SECTION 1 - ENGINEERING DATA

1.1 Engineering Summary

Walton-1 and 2 are located in Northern Territory Exploration Permit 24 (EP24) approximately 50km to the north east of Daly Waters (Figure 1). The hole was drilled as an exploration well to test a large, thrusted anticlinal structure identified from the 1989 Nutwood Downs seismic survey. The well was drilled by Pacific Oil & Gas Pty. Ltd. as sole permit holder and operator, using Rockdrill Contractors Pty Ltd's Rig 20, a Longyear 600.

Access to the location was via the boundary fenceline between Maryfield and Kalala stations and a two kilometre access along seismic line 109. Drill site preparation involved clearing a drilling pad over an area of approximately 150m x 150m. Drilling and potable water was trucked from a bore on the adjacent property.

Well site supervision was provided by Ian Ledlie, Tony Kress and Doug Morris.

Drilling operations commenced at Walton-1 at 1300 hrs on August 6, 1989 with Rockdrill Rig 20 drilling a 12 1/4 inch tophole to 6.2 metres. A six metre conductor pipe was cemented prior to continuing in 8 1/2 inch hole. The hole to this point was air-drilled with a rotary bit. At 42m circulation was lost in what was interpreted to be a cavernous limestone. Drilling continued with air to 58.9m where the pipe became stuck at 1600 hrs on August 8. Several attempts were made to free the pipe over the next three days. It was obvious that, at this stage, the pipe could not be freed, and Walton-1 was abandoned at 1500 hrs on August 11, and the rig was skidded 10m to the south.

Walton-2 was spudded at 1430 hrs on August 13, 1989 with a 12 1/4 inch top hole and drilled with air. A 9 5/8 inch conductor pipe was set and cemented at 7.47m. Drilling was continued in 8 1/2 inch with mud. Circulation was lost at 39.7m, at which point the hole was cemented. The hole was continued in 8 1/2 inch, with no returns to 50.0m, where the rate of penetration dropped and a trip was made to change the bit. No suitable rotary bit was available onsite, so an eight inch hammer was run. This resulted in a much improved BOP and the hole reached 96m at 2200 hrs on August 16. The string was tripped from the hole and seven inch casing run, but had to be reamed down, and again hard ground prevented reaming past 51m. A decision was made to run and cement the seven inch casing at this depth. After drilling the casing shoe with a 5 7/8 inch tricone bit, a six inch hammer was picked up and the hole was drilled ahead rapidly to a depth of 191.7m. (Note: a water flow of approx. 1500 gpl./hr was intersected at about 120m). At 191.6 metres five inch casing was run and cemented and the BOP stack was nippled up and tested to 1000 psi prior to cement being drilled out with a 4 1/4 inch rotary bit.
Figure 1. Location map for Walton-1 & 2.
A Formation Integrity Test was conducted and the formation held 800 psi (EMW 33.1 ppg). The CHD101 core assembly was then made up and the hole was fully cored to a depth of 778.5m, where a DST was run. The formation did not flow, and was presumed to be tight. Coring continued to a total depth of 1014.45m, where the hole was conditioned and wireline logs, including a velocity survey, were run.

Following evaluation of wireline logs and other drilling data it was decided to abandon the hole with the setting of cement plugs over the intervals, 242-142 metres and 45 metres to surface. The abandonment was completed and the rig released at 2000 hrs on September 24, 1989. A chronological log of drilling activities is included as Appendix 1.

1.2 General Data

Well Name: Walton-1,2
Well Type: Exploration Well
Operator: Pacific Oil & Gas Pty Limited
Licence Holders: Pacific Oil & Gas Pty Limited 100%
Petroleum Title: EP 24, Northern Territory

Location: Walton-1,2
Latitude: 15° 54'31.8" South
Longitude: 133° 38'35.3" East
Maryfield: 1:100,000 sheet
AMC: 354746.2 E, 8240797.9 N Zone 53.

