. Intersected weathered siltstone and shales.

DD98WG006 was a core extension of RC98WG006 to 219.2 m. The hole intersected fresh laminated dolomitic, carbonaceous siltstones and stromatolites, evaporitic, sandy and massive light grey dolomitic siltstone of the Knuckey Fm.

DD98WG007 had a 30 m RC pre-collar and a diamond core tail extending to 131.1 m depth the base of oxidation was encountered at 24 m and the entire section was interpreted as Knuckey Formation.

The Urapunga wells (1 - 6) were drilled by the Bureau of Mineral Resources to obtain fresh core material from the Roper Group to study stratigraphy, sedimentology and hydrocarbons (HC). Three shallow cores (1-3) were drilled in 1983 which supplement three fully cored holes drilled in 1985 (4-6).

BMR Urapunga 4 was collard 63 km northwest of BCF SC 03 and went vertically to a TD of 532 m. Stratigraphy encountered in this well include McMinn Formation (0 - 41.2 m), Velkerri Formation (41.2 - 372.1 m), Bessie Creek Sandstone (372.1 - 397.6 m) and Corcoran Formation (397.6 - 532 m). The thick intersection of Velkerri Formation contains several extensive layers of organic rich shale. Live oil was encountered at 342.8 m and 346.0 – 347.5 m. Further evidence of a good HC source rock was found in the Moroak Sandstone Member of the McMinn Formation and Bessie Creek Sandstone where bitumen and oil stains in vuggy intervals point towards HC migration.

BMR Urapunga 5 (TD 604 m) is located 41 km northwest of BCF SC 03 and was collard in the Munyi Member. It intersected the Abner Sandstone and Crawford Formation and reached TD in the Mainoru Formation. No HC were encountered in this well.

BRM Urapunga 6 is located 28.5 km northwest of BCF SC 03 and was drilled to a total depth of 422.8 m through the Limmen Sandstone into the Mantungula Formation of the Lower Roper Group. The well was therefore stopped above our target formation. Neither of the two intersected formations show source rock potential or adequate porosity and permeability.

Scarborough-1 is a petroleum well drilled by Pacific Oil & Gas in 1987. The well is located 190 km east of Mataranka and 34 km southwest of BCF SC 03. It intersected five different formations being from top to TD: Kyalla Member (0 - 52 m), Moroak Sandstone Member (52 - 122 m), Velkerri Formation (122 - 621 m), Bessie Creek Sandstone (621 - 667 m) and Corcoran Formation (667 - 691.3 m (TD)). In total 499 m of Velkerri Formation were intersected. The Velkerri Formation was divided into three section: "upper" Velkerri from 122 - 295 m (thickness 173 m), "middle" Velkerri from 295 – 457 m (thickness 162 m) and "lower" Velkerri from 457 – 621 m (thickness 164 m). Different HC occurrences were reported in the Moroak Member, Velkerri Formation and Bessie Creek Sandstone. The Moroak Member showed bitumen blebs in vugs and oil and bitumen staining throughout. The Velkerri Formation showed occasional kerosene odour throughout the section, minor oil bleeds in association with carbonate veinlets as well as all colours of fluorescence between 270 - 470 m. The Bessie Creek Sandstone had bitumen pore-fillings throughout as well as rare yellow/green fluorescence and relict oil/water contact at 642.7 m.

Alexander-1 was drilled in 1987 by Pacific Oil & Gas to a TD of 689.6 m. The well lies 34 km south southeast of BCF SC 03. Sections intersected are almost identical to those drilled in Scarborough-1. Moroak sandstone Member 0- 62 m, Velkerri Formation 62 - 617 m (thickness 555 m), Bessie Creek Sandstone 617 – 661 m and Corcoran Formation 661 – 689.6 m (TD). The Velkerri Formation was divided into three section. The "upper" Velkerri extends from 62 - 280 m with a thickness of 218 m. The "middle" Velkerri was intersected from 280 – 446 m (thickness 166 m) and described as highly carbonaceous mudstone/shale with common Pyrite, occasional oil bleeds and olive black to black colouring. The "lower" Velkerri extends from 446 – 617 m (thickness 171 m) and is described as a partly glauconitic carbonaceous mudstone.

Shea-1 is a stratigraphic well that was drilled in 1991 by Pacific Oil & Gas and CSIRO in a joint research project. The well is located about 75 km east southeast of Mataranka and 110 km west southwest of BCF SC 03. The objective to the CSIRO was to determine in-situ rock properties of the "middle" Velkerri Formation. The well was spudded in the Proterozoic Bukalorkmi Member of the McMinn Formation, followed by a thicker than prognosed Kyalla Member. Moroak Sandstone Members and the McMinn Formation were also intersected before entering the "upper" Velkerri Formation at 284.89 m interbeds of mudstone and siltstone. The black, carbonaceous mudstone of the "middle" Velkerri Formation was intersected between 468.9 – 609 m. The hole was terminated at 616 m in the bluish grey claystones of the "lower" Velkerri Formation.

Water Bores

Most of the water bores in the area have been drilled around the townships of Ngukurr and Roper Bar to the north of BCF SC 03 and in proximity to the Roper River.

The closest water bore is **Tollgate Creek**, 14 km northwest of the proposed drill location at the southern bank of Roper River approximately 6 km south west of Ngukurr. It reached a total depth of 64.5 m. Water was encountered at 20 m (0.5 L/s), 35 m (1 L/s) and 56 m (2.5 L/s). Tollgate Creek is located 25 m off a side arm of the Roper River and at a height of 18 m GL, this equates to a TD below sea level of 46.5 m (Bore Report RN026364). The Bore Completion Report states a specific conductance of 610 μ s/cm and 620 μ s/cm in the airlift sample and pump test sample, respectively. The practical salinity can be inferred by using the specific conductance and equates to 0.296 psu and 0.301 psu.

2/82 Nullawan, 19.5 km northeast of the proposed location, is located on the far side of the Roper River. It was drilled in 1982 to a total depth of 73 m. Water struck at 24 m in form of

seepage and at 57 m with 0.189 L/s. Water analysis recorded iron levels and pH value out of the drinking water range (Bore Report RN021484). The specific conductance has been reported as $1710 \,\mu$ s/cm, which equates to a salinity of 0.86 psu.

A third water bore in proximity to the proposed well location is **Test No. 07** (475932.50 mE and 8369189.96mS), drilled in 1961, 14.5 km northeast of BCF SC 03. It is at an elevation of 10 m and approximately 300 m from the southern bank of the Roper River. Drilling stopped at 16.2 m as the rock was too hard to drill. The strata was described as hard and soft bands of porcellanite with odd pieces of quartzite and jasper (Bore Report RN002741). As no water zone was intersected there is no information on salinity at this location.

The close proximity of Tollgate Creek to the river and semi-permanent waterholes of Tollgate Creek, increases the chance of water influx which is not given at the location of BCF SC 03.

A review of this information and taking the distance of BCF SC 03 from the river into account, a significant flow from aquifers is not expected at drill site BCF SC 03.

Well History

BCF SC 03 was spudded on the 23rd July and drilled to a TD of 119.95m in 2 days. The hole was percussion-drilled down to 50.67 m on day one and HWT casing set at this point to permit coring. Cuttings from the open hole section were logged at 1 m intervals and representative samples of the formation encountered were taken and stored in calico bags. Additional subsamples were taken and retained in chip trays. Water was encountered at 6m. The water flow measured was 5.7L/s. No sample was taken for analysis as it was deemed to contain introduced fluids from the drilling process and would thus not be a true sample.

