

# WELL DATA

Shenandoah-1A, NT, Australia - Well Completion Report



| e-entry, completion and testing)                                                                                                             |                                |                                                                                                                                                                                                                  |                                                                              |                                                                                       |                                                                                                     |                                                                     |                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|
| LOCK/STATE: EP98 / NORTHE                                                                                                                    | STATUS: PLUGGED & ABANDONED    |                                                                                                                                                                                                                  |                                                                              |                                                                                       |                                                                                                     |                                                                     |                                                                                |
| YPE STRUCTURE: DEEP BAS                                                                                                                      | IN AXIS                        |                                                                                                                                                                                                                  | TOTAL DEPTH: 2703mMDRT, 2702.9mTVDRT, Drl                                    |                                                                                       |                                                                                                     |                                                                     |                                                                                |
| TTE STRUCTURE: DEEF BAS                                                                                                                      | IOTAL DE                       | 111. 2703iii                                                                                                                                                                                                     | VIDR1, 2702.                                                                 | JULIVDK                                                                               | 1, 1/1                                                                                              |                                                                     |                                                                                |
| ONGITUDE: 133° 34' 38.22" E                                                                                                                  | RE-ENTRY                       | COMMENC                                                                                                                                                                                                          | ED: 12:00                                                                    | ) hrs, 14/09                                                                          | 9/2011                                                                                              |                                                                     |                                                                                |
| ATITUDE: 16° 37' 22.16" S                                                                                                                    | TD REACH                       | ED:                                                                                                                                                                                                              | 05:00 h                                                                      | nrs, 18/09/2                                                                          | 2011                                                                                                |                                                                     |                                                                                |
| GDA 94, GRS80 Ellipsoid)                                                                                                                     | RIG RELEA                      | SED:                                                                                                                                                                                                             | 24:001                                                                       | hrs, 22/09/                                                                           | 2011                                                                                                |                                                                     |                                                                                |
| LEVATIONS (AHD): GROUNI                                                                                                                      | D: 226.8m RT: 23               | 31m                                                                                                                                                                                                              | PROGNOSE                                                                     | ED TOTAL D                                                                            | EPTH: 2714                                                                                          | .3m MDR                                                             | T (-2483.3mSS)                                                                 |
| CASING SIZE                                                                                                                                  |                                | SHOE DEPTH                                                                                                                                                                                                       | 1                                                                            |                                                                                       | TYPE                                                                                                |                                                                     |                                                                                |
| 244mm (9.625")                                                                                                                               |                                | 1555m Driller & Logger                                                                                                                                                                                           |                                                                              | 36                                                                                    | LB/FT K55, I                                                                                        | 3T&C                                                                |                                                                                |
| 114.3mm (4.5")                                                                                                                               | 1                              | 15.1 LB/FT, Vam Top                                                                                                                                                                                              |                                                                              |                                                                                       |                                                                                                     |                                                                     |                                                                                |