Elevation: Walton-1,2
Ground level: 192.0 m amsl
Drilling Floor: 194.5 m amsl

Total Depth: Walton-1: 58.9m below ground level
Walton-2: 1014.45m below ground level

Commencement Date:
Walton-1: 6th August, 1989
Walton-2: 13th August, 1989

Total Depth Reached: Walton-2: 1715 Hrs 21st September, 1989

Rig Released: 24th September, 1989

Drilled by: Rockdril Contractors Pty. Ltd.
Drilling Rig: Rig 20, Longyear 600
Hole Size: Walton-1

12 1/4" to 6.2m
8 1/2" to 58.9m

Walton-2

12 1/4" to 7.47m
8 1/2" to 50.4m
8" to 96m
6" to 191.7m
110.5mm to 1010.2m
103mm to 1014.45m
All depths below ground level

Wireline Logs:
Gamma, S.P., Temperature
Gamma, Caliper, Density
Dual Porosity
Resistivity, Neutron
Sonic
Magnetic Susceptibility

Velocity Survey: Walton-2: 20 levels

Abandonment: Walton-1: Cement plug ten metres to surface.
Walton-2: Cement plugs over the following intervals.
242 to 142 metres
45 metres to surface

1.3 Drilling Rig

ROCKDRIL RIG 20 - RIG AND EQUIPMENT DESCRIPTION

DRILLING RIG: Longyear 600

Depth Capacity: CHD 134 1,747 m (Rod Rating 1956m)
CHD 101 2,180 m (Rod Rating 3050m)
CHD 76 3,428 m (Rod Rating 2750m)

Power Unit: Caterpillar 3306-T 210 Hp @ 2,000 RPM
620 lb. Ft. @ 1,400 RPM

Transmission: To Powerhead and Hoist Hyd/Mech (Funk) 4 speed

Ratios: 6.27-1 (Blocked out on hoist)
3.12-1
1.75-1
1.00-1

Bit Speeds: Based on 2000 Engine RPM @ 3,000 psi Pump

Pressure: 1st - 130 RPM
2nd - 260 RPM
3rd - 466 RPM
4th - 822 RPM
Powerhead:
Pump & Drive Motor - Sunstrand 23 lb.
Powerhead Ratio - 2.081:1
Overall Ratio - 1st 13.09:1
2nd 6.51:1
3rd 3.65:1
4th 2.087:1

Lubrication: Positive Lube Pump

Torque @ 4,500 psi - 1st 4,219 ft. I.B
2nd 2,099 Ft. I.B
3rd 1,179 Ft. I.B
4th 673 Ft. I.B

Spindle I.D. - 4-3/16" (106mm)
Retraction - 14" (355.6mm)

Max. casing size with head retracted - 12 " (304.8mm).

Feed System:
Feed Length - 11 ft (3.35m)
Cylinder Size - 5" Bore x 2-1/2" Piston Rod
Lift Capacity - 73,625 lbs (33,396 kgs) @ 2500 PSI
Thrust - 7,856 lbs (3,422 kgs) @ 200 PSI
Hydraulic Pump - 2 stage Compensator 2500 PSI and 200 PSI (Delavan)

Chuck: Hydraulic 3 - Jaw tungsten Inserts, Subs required to convert to top drive of Kelly from approximately 1200m 101 size hole.

Main Hoist:
Type: Hydr/Gear
Drum Diam: 9-1/2" (241.3mm) - Grooved
Drum Length: 20-5/8" (523.87mm)
Flange Diam: 18-1/4" (463.55mm)
Drum Capacity: 730' x 5/8" Cable (223m x 16mm)
Hydr. Pump: Sunstrand f23
Hydr. Motor: Sunstrand f23 2-speed

<table>
<thead>
<tr>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>N/A</td>
</tr>
</tbody>
</table>
| 2nd | 0-118ft/m | N/A
| | (135m/m) | (54m/m) |
| 3rd | 0-211ft/m | 0-316ft/m|
| | (64.3m/m) | (96m/m) |
| 4th | 0-370ft/m | 0-555ft/m|
| | (113m/m) | (169m/m) |
Hoisting Capacity:

<table>
<thead>
<tr>
<th></th>
<th>Single</th>
<th>4 Pt. Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2nd</td>
<td>5,000 lbs (6804 kgs)</td>
<td>60,000 lbs (27,216 kgs)</td>
</tr>
<tr>
<td>3rd</td>
<td>9,750 lbs (4422 kgs)</td>
<td>39,000 lbs (17,690 kgs)</td>
</tr>
<tr>
<td>4th</td>
<td>5,500 lbs (2495 kgs)</td>
<td>22,000 lbs (9,979 kgs)</td>
</tr>
</tbody>
</table>