HQ coring commenced at this depth and continued to 81.21m on day one. Each run suffered significant core loss. This was probably due to the highly weathered nature of the formation and loss of integrity of the sandstones.

Day two of the drilling continued the HQ coring. This continued to the TD of 119.95 m. Core loss was significant in each run. On obtaining the approved TD the hole was flushed clean of cuttings and wireline geophysically logged for density, gamma, calliper, sonic and verticality. Drilling was conducted on a single shift daylight only basis. The time line is shown in figure 4 time depth curve.

On completion of logging the hole was set up for plug and abandon (PnA). On receipt of approval to PnA from the NT Dep't Mines and Energy the rig ran the cement plug on the 25^{th} of July to the bottom of the HWT casing. The casing was then removed from the hole and the cement filled to surface. On the 26^{th} the cement was topped up, the marker post set and the rig released. Site rehabilitation commenced once the rig had moved off the site. The schematic of the PnA well is shown in figure 5.

Despite being a petroleum exploration core hole due to the planned total depth the well was drilled using a mineral style under approvals given by the Northern Territory Dep't Mines and Energy.

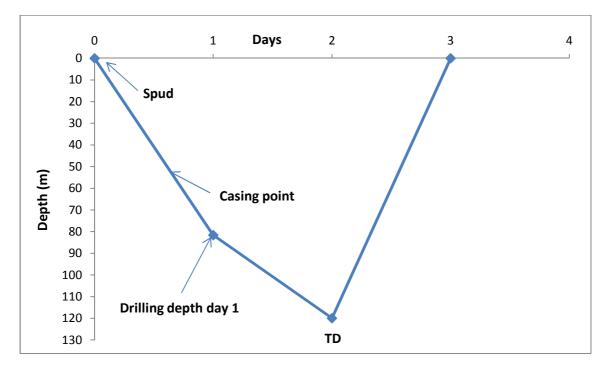


Figure 4: time depth curve

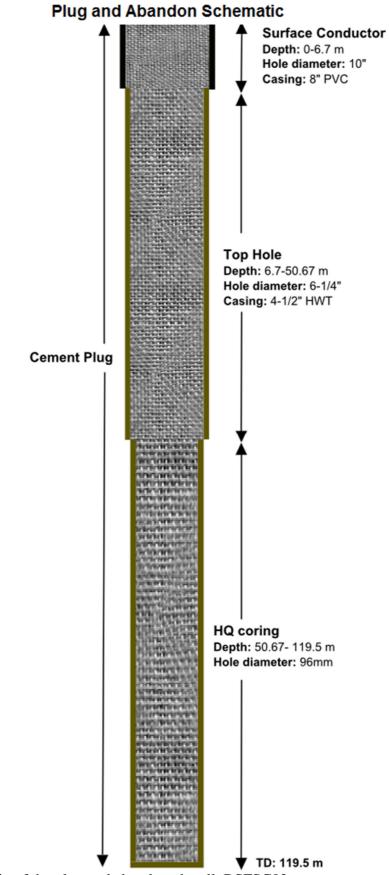


Figure 5: Schematic of the plug and abandoned well BSFSC03

Rig data

The Hydco 1200G drilling rig specifications:

- Heavy Duty Mast 9 meter rod pull 2 meter dump UHMWPE Slides
- Main Pump Kawasaki K3VL200
- Water pump FMC John Bean L09-18HD-BCD
- Engine Cummins QSC 8.3 Electronic 305hp engine, readouts and controls
- Certified Mast Wireline and Main Winch Ropes
- hydraulic side mount rod bin
- Hydco Hydraulic Make and Break drill pipe
- system 3 1/2 & 4 1/2 Rods, rod kicker & valving
- Fire Suppression System (Both Engines) from 1 tank
- Air Start Engines, Engine choking device, Spark arrestors
- Hydco Hydraulic Rod Loader including hydraulic rod bins and operator control arm
- 40K Drill Head Water Swivel & Adaptor Flange including hosing & Fitting
- CBM 3 meter Zone including cabinet and signals to Panel
- Wood Group "Rig Saver" Certified air intake
- emergency shutdown (range 50 meters) CBM
- Rod Spinner Sandvik on sprung pivot arm
- Hydraulic Mast Position Lock

Feed

- Variable feed pressure control
- Pull Back 21,500KG (Variable)
- Pull Down 12,500KG (Variable)

Drive head

- 2 Speed Hollow Floating Spindle Drill head
- Variable speed hydraulic motor
- Pressure Lubricated (Gears Hardened & Ground)
- Speed and torque variable

	240 bar
200 to 1500RPM	710 nm
50 to 1000 RPM	1,070 nm
10 to 250 RPM	4,280 nm
0 to 160 RPM	6,400 nm

Well information

Well location

Latitude and longitude in GDA94 values

0473 968 m E, 8355 030 m N

Map sheet name and graticular block number

1:250K Map Sheet Name:	Urapunga-Roper River Special
1:100K Map Sheet Name:	Urapunga
5 Minute Graticular Block Number:	SD53 2482
1 Minute Graticular Block Number:	L

Seismic line location and shot point number

N/A

The elevation of the ground and kelly bushing

GL: 29 m KB: 0.89 m

If the well is a side track – the name of the parent well

N/A

Names of MWD and LWD tools used

N/A

List of all well evaluation logs including measurement while drilling logs, pressure detection logs and mud logs

lithology log

List of log runs for wireline logging and velocity surveys

Table 1: Wireline logging runs.

Log run	From [m]	To [m]	Comment
1	119.5	0.00	Dummy
2	119.4	0.00	Density, Caliper
3	118	82	FWS
4	119.4	0.00	Deviation, GR, FTC
5	0.00	0.00	Res IP

Drilling Fluids

Average loaded-hole fluid properties were: Density p: 8.4 ppg Viscosity: 33 sec/qt.

Cementing Operation

	Conductor Casing	Surface Casing	Core Hole
Hole Size [inches]	10	$5 - \frac{3}{4}$	99mm
Casing Size [in]	8	4 ¹ / ₂ (retrieved)	N/A
Setting depth [m]	6.7	56.7	119.5
Est. BHT [⁰ C]	N/A	N/A	33.5
Cement type	Grout	Grout	Grout
Yield (ppg)	14	14	14
Mix water type	Surface water	Surface water	Surface water
Excess [%]	25	25	25

Bit record	Hole Section	Bit Size ["]	Hole size ["]	Make	Depth in [m]	Depth out [m]	Meters drilled in this hole	WOB [lbs]	Rod spin [rpm]
1	Conductor	6 ¼	6 ¼	Halo	0	6.7	6.7	2000	45
2	Top Hole	5 ³ ⁄4	5 ³ ⁄ ₄	Halo	6.7	56.7	50.0	3000	45
3	Coring section	99 mm	63mm	HWL	56.7	119.5	62.8	5000	700

Bit Record

The purpose of the well

The exploration well BCF SC 03 was designed and positioned to penetrate and test the carbonaceous-pyritic shale of the nearby Saint Vidgeon Formation outcrop at depth for geochemical characterisation and hydrocarbon source rock potential just below the zone of oxidation prognosed to be at ~50 m depth. The objective was to collect fresh samples from the St Vidgeon Formation, for geochemical analysis. It was not expected that any reservoir will be encountered due to the shallow depth of the core hole.

Well outcomes

The hole was drilled to 119.95 m. On completion of drilling the hole was geophysically wireline logged and then plugged and abandoned. No St Vidgeon formation was encountered in the hole. Samples of chip were retained for lithology typing of the formation(s) encountered. The hole did not meet the objective set for it.