|                                                                                                                                              |                                |                                                                                                                                                                                                                  |                                                                              |                                                                                       |                                                                                                     |                                                                     |                                                                                |
| AGE                                                                                                                                          |                                | FORMATION TOPS*                                                                                                                                                                                                  |                                                                              | GER'S DEPT                                                                            |                                                                                                     | THICK                                                               |                                                                                |
| AGE<br>M. PROTEROZOIC                                                                                                                        |                                | FORMATION TOPS*                                                                                                                                                                                                  | LOG<br>MDRT<br>1489.0                                                        | GER'S DEPT<br>TVDRT<br>1488.4                                                         | <b>TH (m)</b><br>SSTVD<br>-1257.4                                                                   |                                                                     |                                                                                |
|                                                                                                                                              |                                |                                                                                                                                                                                                                  | MDRT                                                                         | TVDRT                                                                                 | SSTVD                                                                                               | THICK<br>(m)                                                        | (L)<br>(m)                                                                     |
| M. PROTEROZOIC                                                                                                                               |                                | LOWER KYALLA FM (1)                                                                                                                                                                                              | MDRT<br>1489.0                                                               | TVDRT<br>1488.4                                                                       | <b>SSTVD</b><br>-1257.4                                                                             | THICK<br>(m)<br>227.9                                               | (L)<br>(m)<br>5.1 H                                                            |
| M. PROTEROZOIC<br>M. PROTEROZOIC                                                                                                             | T T T                          | LOWER KYALLA FM (1)<br>MOROAK SANDSTONE (1)                                                                                                                                                                      | MDRT<br>1489.0<br>1717.0                                                     | TVDRT<br>1488.4<br>1716.3                                                             | <b>SSTVD</b><br>-1257.4<br>-1485.3                                                                  | THICK   (m)   227.9   482.9                                         | (L)<br>(m)<br>5.1 H<br>7.2 H                                                   |
| M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC                                                                                           | OUP                            | LOWER KYALLA FM (1)<br>MOROAK SANDSTONE (1)<br>UPPER VELKERRI FM (1)                                                                                                                                             | MDRT   1489.0   1717.0   2200.0                                              | TVDRT<br>1488.4<br>1716.3<br>2199.2                                                   | <b>SSTVD</b><br>-1257.4<br>-1485.3<br>-1968.2                                                       | THICK   (m)   227.9   482.9   514.4                                 | (L)<br>(m)<br>5.1 H<br>7.2 H<br>70.7 L                                         |
| M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC                                                                         | GROUP                          | LOWER KYALLA FM (1)<br>MOROAK SANDSTONE (1)<br>UPPER VELKERRI FM (1)<br>VELKERRI 'A' BED                                                                                                                         | MDRT   1489.0   1717.0   2200.0   2400.0                                     | TVDRT<br>1488.4<br>1716.3<br>2199.2<br>2399.1                                         | <b>SSTVD</b><br>-1257.4<br>-1485.3<br>-1968.2<br>-2168.1                                            | THICK   (m)   227.9   482.9   514.4   51.0                          | (L)<br>(m)<br>5.1 H<br>7.2 H<br>70.7 L<br>9.4H                                 |
| M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC                                                       | ER GROUP<br>K SUBGROUP         | LOWER KYALLA FM (1)<br>MOROAK SANDSTONE (1)<br>UPPER VELKERRI FM (1)<br>VELKERRI 'A' BED<br>(LOWER VELKERRI 'A' BED)                                                                                             | MDRT   1489.0   1717.0   2200.0   2400.0   2451.0                            | TVDRT<br>1488.4<br>1716.3<br>2199.2<br>2399.1<br>2450.1                               | SSTVD<br>-1257.4<br>-1485.3<br>-1968.2<br>-2168.1<br>-2219.1                                        | THICK   (m)   227.9   482.9   514.4   51.0   N/A                    | (L)<br>(m)<br>5.1 H<br>7.2 H<br>70.7 L<br>9.4H<br>N/P                          |
| M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC                                     | OPER GROUP<br>WOK SUBGROUP     | LOWER KYALLA FM (1)<br>MOROAK SANDSTONE (1)<br>UPPER VELKERRI FM (1)<br>VELKERRI 'A' BED<br>(LOWER VELKERRI 'A' BED)<br>VELKERRI 'B' BED                                                                         | MDRT   1489.0   1717.0   2200.0   2400.0   2451.0   2470.0                   | TVDRT<br>1488.4<br>1716.3<br>2199.2<br>2399.1<br>2450.1<br>2469.1                     | SSTVD<br>-1257.4<br>-1485.3<br>-1968.2<br>-2168.1<br>-2219.1<br>-2238.1                             | THICK   (m)   227.9   482.9   514.4   51.0   N/A   33.0             | (L)<br>(m)<br>5.1 H<br>7.2 H<br>70.7 L<br>9.4H<br>N/P<br>59.4H                 |
| M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC                   | ROPER GROUP                    | LOWER KYALLA FM (1)<br>MOROAK SANDSTONE (1)<br>UPPER VELKERRI FM (1)<br>VELKERRI 'A' BED<br>(LOWER VELKERRI 'A' BED)<br>VELKERRI 'B' BED<br>(LOWER VELKERRI 'B' BED)<br>VELKERRI C' BED<br>LOWER VELKERRI FM (1) | MDRT   1489.0   1717.0   2200.0   2400.0   2451.0   2470.0   2503.0          | TVDRT<br>1488.4<br>1716.3<br>2199.2<br>2399.1<br>2450.1<br>2469.1<br>2502.1           | SSTVD<br>-1257.4<br>-1485.3<br>-1968.2<br>-2168.1<br>-2219.1<br>-2238.1<br>-2271.1                  | THICK   (m)   227.9   482.9   514.4   51.0   N/A   33.0   N/A       | (L)<br>(m)<br>5.1 H<br>7.2 H<br>70.7 L<br>9.4H<br>N/P<br>59.4H<br>N/P          |
| M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC<br>M. PROTEROZOIC | ROPER GROUP<br>MAIWOK SUBGROUP | LOWER KYALLA FM (1)<br>MOROAK SANDSTONE (1)<br>UPPER VELKERRI FM (1)<br>VELKERRI 'A' BED<br>(LOWER VELKERRI 'A' BED)<br>VELKERRI 'B' BED<br>(LOWER VELKERRI 'B' BED)<br>VELKERRI 'C' BED                         | MDRT   1489.0   1717.0   2200.0   2400.0   2451.0   2470.0   2503.0   Absent | TVDRT<br>1488.4<br>1716.3<br>2199.2<br>2399.1<br>2450.1<br>2450.1<br>2502.1<br>Absent | <b>SSTVD</b><br>-1257.4<br>-1485.3<br>-1968.2<br>-2168.1<br>-2219.1<br>-2238.1<br>-2271.1<br>Absent | THICK   (m)   227.9   482.9   514.4   51.0   N/A   33.0   N/A   N/A | (L)<br>(m)<br>5.1 H<br>7.2 H<br>70.7 L<br>9.4 H<br>N/P<br>59.4 H<br>N/P<br>N/A |