Brake:
- Size - 18" x 14" (457 mm x 101 mm)
- Area - 226 sq. ins. (1458 cm²)
- Brakes used for holding loads only
- Power up and down through hydraulics

Wireline Hoist: Type:
- Hydraulic-Chain drive from Main Hoist Motor
 - Drum Diam: 5-1/2" (140mm)
 - Drum Length: 17-1/8" (435mm)
 - Flange Diam: 30" (762mm)
 - Drum Capacity: 6486 ft. x 5/16" Cable (1996 m x 8 mm) at 75% of Spool Level Wind
- Bare Drum Speed: 0-1000 F.P.M. (305 m/m)
- Control: Power up and down through hydraulics with free wheel.

Mast:
- Crown Block Rating: 121000 lbs. (54886 kgs) inc. 1.64 Factor of safety
- Hook Load Rating: 60000 lbs (27216 kgs) with 4 part line
- Method of Raising: Hyd. Cyl. (2)
- Rod Stacking Cap: 30 & 40 ft. stands
- Guy Lines Required: 4
- Mast Length: 58.4" (1.78 m)
- Weight Indicator: Indicator gauge to 60000 lbs with 4 part line.

Mounting:
- Trailer mounted with four levelling jacks

Mud Pump:
- 5 x 6 G.D. Pump rated 150 G.P.M. @ 310 PSI
 - Powered by Sunstrand f21 Pump & Motor with Gear Reducer
- 7-1/2 x 10 G.D. Pump Rated 487 G.P.M. @ 255 PSI (211 G.P.M. @ 574 PSI - Powered by 4-71 G.M. Diesel.)
Fluid Pumps: 2 x 535 Bean Pumps Powered by Sunstrand
f21 Pump Driving 2 sunstrand f20 in series with bypass
Max. Flow - 1 pump 35 G.P.M.
Max. Flow - 2 pumps 70 G.P.M.

Specifications of Associated Equipment

Substructure: Rig raising sub-base - 7m long 2.5m width x 2.0m high

Derrick Floor: 3.5 m long width x 2.0 m high
Swivel: Longyear Type LD max. safe static
working load 28 tons. Max safe
working load when rotating 15 tons at
200/300 RPM.

Weight
Indicator: Martin-Decker Model WS8-11

Mud System:

a. Mud system consisting of the following items:

Settling Tank

Overall dimensions 4.8m long 2.00m wide 0.90m high
Mounted on oilfield type skid 6m long
Capacity 8,600 litres (2,275 gals-54 BBLS)

Equipped with:

Geosource shale shaker capacity 300/500 GPM size 4' x 5' dual
screen driven by an hydraulic motor 10HP

Pickup pump fe centrifugal 500 GPM hydraulic motor

Desilter 200 GPM model Economaster S2-E4

Mud agitator type axial flow impell 45 degree flat blade
turbine, driven by a hydraulic low speed 60 RPM high torque
motor.

Pump type Mission 3 x 4 x 13 centrifugal belt driven from
engine.

Prime mover W/Power takeoff type Lister HR4 52 HP 1800 RPM

Hydraulic System: Gear pump tandem type suitable to operate
pick-up, shale shaker, 2 mud agitators, centrifugal pump 2 x
2-1/2 x 12 (No. 1 Agitator and 2 Centrifugal pumps are fitted
on the other tank)

Mud gun

Degasser
b. Mixing/storage tank-two compartments
Overall Dimensions 4.8m long 2.00 wide 1.20 high mounted on oilfield type skid 6m long capacity 11,500 litres (3,042 gals - 72.4 BBLS)