Raw pressure time listings for any formation fluid sample tests and production tests

N/A

Important Dates

Spud date:	23-07-2014
Date of reaching total depth:	24-07-2014
Rig release date:	26-07-2014

Depth reference

Ground level.

Measured depth of the well

Drillers depth:	119.95 m
Loggers depth:	119.5 m

True vertical depth of the well

119.5

If applicable, the depth of perforation in the petroleum reservoir

N/A

If the well is deviated or horizontal

The surveyed path of the well

6 degree deviation from vertical

The co-ordinates of the bottom of the well bore

N/A

If applicable the coordinates and true vertical depth of the intersection of the well with the reservoir horizon

N/A

List of cores, cuttings and samples taken and their depths and intervals

CorenoneCuttings0 -50m in 1 m intervalsSamplesnone

Sampling

Ň/A

Geology data Well stratigraphy

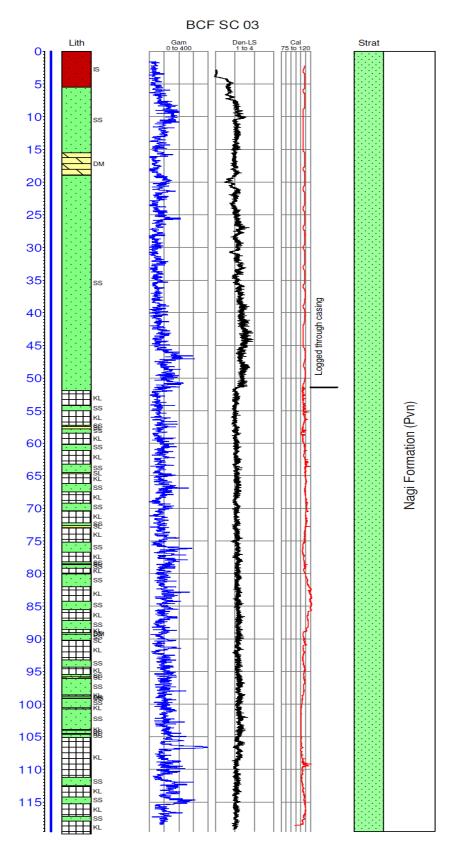


Figure 6: Well stratigraphy with Gamma, calliper and density shown. Formations are interpreted from available lithology and geophysical data.

Geology setting

Formation modelling for BCF SC 03 was based on surface outcrop maps and determination of dip and strike information from outcrops and faults utilizing the NTGS published 250k geology maps. The well was proposed to be collared into Nagi Formation then penetrate into the upper portion of the St Vidgeon formation at approximately 50m drill depth.

The basin here is part of the structural entity of the Urapunga Fault Zone (UFZ), comprising Vizard Group overlain by Nathan Group, and bounded by thrust faults. The drill location outcrop is located between two thrust faults and was predicted to have uplifted older units relative to the surrounding formations. Dips in the thrust fault zone are shown to be 20° to the SW on the 250k geology. Due to the shallow nature of the well, uncertainties about the formation boundaries, dips and faults, and its unique location between two thrust faults, there was a high risk that the Saint Vidgeon Formation might be lower, higher or not even present in this location.

The intersected formation in BCF SC 03 was dominated by highly weathered sandstone with minor interbedded dolomites at the top of the unit and minor siltstones and mudstones with increasing depth. Between 0 - 50 m the rock chips were mainly comprised of cream to brown highly weathered sandstones with a surface 6m of highly weathered lateritic iron stained sandstone. A single shallow aquifer was encountered at 6m sitting below the ironstone band. Water flow was measured at approximately 5.7L/s.

Below the 50m depth sandstone continued to dominate the formation. The sandstone was highly weathered and lacked cohesive structure. As a consequence the drilling suffered considerable core loss from each run. Only minor occasional bands of siltstone and mudstone were encountered in the drilling through to the planned total depth of 120m.

Hydrocarbon indications

No Hydrocarbons were encountered in BCF SC 03.

Conclusion

The hole spudded into the Nagi formation and did not drill deep enough to penetrate into the target St Vidgeon Formation.

This hole did not meet its objective.

Appendix:

Daily drilling reports

GAS											
				6							
tralla		Satphone IOG: 042	20 369 871								
		Geo: 040 6693 779	leo: 040 6693 779								
		Permit									
				IMPERIAL							
				OIL & GAS							
				·							
0											
		No Incidents,	Accidents or Spi	ls.							
•		Drilling									
N/A		Size [inch]	N/A								
-											
01.21											
Mobilisation to a	site, drill top ho	le to 50.67 m and H	Q core to 81.21 m	L							
Time	Duration (h:min)	Depth (m)		Operation							
6:00	0:10	0	Prestart meeting								
				5.00							
9:30	1:00	6.7	Drill 10"conduct	or section to 6.7m, set 8" PVC							
10:30	1:30	50.67	Drill 6-1/4" hole	to 50.67m							
12:00	0:30	50.67	Change from Hammer to coring tools								
				answive							
14:00	3:50	81.21		.67-81.21m							
17:50	0:30	81.21	Travel back to o								
Core to TD. Log											
Durit C											
[m]	Depth to [m]	Background gas (Units)	Gas peak [ppm]	Formation name							
0	6	N/A	N/A								
6	81.21	N/A	N/A								
cumulative w	ell costa		Sur	Veva							
		Date		Deviation [*]							
\$	16,700.00		a state of the sta	Constant 1							
\$	16,700.00										
-			Personel	i on drilisite							
meeting reco	rd	Drill crew - DRILL!		l on drillsite 3							
-		Drill crew - DRILL! Logger - ACS									
meeting reco Place	ard # of ppl			3							
	0 81.21 81.21 Mobilisation to : Time 6:00 6:10 6:30 8:30 9:30 10:30 12:50 13:00 13:20 14:00 17:50 Core to TD. Log Depth from [m] 0 6 6 Cumulative w \$	St traila BCF 8C 03 1 23/07/2014 24/07/2014 3unny 0 N/A 0 81.21 81.21 N/A 0 81.21 B1.21 Mobilisation to site, drill top ho 0 Time Duration Duration 0 0 0.10 6:00 0.10 6:30 2:00 8:30 1:00 10:30 1:30 12:00 0:30 13:20 0:40 14:00 3:50 17:50 0:30 Core to TD. Log well and cem Form fm] 0 6 8 81.21	St Satphone Drillstra Satphone IOG: 04: Geo: 040 6693 779 BCF SC 03 Permit 1 Rig 23/07/2014 Spud Date 24/07/2014 Spud Date 24/07/2014 Spud Date 0 GL - Elevation N/A Size [inch] 0 GL - Elevation N/A Size [inch] 0 0 81.21 N/A 81.21 Buration N/A Size [inch] 0 0.10 81.21 0.10 81.21 0.10 N/A Size [inch] 0 81.21 N/A Size [inch] 0 81.21 N/A 0.20 0 6.7 10.30 1:30 50.87 1:300 10.30 1:30 10.30 1:30 10.30 1:30 10.30 1:30 13:20 0:40 14:00 <td>St St permit Difference St frails Satphone Drillstralis: 0147 141 89 Satphone IOG: 0420 390 871 Geo: 040 6693 779 BCF 8C 03 1 Permit EP184 1 Big Hydeo12003 2907/2014 Spud Date 23/07/2014 24/07/2014 Spud Date 23/07/2014 24/07/2014 Prognosed TD 100 m ± 20 summy RT - GL 0.88 m 0 GL - Elevation 29 m N/A Bize [inch] N/A 0 Bize [inch] N/A 0 0 Bize [inch] N/A 0 0.10 0 Prestart meeting 81.21 Bize [inch] N/A 0 81.21 Diffiling Desting Bize [inch] 10.20 0.10 0 Prestart meeting 81.21 Diffilin</td>	St St permit Difference St frails Satphone Drillstralis: 0147 141 89 Satphone IOG: 0420 390 871 Geo: 040 6693 779 BCF 8C 03 1 Permit EP184 1 Big Hydeo12003 2907/2014 Spud Date 23/07/2014 24/07/2014 Spud Date 23/07/2014 24/07/2014 Prognosed TD 100 m ± 20 summy RT - GL 0.88 m 0 GL - Elevation 29 m N/A Bize [inch] N/A 0 Bize [inch] N/A 0 0 Bize [inch] N/A 0 0.10 0 Prestart meeting 81.21 Bize [inch] N/A 0 81.21 Diffiling Desting Bize [inch] 10.20 0.10 0 Prestart meeting 81.21 Diffilin							

