WELL: Ronald 1 CRAE No. RD93MB26

Status: Plugged and abandoned

Hole Size: 24" to 8.1m

12¼" to 69m 8½" to 289m 6" to 1150m (TD)

Casing & Tubing Details:

13¾" to 8.1m 9¾" to 58.5m 7" to 279.6m

Perforations: Nil

Plugs: Plug No. 1 1076 to 1016m

Plug No. 2 395 to 250m Plug No. 3 20m to surface Operator: Pacific Oil & Gas Pty. Limited

Participants: Pacific Oil & Gas Pty. Limited 90%

Omega Oil N.L. 10% (Non-contributory interest)

Tenement: EP18

Seismic Location: Line MD92-55; SP 1780

Location: Lat: 16° 14' 57.0" South

Long: 134° 09' 41.5" East

AMG: Zone 53, 410 399mE, 8 203 313mN

Basin: Beetaloo Sub-basin, McArthur Basin

Elevation: KB 254.3m AHD (Datum)

Spudded: 30th July 1993

Rig Released: 17th August 1993

Rig: Rockdril Rig 22

Drilling Contractor: Rockdril Contractors

AGE			AND SU	B-UNIT	Γ			MBK	В	Me	etres	Thickness
	Mullaman							(Logg	er)		HD gger)	(m)
		Mullaman beds					5.3			249.0		76.2
Cambrian	Jinduckin Tindall Lir Antrim Pla	one	ne			64.3 81.5 187.0		190.0 172.8 67.3		17.2 105.5 372.3		
Proterozoic	"Hayfield "Jamison McMinn F - Kyalla I - Moroak	dstone" ation iber	V lembe	er	559.3 772.7 871.7 1042.0				-305 -518 -617 -787	3.4 7.4	213.4 99.0 170.3 +108.0	
Total Depth (Driller) Total Depth (Logger FORMATION TESTS	(m)			(СНОКІ		11 N/A			895 895 amber	5.7	
	<u>ΓΙΜΕŞ (min</u>						SURES (psi)				RESULT	
ST1 PF	FSI F	S	SI IHH	IPP	FPP	В	Ρ	IFP	FFP	FBP	FHH	
143.93 to 1069.91m 61/2	611/4 18	631/4	Inside G 1335.7	847.4	1152.2	1333		1122.6	1326.7	1335.2	1336.4	Recovered 3108 litres of saline
		<u> </u>	Outside	•	1102.2	1 1000	J. 67	1 1122.0	1320.7	1333.2	1336.4	formation water and
			1358.4	1220.5	1243.0	1357	7.2	1303.2	1353.6	1357.8	1359.1	minor gas
			Recover	Recovery Gauge								
				2.7	921,1	917.	1	900.8	1327.2	1307.3		
		<u> </u>										
MILLS OF THE STATE				HH: Initial Hydrostatic Head					IFP: Initial Flow Pressure			
FSI: First Shut In			IPP:					FFF		-	ow Pressure	
F: Flow Period SSI: Second Shut In			FPP:	PP: Final Preflow Pressure BP: Build Up Pressure				FBF			uild Up Pressure atic Head	

TYPE LOG	RUN NO	INTERVAL (m)	DATE	
DLL-GR-SDT-SP LDL-CNL-GR SHDT-GR (Dipmeter) SAT-B	1 2 3	1135.0-Surface 1139.0-282.0 1149.0-555.0	14/8/93 14/8/93 14/8/93	
(Velocity Survey)		20 levels	19/0/93	

Analyses		
Type of Analysis	DPO No	Comments
Water Analysis	77759	Bore water
	77764	Water recovered from DST #1. Taken from
		top of liquid recovery 850m above shut-in tool.
TOC/Rock Eval	77760	6 samples from Kyalla Member
	77765	4 samples from Kyalla Member, 2 samples from Moroak Sandstone
Gas Compositional	77767	2 samples collected during chamber blowdown,
Analysis		final shut-in, DST #1
Gas Chromatography	77760	Material extracted from 2 cuttings samples from the Jamison Sandstone.
		Saliusione.
	77764	Material extracted from water, DST #1
Extraction and		
Liquid Chromatography	77760	Material extracted from two samples from the Jamison Sandstone
Thermal extraction/	77760	One sample each from the base of the Jamison Sandstone
pyrolysis - GC		and the top of the Kyalla Member

Summary & Conclusions:

Ronald 1 was designed to test the "Jamison" and Moroak sandstones on a fault independent, seismically defined closure.

Formation tops were generally between 60 to 116m off prognosis. The Antrim Plateau Volcanics were 191.3m thicker

A very low rate gas zone was intersected in the Antrim Plateau Volcanics. The zone was interpreted to be a weathered flow top (vesicular and fractured) in the basalt sequence.

The "Jamison Sandstone" at **Ronald 1** is predominantly composed of sandstones with a high clay matrix component (and hence poor reservoir characteristics) and interbedded claystones. A small flow of formation water and minor fluorescence were encountered in a cleaner sand at the base of the "Jamison Sandstone".

The top 30m of the Moroak Sandstone at Ronald 1 exhibited good reservoir properties and was tested to assess reservoir potential. Results indicate the zone initially produced formation water at approximately 3000 bbls/day before killing itself. Minor gas (possibly solution gas) was also produced.

Information gained from the **Ronald 1** well has greatly increased the understanding of the northern "Beetaloo Subbasin" demonstrating:

- the existence of the "Arnold Arch" as a regional pre-Jamison Sandstone structure;

than prognosed and the Kyalla Member was 176.7m thinner than prognosed.

- the excellent reservoir potential of the Moroak Sandstone;
- the optimal maturity of source rocks over the "Arnold Arch";
- the optimal timing of oil generation.

An absence of closure appears to best explain the lack of significant hydrocarbons in **Ronald 1** as both reservoir horizons came in significantly off-prognosis and the seismically fast Cambrian basalt section was almost 200m thicker than prognosed.

Ronald 1 was plugged and abandoned as a dry hole.						
WELLSITE GEOLOGIST:	CARD PREPARED BY:	APPROVED BY:	DATE:			
S.A. Menpes	S.A. Menpes					