Equipped with:
Centrifugal pump-Kelly-Lewis 2 x 2-1/2 x 13 driven by a hydraulic motor 18 HP
2 mud agitator W/impeller 26" hydraulic driven
2 mud gun

c. Cementing/Killing unit mounted skid 6m long 22m wide w/two tanks around 1,000 gals. capacity each
Prime mover Lister diesel engine mel H46 103 Hp
Power take-off twin disc dry type
Gear box flexible coupling
Oilwell pump model D-323 type Triplex max. bore x stroke 2-1/2" x 3" rated HP 60 rated press. 4,000 PSI rated RPM 500
Agitators 6 HP capacity 60RPM hydraulic driven one on each tank
Centrifugal pump type Kelly-Lewis K-70 2" x 2-1/2 x 9"
Hydraulic driven
Hydraulic system including tandem gear pump driven from front of engine.
Cameron gate valve 2" 3,000 PSI
Cameron pressure gauge 3,000 PSI
Shear relief valve 3,000 PSI

Wellhead Equipment:

No.1 BOP Hydril 6"-3000 PSI W.P. Type GK bottom flanged 6"-3000 PSI bore size 7-1/6"

No.1 BOP Shaffer 6" x 3,000 PSI W.P. Type B double unit top and bottom studded bore size 7-1/16"

No.1 Breda National Wellhead 5000 PSI to suit 7", 5", 4" casing plus all accessories

No.1 Drilling spacer spool 3000 PSI W.P. bottom and top flanged 6"-3000 PSI two outlets-1st flanged 2"-3000 PSI, 2nd 3"-3000 PSI bore size 7-1/6"
No.2 National valve 2"-3000 PSI W.P. flanged for kill line
No.1 National valve 3"-3000 PSI W.P. flanged for choke line
No.1 National valve flo-tork model 3"-3000 PSI W.P. W./Hydraulic actuator
No.1 Cameron check valve type R2"-3000 PSI W.P.
No.1 National choke manifold assy. 3"x2-1/2" 3000 PSI W.P.
No.1 Kill line 2"-3000 PSI W.P.
No.1 Choke line 3"-3000 PSI W.P.
No.1 Hydril automatic pump accumulator unit type HP-17-K80
No.1 Shaffer hydraulic control panel pedestal type for BOP remote control
No.1 Shaffer auxiliary control panel
No.1 Bourne upper kelly cock 3000 PSI W.P.
No.1 TIW lower kelly cock 3000 PSI W.P.
No.2 Gray Inside BOP (float valve) 3000 PSI W.P.
No.1 Guiberson type G tubing preventor 1,500 PSI W.P.
No.1 Guiberson Wireline oil savers type H W/hydraulic pump 3000 PSI W.P.
No.1 Guiberson Type C releasing attachment
Set stabbing valves for different thread connections-flare line

Tubular Equipment and Fishing Tools:

CHD 101 Longyear rods O.D. 3.701" I.D. 3.268 (Midbody) I.D. 3.091 joint depth rating 10,000 ft. (3,050m)
Set of cross-over subs
Core barrels for CHD 101mm
Gotoo overshot O.D. 5-7/8" w/spiral to catch from 2-3/8" to 4-7/8
Taper and bell taps for all tubing sizes
Surface and Casing Equipment:

- Longyear automatic pre-torque and break-out tool rod size CHD 76 through CHD 101
- Casing size E through N
- Max. torque (breakout) 2,8000 lb/ft
- Max. torque (make-up) 2,4000 lb/ft
- Rod clamp weight capacity 4,000 lb

- Baash-Ross hinged casing spider w/different bushing

- Baash-Ross casing slips 6-5/8"

- Handling tools for 4", 5" and 7" casing

- Set of circulating head for different sizes of casing

- Set of lifting plugs for all tubing

Auxiliary Equipment:

- Explosion proof lighting system
- A.C. electric generator KVA60
- A.C. electric generator KVA35
- Water storage tank 2,000 gallons
- Fuel storage tank 500 gallons
- Workshop barrack
- Motorpump type mono
- Centrifugal pumps (2") - Petrol driven

Transportation and Lifting Means:

- 1 6 x 6 Mack truck fitted with hydraulic crane
- 2 Toyota Land-cruiser pick-up 4WD

Miscellaneous:

- Radio-wireless set SSB radio fitted with appropriate flying doctor frequency
- Set of mats for setting rig
- Set of extinguishers
- Drill collars and stabilizers to suit hole specifications.
1.4 Hole Sizes and Depths

Walton-1: Drilling commenced with the air drilling of a 12 1/4" hole to 7.4m. The hole was then air drilled with an 8¼" bit to 58.9m.