IMPERIAL OIL & GAS

Level 7, 151 Macquary St Sydney NSW 2000, Australia

DAILY DRILLING REPORT

Satphone Drillstralis: 0147 141 886 Satphone IOG: 0420 369 871 Geo: 040 6693 779

WELL	BCF SC 03	ļ	Permit	EP184	10						
Report number	2	1	Rig	Hydco1200G							
Report for	24/07/2014	ļ	Spud Date	23/07/2014	IMPERIAL						
Date report submitted	25/07/2014		Prognosed TD	100 m ± 20	OIL & GAS						
Weather	sunny		RT - GL	0.88 m							
Days from Spud	1		GL - Elevation	29 m							
HSE			No Incidents,	Accidents or Spil	lls.						
			Drilling								
Last casing set @ [m]	50.67		Size [inch]	4-1/2 HWT							
Starting depth (6 am) [m]	81.21										
Finishing depth (6 pm) [m]	119.95										
Days progress [m]	38.74										
Summary of operations carried out	HQ core from 8	1.21 m to TD a	t 119.95 m. Run den	sity, gamma and	deviation logs.						
	Time	Duration [h:min]	Depth [m]		Operation						
	6:00	0:10	81.21	Prestart meeting]						
	6:10	3:10	81.21	Wait on fog to cl drillsite	ear for safe trip with the chopper to						
Operations Break Down	9:20	0:10	81.21								
	9:30	6:00	119.95	HQ core to 119.95 m							
	15:30	0:30 119.95 Trip out HQ									
	16:00 1:30 119.95 Wireline logging. Loggers TD: 119.5 m										
	17:30	0:30	119.95	Travel back to c	amp						
Summary of the Next 24hrs	Finish logging,	cement to surfa	ace, install signage								
	1	Form	ation Descriptio	on							
	Depth from	Depth to	Background gas	Gas peak	Formation norma						
Lithology description	[m]	[m]	(Units)	[ppm]	Formation name						
Red to cream coloured banded highly weathered sandstone with mudstone sections. High core loss	81.21	119.95	N/A	N/A							
Estimated daily and	cumulative w	/ell costs		Sur	veys						
Yesterday	\$	16,700.00	Date	Depth [m]	Deviation [°]						
Daily Costs	\$	20,500.00	24/07/2014	119.95	6.00						
Cumulated	\$	37,200.00									
Pre-job safety	meeting reco	ord		Personel	l on drillsite						
Date	Place	# of ppl	Drill crew - DRILLS	STRALIS	3						
24/07/2014	Roper Bar	16	Logger - ACS		1						
			Geologist		1						
			Cultural monitor		2						

IMPERIAL OIL & GAS

Level 7, 151 Macquary St Sydney NSW 2000, Australia

DAILY DRILLING REPORT

Satphone Drillstralis: 0147 141 886 Satphone IOG: 0420 369 871 Geo: 040 6693 779

	-										
WELL	BCF SC 03	ļ	Permit	EP184							
Report number	3	ļ	Rig	Hydco1200G							
Report for	25/07/2014		Spud Date	23/07/2014	IMPERIAL						
Date report submitted	26/07/2014		Prognosed TD	100 m ± 20							
Weather	sunny		RT - GL	0.88 m							
Days from Spud	2		GL - Elevation	29 m							
HSE			No Incidents,	Accidents or Spil	ls.						
			Drilling								
Last casing set @ [m]	50.67		Size [inch]	4-1/2 HWT							
Starting depth (6 am) [m]	119.95										
Finishing depth (6 pm) [m]	119.95										
Days progress [m]	0										
Summary of operations carried out	Run soniclogs,	cement hole.									
	Time	Duration [h:min]	Depth [m]		Operation						
	6:00	0:10	119.95	Prestart meeting							
	6:10	0:20	119.95	Wait on daylighy for chopper							
	6:30	8:30	119.95		. Loggers TD: 119.5 m						
Operations Break Down	15:00	0:20	119.95	Run in hole and flush							
	15:20	0:40	119.95	Cement hole to bottom of HWT							
	16:00	1:40	119.95	Free casing and flush							
	17:40	0:20	119.95	Cement to surface							
	18:00	0:20	119.95	Travel back to ca	amp						
Summary of the Next 24hrs	Top up cement		•								
	Denth from		nation Description								
Lithology description	Depth from [m]	Depth to [m]	Background gas (Units)	Gas peak [ppm]	Formation name						
Estimated daily and				veys							
Yesterday	\$	20,500.00	Date	Depth [m]	Deviation [°]						
Daily Costs	\$	21,500.00	24/07/2014	119.95	6.00						
Cumulated	\$	58,700.00									
Data ta la contra la	meeting reco	ord			l on drillsite						
Pre-job safety	meeting reet										
Pre-job safety Date	Place	# of ppl	Drill crew - DRILLS	STRALIS	3						
		# of ppl 16	Logger - ACS	STRALIS	<u> </u>						
Date	Place										

IMPERIAL OIL & GAS

Level 7, 151 Macquary St Sydney NSW 2000, Australia

DAILY DRILLING REPORT

Satphone Drillstralis: 0147 141 886 Satphone IOG: 0420 369 871 Geo: 040 6693 779

WELL	BCF SC 03	1	Permit EP184		1						
Report number	4	1	Rig	Hydco1200G							
Report for	26/07/2014		Spud Date	23/07/2014	IMPERIAL						
Date report submitted	27/07/2014		Prognosed TD	100 m ± 20	OIL & GAS						
Weather	sunny		RT - GL	0.88 m	- ore a ons						
Days from Spud	3		GL - Elevation	29 m							
HSE			No Incidents,	Accidents or Spil	ls.						
			Drilling								
Last casing set @ [m]	50.67		Size [inch]	4-1/2 HWT							
Starting depth (6 am) [m]	119.95										
Finishing depth (6 pm) [m]	119.95										
Days progress [m]	0										
Summary of operations carried out	Rig move. Top	up cement. Set	marker post.								
	Time	Duration [h:min]	Depth [m]		Operation						
	6:00	0:10	119.95	Prestart meeting							
Operations Break Down	6:10	1:50	119.95	Waiting on fog to	o lift. Travel to site.						
Operations Break Down	8:00	2:00	119.95	Rig down an top	up cement						
	10:00	4:00	119.95	Move to next site							
	14:00	3:30	119.95	Breakdown, bus	ted suspension air bag						
	17:30	0:30	119.95	Return to camp							
Summary of the Next 24hrs	Complete rig m casing. Set up		02. Drill top 6m and	set conductor. C	hip drill to casng depth. Set HWT						
		Form	ation Descriptio	on							
Lithology description	Depth from	Depth to	Background gas	Gas peak	Formation name						
Lithology description	[m]	[m]	(Units)	[ppm]	Formation name						
Estimated daily and				veys							
Yesterday	\$	58,700.00	Date	Depth [m]	Deviation [°]						
	S	16,500.00	24/07/2014	119.95	6.00						
Daily Costs	+										
Cumulated	\$	75,200.00									
	\$			Personel	l on drillsite						
Cumulated	\$ meeting reco Place		Drill crew - DRILLS		3						
Cumulated Pre-job safety	\$ meeting reco	ord	Drill crew - DRILLS Logger - ACS								
Cumulated Pre-job safety Date	\$ meeting reco Place	ord # of ppl			3						