# WELL DATA CARD

### CASING SUMMARY

| Size       | Depth | Weight | Grade | Connection | ID     | Drift  | Burst  | Collapse | Tension |
|------------|-------|--------|-------|------------|--------|--------|--------|----------|---------|
|            | (m)   | #/ft   |       |            | (in)   | (in)   | (psi)  | (psi)    | (lbs)   |
| 20"        | 20    | 94     | H-40  | BTC        | 19.124 | 18.936 | 1391   | 472      | 443,000 |
| 13<br>3/8" | 420   | 54.5   | K-55  | BTC        | 12.615 | 12.459 | 2482   | 1027     | 497,000 |
| 9<br>5/8"  | 1553  | 47     | K-55  | BTC        | 8.681  | 8.525  | 4290   | 3528     | 678,000 |
| 4<br>1/2"  | 2714  | 15.1   | P-110 | Vam Top    | 3.826  | 3.70   | 14,420 | 14340    | 485,000 |



# PERFORATION / STIMULATION SUMMARY

|            | Wire   | eline Per | forations | (meter ] | MDRT)     | D          | FIT          | Stim           | ulation Trea   | tment          |
|------------|--------|-----------|-----------|----------|-----------|------------|--------------|----------------|----------------|----------------|
|            | Тор    | Base      | Interval  | Туре     | Density   | Water      | HCL%         | Total<br>Fluid | Silica<br>Sand | Silica Sand    |
|            | (m)    | (m)       | (m)       | SDP      | (shots/m) | (bbls)     | (bbls)       | (bbls)         | 100 mesh       | 40/70<br>mesh  |
| ~          |        |           |           |          |           |            |              |                |                | 4 40 04 7      |
| Stage<br>1 | 2547   | 2548      | 1         | 3/3/8"   | 20        | 212        | 36<br>@15%   | 6,654          | 52,912 lbs     | 148,815<br>lbs |
|            | 2529   | 2530      | 1         | 3/3/8"   | 20        |            |              |                |                |                |
| CIBP<br>1  | 2522   |           |           |          |           |            |              |                |                |                |
|            |        |           |           |          |           |            | I            |                |                |                |
| Stage<br>2 | 2497.5 | 2498.5    | 1         | 3/3/8"   | 20        | 320        | 47<br>@15%   | 7,575          | 76,061 lbs     | 125,666<br>lbs |
|            | 2481   | 2482      | 1         | 3/3/8"   | 20        |            |              |                |                |                |
| CIBP<br>2  | 1952   |           |           |          |           |            |              |                |                |                |
|            |        | -         | -         |          |           |            | -            |                |                |                |
| Stage<br>3 | 1900   | 1910      | 10        | 2 3/4"   | 10        | 12.6       | 32<br>@13.5% | 44.6           | N.A.           | N.A.           |
|            | 1860   | 1870      | 10        | 2 3/4"   | 10        |            |              |                |                |                |
|            | 1850   | 1860      | 10        | 2 3/4"   | 10        |            | <u>_</u>     |                |                |                |
|            | 1837   | 1843      | 6         | 2 3/4"   | 10        |            |              |                |                |                |
| CIBP<br>3  | 1815   |           |           |          |           |            |              |                |                |                |
|            |        |           |           |          |           |            |              |                |                |                |
| Stage<br>4 | 1774   | 1780      | 6         | 2 7/8"   | 10        | No<br>DFIT | 28.2<br>@15% | 135.2          | N.A.           | N.A.           |
|            | 1755   | 1760      | 5         | 2 3/4"   | 5         |            |              |                |                |                |
|            | 1745   | 1755      | 10        | 2 7/8"   | 10        |            |              |                |                |                |
|            | 1728   | 1740      | 12        | 2 7/8"   | 10        |            |              |                |                |                |
| CIBP<br>4  | 1660   |           |           |          |           |            |              |                |                |                |
|            |        |           |           |          |           |            |              |                |                |                |
| Stage<br>5 | 1648   | 1649      | 1         | 3/3/8"   | 20        | No<br>DFIT | 32<br>@15%   | 7,866          | 69,447 lbs     | 158,736<br>lbs |
|            | 1641   | 1642      | 1         | 3/3/8"   | 20        |            |              |                |                |                |
|            | 1631   | 1632      | 1         | 3/3/8"   | 20        |            |              |                |                |                |
| CIBP<br>5  | 1610   |           |           |          |           |            |              |                |                |                |
|            |        |           |           |          |           |            |              |                |                |                |
| CIBP<br>6  | 1575   |           |           |          |           |            |              |                |                |                |