Walton-2: Walton-2 commenced with the drilling of a 12 1/4" hole to 7.47m; then with an 8¼" hole to 50.0m. An 8" hole was hammer drilled to 95m and a 6" hole to 192.5m. The remainder of the hole was fully cored with CHD 101, initially with a 110.5mm near bit reamer, but this was subsequently replaced with a 103mm reamer at 1010.2m.

1.5 Casing and Cementing

Walton-1: 9 5/8" conductor set at 6.2m.
Make: Kawasaki
No of Joints: 1
Cement Used: 6 sacks class A cement
Accessories: Nil
Remarks: Cemented to surface

Walton-2: 9 5/8" conductor set at 7.47m.
Make: Kawasaki
No of Joints: 1
Cement Used: 15 sacks class A cement
Accessories: Nil
Remarks: Cemented to surface

7" surface casing set at 50.4m
Make: Kawasaki
Weight: 26 lb/ft
Grade: N80
No of Joints: 4
Cement Used: 47 sacks class A cement
1 sack CFR2
Accessories: Cement shoe
Remarks: Cemented to Surface

5" intermediate casing set at 191.6m
Make: Kawasaki
Weight: 13 lb/ft
Grade: K55
No of Joints: 19
Cement Used: 34 sacks class A cement
1 sack CFR2
Accessories: Cement shoe
Remarks: No returns were observed at the surface.
<table>
<thead>
<tr>
<th>Bit No</th>
<th>Make/Type</th>
<th>Serial No</th>
<th>Depth in (m)</th>
<th>Depth out (m)</th>
<th>W.O.B. (kg)</th>
<th>R.P.M.</th>
<th>Pump Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reed, tricone 12 1/4 inch</td>
<td>-</td>
<td>0.0</td>
<td>6.2</td>
<td>3000</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Reed, tricone 8 1/2 inch</td>
<td>874701</td>
<td>6.2</td>
<td>58.91</td>
<td>3-9000</td>
<td>20-50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Reed, tricone 12 1/4"</td>
<td>BR4922</td>
<td>0.0</td>
<td>7.47</td>
<td>9000</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Reed, H7615, tricone 8 1/2"</td>
<td>447249</td>
<td>42.39</td>
<td>50.0</td>
<td>7000</td>
<td>70</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>Security, S44F, tricone 8½"</td>
<td>BR4922</td>
<td>42.39</td>
<td>50.0</td>
<td>6000</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Flat-face, hammer 8"</td>
<td>135791</td>
<td>50.00</td>
<td>96.00</td>
<td>3000</td>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>Varel, tricone, VM2</td>
<td>L69347</td>
<td>96.0</td>
<td>192.0</td>
<td>2000</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Walker McDonald, 4 1/4</td>
<td>2N8947</td>
<td>96.0</td>
<td>192.0</td>
<td>2000</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Longyear, 8-step 101mm</td>
<td>L27934</td>
<td>191.7</td>
<td>196.3</td>
<td>6000</td>
<td>250</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>Longyear-Impregnated S6</td>
<td>L10458</td>
<td>196.3</td>
<td>453.9</td>
<td>5000</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>Longyear-Impregnated S6</td>
<td>L31345</td>
<td>453.9</td>
<td>570.9</td>
<td>6000</td>
<td>250</td>
<td>200</td>
</tr>
<tr>
<td>12</td>
<td>Longyear, 4-step 25/3510mm</td>
<td>L20627</td>
<td>570.9</td>
<td>787.85</td>
<td>6000</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>13</td>
<td>Longyear-Impregnated S6</td>
<td>L13739</td>
<td>672.7</td>
<td>778.5</td>
<td>5000</td>
<td>250</td>
<td>400</td>
</tr>
<tr>
<td>14</td>
<td>Longyear-Impregnated S6</td>
<td>L20627</td>
<td>778.5</td>
<td>829.0</td>
<td>5000</td>
<td>250</td>
<td>350</td>
</tr>
<tr>
<td>15</td>
<td>Longyear-Impregnated S8</td>
<td>L31345</td>
<td>939.5</td>
<td>987.85</td>
<td>6000</td>
<td>250</td>
<td>300</td>
</tr>
</tbody>
</table>

TABLE 1

BIT SUMMARY

WALTON-1 & 2
1.6 **Drilling Mud**

Walton-1 was spudded using an air drilling system, using stiff foam where lost circulation was encountered. Walton-2 was spudded with water to which Ausgel was added in sweeps between connections. The section from 50.0m to 96.0m was air-drilled with stiff foam injection. The section from 96m to 192.5m was hammer-drilled with water being lifted from the hole. The remainder of the hole was drilled with a DrillFloc system, a polyacrylamide mud, with up to 3% RCl added towards the lower part of the hole.