Lithology Log

w.81				L	ithology	Codi	ng Sheet						s	heet _	_	of	- 6	2	_	
Prejest	Vidageon	Hole number	Grid 100 03 14-7 39	683	Northing	8.g. 56J)	Section .								'			·		
Tetal Depth	Date days	Date end	Dell Rig	Dellar	Legged by Pers.	Core Siz	Dell Type He	le Size Ca	ве Туре	Casing	liquiti	V-mond de	, sample på		7-Notch ma	1	٦			
19.95	23-7-14	24-7-14	HYDCC	TS	CE	63	300 B	76 7	WI	50.	57			11						
Sample Numbe	r Pin	Start Depth	Base Depth	tia. I	16 Teach Stands Likus Colour	Gr. Size	Qualifier	Moch State	Hard		Real Internet	3	Bedding ip Tax	т Туре	Textenic Prac	Dip		Type .	uls Ance	San R
mais		0	1255	18	Dull Oco Cre CR	-026 8-02	to c	rea	92				τß			ec				
		7 9 11 15 5 17 18 21 5 2 2 5 2 6 5	19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	97 97 97 97 97 97 97			- Du -	1.01	10											
			34.5 36.5 40	St St	Re Su CR		-6 - C12 -	- 42	9 ^(J)	20	č	/								
N/ote-		5.76 m	10"		ater e	~	Gm E	ew	val	e: 3		2 1	15							

Lithology Coding Sheet

and the the

Lithology Coding Sheet

140.01

Sheet 2_of 6____

Project	Sia	Hole member	Grid			Section (e.g. 56.	J) Sect	Sec.															
1 8 4 SH. V		BEASCO		68	83		130	53																
Total Depth	Date start	Duie end	Dell Rig	Della	-	Logged by Pers.	Cost	Size D	vill Type	Hole 5	ine Ca	se Type	Cash	ug depth	Vo	dopth dopth	4ia)	-Nataha	1861				
119.95	23-7-2014	24-7-2014	Marp 1200	13	- (LE.	1	3	PD	91	6 4	WT	30	67										
					Lith.	8.1	Gr.				Mech.		Dodd-	Read	-ii	Bed	ding		Tectori		For	ull / Min	arals	
Sangle Number	Pm	Start Depth	Base Depth	LIA.	5	Shade Thus Colour	Size		Qualifier		State	Hard	ing	Potuto	Wrath	Dip	Test	Тури	File	Dip	Abucil	Type	Assee	Sudan Rat
Run 1		50.67	51.2.1	Co	rei	- 0	.50	m	R	ec.	C	56	m		П	PU		D, C	2,4					
				SG		9 R D	MF		wet		KB		Ħ		G	-								
Run 2		51.21	51.91	C	ort	2 :	Bm		Rec	-	O.	7n	h	C		2.	3~							
		51.21	51.91	SS	-	PRD		-		+	_				F	-	_		_					
		51.91	54.21	KL							_					_		_						
Run 3		54.21	56.98	C	×e	2	30		Re	c -	0	77	m	C	L	2.	23	m						
		5621		55		PRD	-7	×3							Ē									
		54.18	57.21	KL	_					+			\vdash		H	-	_							
Run 4		57.21	58.5	Co	re	2 1	Sm		Rec	-	1.2	m			Ħ	CL.	1.7	m						
		57,21	594	SS		PRD									E									
		57.4	58.51	SE	-	XB									ę	+	-		-					
		58.51	60.21	41								_			Π									
Run 5		60.2.1	61.11	C	ore	2 2	m	2	ec c	29	n				Ħ									
		60.21	61.11	SS		RD						-			H		+					+	+	
		61.11	63.21	κL		_									H		_		_					
										Ħ					Ħ									

Lithology Coding Sheet

10.104				- 1	LILIIO	togy (Cou	ing a	sneet								Sh	eet		0	ſ	6		
Project	Vidaean	RCF SOC	Grid Eer 23 (4 7-3 9	20		Section (e Northing		5ectio																
Total Depth	Date start	Date and	DillRij	Drilk	er 14	opped by Pers.	Care 2	De	ill Type He	de Sixe	Case	Type	Casing	; depth	V-e	sich sam depth	ple		Notch	**	٦			
119.95	23-7-2014	24-7-2014	HYDROROO	TS		26	63	3 4	0	93	H	τ ⁱ	50	6 ¥			\pm	П						
Sample Numb	r In	Start Depth	Base Depth	Lin	1.ith. 75	d n b	Gr.		Qualifier	34	ech.	Bard	Bedd-	Darol	1	Bed	ding	—	Testoni	-	Per	el. Ma	cmb	Sodim
				- In	75	8±3	Sizz		Quality	8	nte.	Bert		Traile 15	Wash	Dip	Text	Туре	Rac	Dip	Abund	Тура	Assoc	Rel
Run	6	63.21	64.72		60	eċ	3,	n	Rec	- = 1		19			\square	4	1.	51	m	\square				
		63.21	64.52	SS		PD				+	H		+		E	+	-	\vdash		+			$\left \right $	$\left \right $
		64.52	6472	SL		RD									E									
		64.72	66.2'	KL	$\left \right $					+	H	+	+		H	+	_	\vdash		⊬			$ \rightarrow $	
Qun 7		66.21	67.46		6-	eč	3	m	Rec	<u>.</u>	L,	25	m		Ħ	C.	- 1	75	m	#				
				ss		RD	->	X	3						Ħ									
		67.46	69.21	KL								-	_		П	_								
Runs	,	69.21	70.40	Ċ	00	è .	3'n	2	ac.	1.	.]9			ĊL.	Ħ	1.8	2m					_	-	
		69.21	69-40	55		20	-7	YT	2 .	×b	ek	di.	10		H				\vdash	\vdash				
		69.4	69.80	55		RT	-7	Ċ	R				9		μ									
		69.8 70.1	70.10 70.40	32	\vdash	KK RD	->	CR	>		+	+	+	-	H 4	+	-			\vdash				
		764		K2											Ť									
Run 9		72.21	72.96		601	et:	3.	n	Re	<u>a</u> :	¢	. 7	5 ~	_		C4	. *	2.	251	m		-	-	_
		72.21	77.50	SS		W	+			+	+	+	+	-	H								+	
		7250	72.63	SS	3	RD									μ			1						
		72.63	72-77 72.96	SB		VR					+	+			<u>A</u>		_							
		72.96	75.21	ki.		MM					+		+		П					+			+	+