#### HYDRAULIC STIMULATION SUMMARY

|         |                  | Sti    | imulation Ti | reatment Sta | Stimulation Totals |          |            |             |             |
|---------|------------------|--------|--------------|--------------|--------------------|----------|------------|-------------|-------------|
|         | Top Base Average |        |              | Average BH   |                    | BH       | Total      | Silica Sand | Silica Sand |
|         |                  |        | Rate         | Pressure     | ISIP               | Gradient | Fluid Load | 100 mesh    | 40/70 mesh  |
|         | (m)              | (m)    | (bpm)        | (psi)        | (psi)              | (psi/ft) | (bbls)     | (lbs)       | (lbs)       |
|         |                  |        |              |              |                    |          |            |             |             |
| Stage 1 | 2529             | 2548   | 41.2         | 7,421        | 8,696              | 1.044    | 6,654      | 52,912      | 148,815     |
|         |                  |        |              |              |                    |          |            |             |             |
| Stage 2 | 2481             | 2498.5 | 37.6         | 8,665        | 8,967              | 1.077    | 7,575      | 76,061      | 125,666     |
|         |                  |        |              |              |                    |          |            |             |             |
| Stage 5 | 1631             | 1649   | 50.4         | 5,630        | 5,643              | 1.049    | 7,866      | 69,447      | 158,736     |

Stage 1,2&5; Maximum Sand Concentration = 2.0 ppg

Abbreviations; BH (Bottom Hole), ISIP (Instantaneous Shut In Pressure)

#### **TEST RESULTS SUMMARY**

|               | Hydrocarbon Reservoir Statistics |          |       |              |           |           |             |  |  |  |  |
|---------------|----------------------------------|----------|-------|--------------|-----------|-----------|-------------|--|--|--|--|
|               | Net                              | Avg.     | Avg.  | Average      | Pressure  | Gas       | Recovered   |  |  |  |  |
|               | Pay                              | Porosity | SW    | Permeability | Gradient  | Gravity   | Stimulation |  |  |  |  |
|               | (m)                              | (v/v)    | (v/v) | (md)         | (psi/ft)  |           | Water       |  |  |  |  |
|               |                                  |          |       |              |           |           |             |  |  |  |  |
| M Velkerri LB | 38.5                             | 0.055    | 0.31  | 0.00026      | 0.66-0.57 | 0.63-0.70 | 37%         |  |  |  |  |
| Stage 1       |                                  |          |       |              |           |           |             |  |  |  |  |
| M Velkerri B  | 18.5                             | 0.073    | 0.3   | 0.125        | 0.65-0.56 | 0.6-0.70  | 50%         |  |  |  |  |
| Stage 2       |                                  |          |       |              |           |           |             |  |  |  |  |
| M Velkerri A  | 21                               | 0.69     | 0.36  | 0.095        | NA        | NA        | NA          |  |  |  |  |
| Untested      |                                  |          |       |              |           |           |             |  |  |  |  |
| L Kyalla      | 48                               | 0.071    | 0.36  | 0.020        | 0.65-0.56 | 0.71      | 30%         |  |  |  |  |
| Stage 5       |                                  |          |       |              |           |           |             |  |  |  |  |