Details of the drilling fluid properties and mud consumed for the hole is given in Appendix 2.

1.7 **Water Supply**

Both drill and potable water were trucked from a water bore ten kilometres from the well site on Kalala station.

1.8 **Bit & Deviation Record**

1.8.1 **Drilling Bits**

Two drilling bits were used in the drilling of Walton-1. Fifteen bits were used in the drilling of Walton-2; details of bit usage are given in Table 1.

1.8.2 **Deviation**

Deviation Survey details are given in Table 2, no deviation surveys were conducted in Walton-1.

TABLE 2

** Deviation Survey Record **

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Deviation (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115.7</td>
<td>1</td>
</tr>
<tr>
<td>321.7</td>
<td>1/4</td>
</tr>
<tr>
<td>420.0</td>
<td>1/4</td>
</tr>
<tr>
<td>519.7</td>
<td>3/4</td>
</tr>
<tr>
<td>580.0</td>
<td>3/4</td>
</tr>
<tr>
<td>636.0</td>
<td>1</td>
</tr>
<tr>
<td>730.0</td>
<td>1 1/4</td>
</tr>
<tr>
<td>830.0</td>
<td>2 1/2</td>
</tr>
<tr>
<td>940.0</td>
<td>2 3/4</td>
</tr>
</tbody>
</table>
1.9 Fishing and Related Operations

The following fishing operations were conducted at Walton-1 when pipe became stuck in the hole at a depth of 58.9 metres:

(i) The 101mm pin thread was bakerlocked into the 3 1/2" IF X/O Sub at the bottom of the Kelly rod. Using a combination of drawworks, feedrams and casing jacks, 175 000lbs of pull was exerted on the stuck pipe, with no success.

(ii) A stinger string was run into the hole and air and water injected in an attempt to clear cuttings from the annulus. The stinger string could not be worked past the string stabilizer. After removal of the string 200 000 lbs pull was exerted on the stuck pipe, also without success.

(iii) The string was backed out above the collars and an overshot made up and run in the hole in an attempt to back off collars further down the hole, this was unsuccessful.

1.10 Formation Testing

No formation tests were conducted in Walton-1. A drill stem test was conducted in Walton-2 over the interval 755.86 to 778.5m on the 7th September. The conventional bottom-hole test commenced at 0552hrs on the 7th and was pulled at 0548hrs on the 8th. Approximately 15 metres of slightly oil-cut mud was recovered from the drill collars above the tool. The tool itself contained mud without any oil cut. Full details of the test and the subsequent attempt to swab the hole (DST 2), which also failed to produce a flow, can be found in Appendix 3.

1.11 Time Distribution

Time spent on the various phases of the drilling operation are given in Appendix 4, and a time-depth curve for Walton-1,2 is included as Figure 2.

1.12 Well Costs

A detailed cost break-down for Walton-1,2 is given in Table 3.
TABLE 3

WELL COSTS

WALTON-1, & -2

as at 30/6/90

<table>
<thead>
<tr>
<th>ITEM</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling</td>
<td>571,979</td>
</tr>
<tr>
<td>Supplies & Communications</td>
<td>18,116</td>
</tr>
<tr>
<td>Vehicle Operation</td>
<td>3,076</td>
</tr>
<tr>
<td>Travel & Accommodation</td>
<td>84,942</td>
</tr>
<tr>
<td>Contractors & Professionals</td>
<td>3,150</td>
</tr>
<tr>
<td>Laboratory Analysis</td>
<td>11,660</td>
</tr>
<tr>
<td>Salaries, Office Costs, & other Costs</td>
<td>57,038</td>
</tr>
<tr>
<td>TOTAL</td>
<td>750,006</td>
</tr>
</tbody>
</table>