section of the sectio				1	Lithology	Codin	g Shee	t				Sh	eeto	16		
Preject 184 St.	Videledini	Bele number		68	Section - Northing 87315151610	305	3									
Total Depth	Duic start	Date and	Dril Rig	Drib	c Logged by Pen.	Core Size	Dail Type	Holo Size	Chee Type	Casing	dapth.	V-astah somple depth.	V-Notch ners	7		
119.95	23-7-2014	24-7-2014	14/200020	TS	CE	63	DD	96	AWT	50	67					
Sample Number	r Em	Start Depth	Date Depth	Life.	16 No. 16	Gr. Size	Qualifer	Mec Stra		Tedd- ing	Reed Factories	Bodding Dip Test	Testonic Type Prix Dip	Feeed / Minor Abund Type		Seden Rel
Run	0	75.21	76.71	10	ored	34	5 1	Rect	1.	δm		CL	1.Sm			
		75.21 76.71	76.7-1 79.21	55 KL	<u> </u>	310	н				_	9				
Run	1	78.2.1	79.21	C	exced :	1.8 m	•	Rec	. 1	Ø,	a .	ct:	O. Pm			
		78.21 78.51 78.64 79.21	7.8.5 78.64 79.21 80.01	55 84 55 KL	XR - WR YB	2 12	>					6				
Run (2-	80.01	81.24	C	orred	1. 2	m	ne	- 1	1.	23	m	RU: OCT	m	#	
		80.0	81.24	SS	PD							4				
Run X	3	81.24	82.00	C	orec :	3m	Re	<u>c</u> :	3.8	1	2	CL	2-01m			
		81.2.1 82.02	92.02 84.21	SS KL	PRD							4				
Runl	ų	84.2	85.52	4	oved	Зm	12	ec.	١.	31		CL :	1.69m			
		84.21 84.94 95.52	86.96 \$552 \$7.21	SS SS KL	98D 72D	-> C	R ben	8	S			430°B	F 96-60			

sar bi

Lithology Coding Sheet

Project 1 1874 (57	s= Videdon	Hole carate		688	Section (e Northing		Section															
Total Deph	Date start	Date and	Drill Rig	Driller	Logged by Pers.	Core S	Drill Type			е Туре				ido sam Arpito	plo	`	/-Notzh	nn				
1117.95	23-7-2014	24+7-1016	1 17/2010/2010	+s	dE	G	IS TO	96	H	ЧT	50	67										
				1.0	4.8	Ge			Noch		Bull-	Beal	ñ.	Ibeá	ding		Tector	ia .	Fe	toil (Nir	cleres	
Sample Number	r Em	Start Depth	Base Depth	Lina 5	Shafe The Colour	Size	Quelifer		State	Had	ing	Features	Woath	Dip	Test	Type	Proc	Dip	Abund	Type	Anna	Refer.
Rup	15	87.21	88.53	00	et:	1. 9	um	Re	c _1	1.7	2 r	n	(Ĺ	: 0	52	m					
		87.21	87.67	<u>cc</u>	KU-	5 1	3		+				H		_	\vdash						_
		87.67	88,21	SS	DRD	1	et ST	, ICA	al	xad	0	-	H				H	+		+		
		\$8.21	88.53	85	PRD								H									-
		98,53	\$9. OS	KL.																		
Run	6	89.05	91.01	0	CD :	4	JGm	2	R	2	١.	961	n			CL.	: 2	2				
		\$9.05	39.26	SS					+		+		+	+			\vdash					
		\$9.26	89.28	DM									H									
		\$9.28	90.22	35											10		F	80				
		9022	90.23	SL	PRD				+	+	+		4	+	_	_						_
		90.23	91.01	65 kL	PKU				+	+	+		+	+	-							-
			10, -1	1					Ħ					+				++-				+
Run	7	93.2(94-31	COR	ED:	2.1	um	55	2		1,1	m				СL	:11	um				
		9321	94.30	35	PRD		AR N	0 5	2/				+	+								
		94.31	95.45	KL	TRU		148 M	33	31	W	*	-	+	+	-							-
																						-
Run 12	8	95.45	9858	001	æ:	3.2	Im	20	34		20	3r	2			q	: 0.	08	m			_
		95.45	95, 8L	38					0	+	+	-		+	+		-					
		95.84	96.02	SL					5	+	+		4 H	+								
		96.03	96.03 98.58 99.76	SS			AB \$L	30	S				M									
		48.58	19.76	KL																		

Lithology Coding Sheet

var.III

Sheet _______ of ______

184 941	<u> </u>	abri	B	CF S	1013	479	596	9	83		01310		me Hal	e Bine		_		Unex	och kawij					_			
Tetal Depth		start		late and		Deil Ri		Drille		Laggod by Pens	Coru S		pe Hal			Casta	ų depth		dapth.	~	,	-Notch r					
19.95	13-	7-14	24+	7-11	. 14	XOK	20	TIS	c	e	- 140	ΣD	DB	61	fut	50	67										_
Sample Number		7m	Star	Depth	в	ue Depth		Lin.	136. 16	State 1 and	Gr. Size	Qw	äler	Meeh State		Dedd- ing	Daul Testersi	Nuthering	Beid Dip	-	Туре	Frai	Dip		Tige		Seda Ref
Runt	q		98. 98.			0.7		(C 55	RE	01	.17	PE	C.	Ŧ	-	Ħ	-				-	-	1				H
					99	- 1 / - 4 0 2	2	11 9 I 4	m	43	Y	+ 2	9 0		è.	99	76	M	\$								
	-					8~		nc or	n 1	Ê	00							Ŧ								-	
Run		100		-0				SS.	0	pred R=7		8 1	la:	3	Zr	2	and	9									-
Run	2.0	104.	. 0/	-7	10	4.6	2	SS	-	ĊR	-			+		\vdash				+					_	_	-
2wn	2	104	.62	3	111	-2	-	7	6	reč	6.	59	Rec	0	4.4	m		+		-							Ħ
			10	4.62		- 70	-	R	3	59 • 6	7-2	Der 6	ach	143											_		H
Rin	23	111.2	1-	<i>≥ 1</i> 1	4-1	21	C	01	ed	3	m	20	ec.	1.	72	m		+			_	_					-
					_					De	æ 5	, KK		St)	rsk	no	- 0	Ą	-	ŀę	2 7	-de	vb	2	>		Ħ
Run	24	ll Li	u	-0	11	7.21	1	(a	140	3	m	Re	с.	1	.61	m		+									-
2							<	55	0	Ch-	ac	R	40	£ 9	5	be	23	1	<i>t-</i> ,	30	as						Ŧ
Vun	15	1	702	1-5		90	13		0r	22	2.7	2 m	P	ec.	:0	78		+			-	_		1			-
			11				-	55	C	2	- 40	1															