Stage 3&4 Moroak Intervals; Low porosity and permeability - No hydrocrabons



# **BRIDGE PLUG SUMMARY**

| Each tested interval was isolated with cast iron bridge plug. |                                                                                          |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Cast Iron Bridge Plug                                         | Cast Iron Bridge Plug Plug 1 Plug 2 Plug 3 Plug 4 Plug 5 Plug 6                          |  |  |  |  |  |  |  |  |  |
| Depth (mMDRT) 2522 1952 1815 1660 1610 1575                   |                                                                                          |  |  |  |  |  |  |  |  |  |
|                                                               |                                                                                          |  |  |  |  |  |  |  |  |  |
| A 15 m long cement plug is se                                 | A 15 m long cement plug is set above Plug 6 and another 15 m cement plug at the surface. |  |  |  |  |  |  |  |  |  |



#### **SUMMARY**

Sweetpea Petroleum drilled the Shenandoah-1 well to a depth of 1,555 meters (KB) in EP 98 during 2007. The Shenandoah-1 well was an offset to the Balmain-1 well and was designed to test the concept of basin center unconventional hydrocarbons in the Beetaloo Basin. On August 23, 2009, the Shenandoah-1A well commenced drilling at the Shenandoah-1 location and the borehole was deepened to 2,714 m. Following wireline logging, 6 cement plugs were set in the borehole and the well was suspended for further evaluation as summarized in the Shenandoah-1A Interim Well Report which was attached to the 2009 Annual Report.

The well was re-entered on 14 September, 2011 and drilled out the six cement plugs in the wellbore. The rig then ran and cemented a 4.5 inch casing string to total depth at 2,714 meters. The rig was released and Halliburton stimulation equipment was brought on-site for testing operations.

Shenandoah-1A is a vertical well situated in the deepest part of the basin and natural gas was the expected hydrocarbon at the depths being tested. The well is the first to be tested in these unconventional targets, consequently the objectives of the tests were to determine whether the shale intervals could be fracture-stimulated, whether they could produce hydrocarbons, and to confirm rock, pressure and fluid properties. The operation succeeded in these objectives and the well was plugged and abandoned to the highest environmental standards.

The Shenandoah-1A tests were not designed for long-term testing with full clean-up of fluids, but rather to test for hydrocarbon production to surface over a period of four to six days and to gather the maximum information possible before moving on to the next interval according to program. For this reason and because these are shale zones in a vertical well with single stimulation treatments, high flow rates were not expected.

Five intervals were tested in accordance with the program. The gathered information is still to be fully interpreted for planning future appraisal and exploration operations; however the following preliminary comments can be made at this time:

- Three of the five intervals flowed gas while still recovering significant amounts of frac fluid.
- The most positive results came from the Middle Velkerri shales where there was no indication of formation water being produced. The sustained gas rates ranged between 50 and 100 mscfpd (thousand standard cubic feet per day), gas gravities ranged from 0.64 to 0.70 and the lower interval also yielded condensate with an API gravity of 43 degrees. Importantly this showed that that these rocks can be stimulated and are over pressured. Both Velkerri intervals will now be considered candidates for future testing, including horizontal drilling with multiple stimulation treatments to establish commerciality.
- The Lower Kyalla shale also produced gas to surface and will now be considered for further exploratory investigation.
- Two separate intervals were perforated in the Moroak sandstones. They were not stimulated but rather were conventional perforation tests, intended to find out if the rocks



were gas-bearing and to provide technical information. Little to no commercial hydrocarbons were present. The test did however provide valuable rock property information as the Moroak is target of interest elsewhere in the Beetaloo Basin as a conventional play.

• The Upper Kyalla shale is oil-bearing in Shenandoah-1 but was not tested due to wellbore configuration.

Further evaluation of the extensive information gathered in this wellbore is now required before considering follow-up vertical and horizontal exploration wells. In order to locate future wells optimally it is likely that some additional seismic lines will need to be acquired in the Shenandoah area.

The Shenandoah-1A was plugged and abandoned (P&A) on 7 November, 2011.