E014

Lithology dictionary

Code	Lithology	Code	Shade	Code	Lithology Qualifier	Code	Adjective (2)	Code	Est. Strength/hardness	Code	Bedding	Code	Sedimentary Features	Code	Minerals and Fossils
AI	Acid Intrusive	Α	light to medium	PU	puggy	PT	pellets	Unconso	lidated Cohesive	DC	dessication cracks	RF	rounded fragments	RA	resin aggregates
AL	Alluvium	В	medium to dark	SA	sandy	PY	pyritic	C1 C2	very soft	DE	soft sediment deformation	RG	rounded grains	RC	carbonaceous root traces
AN	Andesite Acid Volcanic	D	light to dark dark	SP	silty sapropelic	QZ	query tuffaceous quartzose	C2 C3	soft firm	DF FL	diffuse bedding flasar bedding	RM RP	ripple marks rounded pebbles	RS	resin rootlets
BI	Basic Intrusive	E	medium	Code	Adjective	RA	rare (<1%)	C4	stiff	FS	flame structures	RU	rip-up clasts	RT	root traces
BO	Boulders	i.	light	AB	abundant (30-60%)	RS	resinous	cs	very stiff	FU	fining upwards	RW	reworked	SD	siderite
BR	Breccia	м	mottled	AC	acidic	SA	sandy	C6	hard	FX	fine cross bedding	SC	shrinkage cracks	SI	silica
BS	Basalt	N	banded	AK	arkosic	sc	siliceous	Rock		GB	graded bedding	SF	scour and fill	SU	sulphides
BU BV	Basement Undifferentiated Basic Vocanic	S	speckled variegated	AL AM	altered sub arenitic	SD SF	sideritic silicified	R1 R2	extremely low strength rock very low strength rock	LB	lenticular bedding medium scale cross laminations (200mm-2000mm)	SL SP	small scale cross laminations (<200mm) slumping	SR TA	sediment filled root traces
CA	Carbonaceous	Code	Hue	AR	arenitic	SG	stringers	R3	low strength rock	MP	medium scale cross faminations (200mm-200mm) medium permeability (10mD-10000mD)	ST	stylolites	UN	unidentified mineral
CC	Calcite	B	brownish	AS	as	SH	shaly	R4	medium strength rock	PL	planar bedding	TG	tabular grains	XR	carbonaceous remains
CB	Carbonate	c	creamy	AT	alternating	SI	silty	RS	high strength rock	RI	ripple bedding	то	throughout	w	vivianite
CE	Calcrete	E	greenish	BC	basic	SM	smectitic	R6	very high strength rock	RX	trough cross bedding	τυ	near top of unit	WF	woody fragments
CG	Conglomerate	F	buff	BE	bentonitic	SO SS	soft	R7	extremely high strength rock friable	TX	tabular cross bedding	VF VG	very angular fragments	ZE	zeolite Mineral Habit
CH	Chert Chalk	G	greyish blackish	BL	blebs bands	SS	sandstone	F	friable Soft	XB	cross bedding Defect Spacing	VG	very angular grains	Code	
CK	Chaik Clay	ĸ	blackish bluich	BN	bands bright	ST	soty	S N	Soft Moderate hardness	EW	extremely wide (>2m)	WP	very angular pebbles	AG	in amygdules amorphous
0	Coal	ò	orangey	BS	basaltic	SY	stony	VH	Very hard		moderately narrow (20-60mm)	WB	wavy bedding	BL	in blebs
CS	Claystone	P	pinkish	BU	near base of unit	TF	tuffaceous	UH	Ultra hard	MW	moderately wide (60-200mm)	WD	well developed bedding	BN	bands
CV	Colluvium	R	reddish	CA	Carbonaceous	TG	strongly		lidated Cohesionless	NA	narrow (6-20mm)	WE	water escape structures	BP	on bedding planes
DE	Diatomaceous Earth	U	purplish	CB	carbonate	TH	thin	51	very loose	VN	very narrow (<6mm)	WF	well rounded fragments	CB	concentrated at base
DI	Diamictite	w	whitish	CC	calcite	TI TK	tillitic	S2 S3	loose medium dense	VW	very wide (600-2000mm) wide (200-600mm)	WG	well rounded grains wavy laminations	CC	coarse grains in cleat
DO	Dolerite	Û Û	vellowish	CG	conglomeratic	т	translucent	54	dense	Code	Tectonics	WP	well rounded pebbles	a	concretions
FB	Fault Breccia	Code	Colour	a	concretions	TN	tonsteinous	55	very dense	BP	bedding plane	ws	well sorted	CM	cement
FC	Fireday	B	brown	a a	clavey	то	throughout	Code	Bedding		broken zone	XU	near top and base of unit	CN	concentrated at top
FL	Fill	c	cream	CM	common (15-30%)	TR	traces	CB	thickly bedded (600-2000mm)	CF	contraction fracture	YC	syneresis cracks	СТ	dasts
FK	Ferricrete	E	green	co	coaly	π	tends to	IR	irregular spaced bedding	CL	clay band	YS	polymodal sorting	cv	in cavities
FW	Fossil Wood	F	buff	CR	chloritic	ти	near top of unit	u	thinly laminated (<6mm)	DB	drilling induced break	Code	Mineral fossil abundance	DE	detrital
GB	Gabbro	G	grey	CS	claystone	TY	slightly	LM	thickly laminated (6-20mm)	DS	discing	A	abundant (30-60%)	DS	disseminated
GD GN	Granodiorite	ĸ	black	СТ	clasts	VE	very	MA	massive/absent bedding	DY	dyke	c	common (15-30%)	FB	fibrous
GN GR	Gneiss Granite	L	blue multi-coloured	DA DD	decreasing in abundance dull	VI VO	vitrainous volcanic	MB TB	medium bedded (200-600mm) thinly bedded (60-200mm)	DZ FO	drilling induced broken zone foliation	D	secondary accessory	FD FF	infilling fault discontinuities fine grains
GV	Gravel	o	orange	DE	detrital	wi	with	UB	very thinly bedded (20-500mm)	FR	fracture (undifferentiated)	M	minor (1-15%)	FL	radial filaments
IG	Igneous Rock, undifferentiated	P	pink	DM	dolomitic	WP	wisps	VB	very thickly bedded (>2m)	F	fault	N	dominant (>60%)	FP	on fracture planes
	Intermediate Intrusive	R	red	DO	dominant (>60%)	xc	coarser	Code	Texture	1	joint	R	rare (<1%)	FR	fragments
IN	Intrusive Rock, undifferentiated	U	purple	DS	disseminated	xu	near top and base of unit	AG	amygdaloidal	SH	shear zone	Code	Minerals and Fossils	GD	glendonites
IS	Ironstone	w	white	ET	and	хх	carbonaceous	AM	amorphous	s	sill	AN	ankerite	GN	grains
IV	Intermediate Volcanic	x	off-white	FE		Code	Mechanical State	AP	aphantitic	SZ	softened zone (non-tectonic)	AP	apatite	IB	infilling of burrows
KA	Kaolinite	Y	yellow	FF	finer	BK	blocky	СН	cherty	VN	vein	BA	bauxite	IC	intercalations
кк	Cone in Cone Carbonate	Code	Grain size	FO	fossiliferous	BL	brittle	CI	concretionary	Code	Surface Roughness	BI	bivalves	IV	infilling vesicles
KL.	Core Loss Laterite	CS CX	clay sized coarse to very coarse grained	FR	fragments feldspathic	BR CE	brecciated cleated	CX CS	chalky clast supported	ĸ	slickensided	BR BT	brachiopods biotite	JN KK	on joints cone in cone structure
LA	Laterite Lignite	FC	coarse to very coarse grained fine to coarse grained	FT	fault gauge	DW	disintegrates on wetting	EA	clast supported earthy		rough	BT BZ	brotite	LM	cone in cone structure
u	Limonite	FF	fine grained	FU	fusainous	EX	expanding clay	EQ	equigranular	s	smooth	CC	calcite	LN	lenses
LO	Loam	FM	fine to medium grained	FN	No idea	FB	friable	FB		Code	Core State	CB	carbonate	MF	microflakes
LS	Limestone	FU	fusainous	GC	glauconitic	FG	flaggy	FL	flow banded	8	broken core	CE	chalcopyrite	MX	matrix
M1	Conglomerate (>65% matrix)	FX	fine to very coarse grained	GG	granules	FL	fissured	GG	granular	c	crushed core	CD	chalcedony	ND	nodules
M2	Conglomerate (35-65% matrix)	GG	granular	GN	grains	FL	flaky	GS	glassy	F	fragmented core	СН	chert	00	oolites
M3 MD	Conglomerate (<35% matrix)	GO	granular to cobbly granular to pebbly	GP HA	graphitic heat affected	FR	fractured	GT	gritty matrix supported	K	cuttings overdeilled core	CL	clay coprolites	PB	pebbles
MM	Mud Metamorphic Rock, undifferentiated	GU	granular to peoply granular to bouldery		heat affected highly	HP	hish plasticity	ND	matrix supported	e e	solid core	CP CH	coprolites	PO	in nods
MS	Mudstone	GV	gravely	HI HR	hard	HS	high slaking	00	oolitic	v	very broken core	DI	dickite	PT	pellets
MY	Mylonite	MC	medium to coarse grained	HY	shelly	IN	indurated	PL	platey	Code	Sedimentary Features	DM	dolomite	RE	replacement
NL	Not Logged	MM	medium grained	IA	increasing in abundance	IP	intermediate plasticity	PR	porphyritic	AF	angular fragments	EP	epidote	RF	replacing fossils
NR OS	No Recovery Oil Shale	MS MX	mud sized	IB	interbanded	LP	low plasticity	PS PT	pisolitic pelletal	AG	angular grains	FB FM	charcoal foraminifera	RH	rhombs
ow	Old Workings	00	medium to very coarse grained cobbly	IS IS	iron stained	MF	low slaking micro faulted	50	soapy	BD	angular pebbles	FO	foraminitera	SN	staining
PC	Pellet Claystone	OU	cobbly to bouldery	IM	intermediate	MS	medium slaking	SZ	schistose	BF	subrounded fragments	FR	faecal remains	TR	traces
PE	Peat	PO	pebbly to cobbly	IN	intrusive	NC	non-cleated	VS	vesicular	BG	subrounded grains	FS	feldspar	VN	in veins
PH	Phyllite	PP	pebbly	IP	in part	NP	non plastic	VT	vitreous	BP	subrounded pebbles	FW	fossil wood	VS	in vesicles
PY QT	Pyrite Query Tuffaceous	PB S1	pebbly to bouldery very fine grained (VV)	IR KA	irregular	NS PO	non slaking	VU WX	vuggy	BS	bimodal sorting bioturbated	GA GC	galena	VU WP	in vughs
QT QZ	Query Tuffaceous Quartz	S1 S2	very fine grained (VV) fine grained (FF)	KA LA	kaolinitic lateritic	PO	powdery puggy	WX XL	crystalline	BU	bioturbated near base of unit	GC	glauconite goethite	XL	crystals
RH	Rhyolite	53	fine to medium grained (FM)	LC	clear	SE	subfissile	Code	Basal Contact	BW	burrowing	GP	graphite	Code	Gas
SA	Sand	54	medium grained (MM)	u	limonitic	SH	sheared	B	basal contact open or readily parts	CF	compaction feature	GR	garnet	н	high gas present (10-15m ³ /t)
sc	Silcrete	SS	coarse to very coarse grained (OO)	LM	laminae	SK	slickensided		basal contact deformed	a	colloidal iron deposit	GT	eastropods	1 ï	low gas present (1-5m ³ /t)
50	Siderite	56	interbedded, fine and coarse	LN	lenses	SL	slabby	ER	erosional basal contact	DG	bladed grains	GY	gypsum	M	moderate gas present (5-10m3/t
SH	Shale	57	medium to coarse grained (MC)	LO	loamy	ST	sticky	F	faulted at basal contact	DY	sedimentary dyke	HE	haematite	N	H ₂ S not detected
SI	Silt	58	coarse grained (CC)	LR	large	Code	Interrelationship	GR	gradational basal contact	GF	subangular fragments	HM	heavy minerals	P	H ₂ S present
SL	Slate	59	very coarse grained (XX)	LT	lithic	BN	with bands of	1	sharp and irregular basal contact		subangular grains	HY	shells	т	trace (<1m ³ /t)
so so	Soil	55	sand sized	LU	lustrous	BO	with boulders of		jointed at basal contact	GP	subangular grains subangular pebbles	IL.	ilite	i v	very high gas present (>15m ³ /t)
ss	Sandstone	SY	stony	LY	lavers	CM	with cement of	6	oblique basal contact	HP	high permeability (>1000mD)	iM	imenite	<u> </u>	
ST	Siltstone	TS	silt sized	MD	muddy	СТ	with clasts of	so	sharp and oblique basal contact	HX	high angle cross bedding (>30°)	10	iron oxide	1	
SU	Sedimentary Rock, undifferentiated	UU	bouldery	MG	manganiferous	CU	coarsening up to	SP	sharp and planar basal contact	IC	intraformational cracks	IS	ironstone	1	
SZ	Schist	VC	very fine to coarse grained	MI	micaceous	DS	disseminated with	R	fractured at basal contact	IM	imbricate clasts	KA	kaolinite	1	
TA TF	Talc Tuff	VF	very fine to fine grained very fine to medium grain	MM	metamorphosed minor (1-15%)	FR	with fragments of fining up to	S U	sheared at basal contact sharp and undulose basal contact	IP IR	in part impermeable (<0.1mD)	LI MC	limonite marcasite	1	
T	Tillite	vv	very fine grained	MO	moderately	GG	with granules of	Code	Weathering	ic	load cast	ME	marine fossils	1	
TN	Tonstein	VX	very fine to very coarse grained	MR	marly	IB	interbedded with	D	distinctly weathered	LG	prolate grains	MG	manganese	1	
TS	Tar Sand	WE	weathered	MS	mudstone	IC	intercalated with	E	extremely weathered	LL	large scale cross laminations (>2m)	MI	mica	1	
π	Tuffite	XX	very coarse grained	MU	near middle of unit	IL.	interlaminated with	F	fresh	LP	low permeability (0.1mD-10mD)	ML	montmorillinite	1	
VB	Volcanic Breccia	Code	Lithology Qualifier	MX	matrix	IM	intermixed with	н	highly weathered	LX	low angle cross bedding (<10*)	MT	magnetite	1	
VD	Void	AN	anthracite	ND	nodules	IR	Irregularly interbedded with	M	moderately weathered	MC	mud casts/cracks	MV	muscovite	1	
VR XC	Volcanic Rock, undifferentiated Carbonaceous Claystone	CA CC	Carbonaceous Calcite	OF ON	of	LN MX	with lenses of with matrix of	R	residual soil slightly weathered	MS MU	moderately sorted near middle of unit	OL OM	olivine opague minerals	1	
XC	Carbonaceous Claystone Carbonaceous Shale	CC	coarse grained	00	on cobbles	MX ND	with matrix of with nodules of	, w	slightly weathered weathered	MU	near middle of unit medium angle cross bedding (10*-30*)	OP	common opal	1	
XM	Carbonaceous Snale Carbonaceous Mudstone	CI	cindered	OP	opaque	00	with cobbles of	EW	extremely weathered	PB	penny bands	OR	orthoclase	1	
xs	Carbonaceous Sandstone	CL	clayey	ox	oxidised	PB	with pebbles of		Bedding	PC	bounce marks/prod casts	PE	pelycepods	1	
XT	Carbonaceous Siltstone	СТ	cannel (torbanite, bog)	PA	partings	PO	with pods of	CB	current bedding	PD	poorly developed bedding	PF	plant fragments	1	
	Coaly Claystone	CU	undifferentiated	PB	pebbles	WP	with wisps of	CR	climbing ripples	PE	permeable	PG	plagioclase	1	
ZC			heat affected	PE	peaty			ст	contorted bedding	PG	pebble lag	PI PP	plant impressions	1	
ZC	Coaly Shale	HA													
ZC ZH ZM	Coaly Shale Coaly Mudstone	IF	inferior	PH	phases			CU	coarsening upwards	PO	porous	PP	phosphates	1	
ZC	Coaly Shale	IF IO IS		PH PO PP	phases pods phosphatic			CU CV DB	coarsening upwards convoluted bedding disturbed bedding	PO PS RB	porous poorly sorted rootlet beds	PP PY QZ	phosphates pyrite quartz		