

Petroleum Exploration Reports

This file contains scanned images of reports submitted to the Northern Territory Government under Petroleum Legislation.

Bringing Forward Discovery

This information is made available to assist future petroleum explorers and may be distributed freely.

InfoCentre

Call:	+61 8 8999 6443
Click:	geoscience.info@nt.gov.au www.minerals.nt.gov.au
Visit:	3 rd floor Centrepoint Building Smith Street Mall Darwin Northern Territory 0800

BRINGING FORWARD DISCOVERY IN AUSTRALIA'S NORTHERN TERRITORY A09-093.indd

OPEN FILE

ENVELOPE Nº 573_

WELL COMPLETION REPORT

AMERADA McDILLS NO.1

AMERADA PETROLEUM CORPORATION

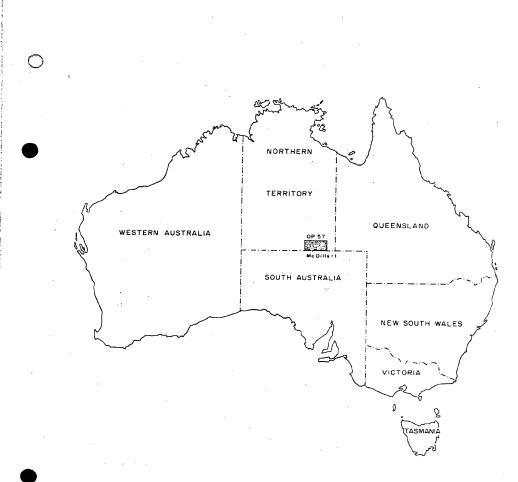
OF AUSTRALIA LIMITED

November, 1965

CONTENTS

- I. SUMMARY
- II. · INTRODUCTION
- III. WELL HISTORY
 - 1. General Data
 - 2. Drilling Data
 - 3. Logging and Testing
- IV. GEOLOGY
 - 1. Summary of Previous Work
 - 2. Summary of Regional Geology
 - 3. Stratigraphic Table
 - 4. Stratigraphy
 - 5. Structure
 - 6. Relevance to Occurrence of Petroleum
 - 7. Porosity and Permeability
 - 8. Contribution to Geological Concepts
- V. REFERENCES
- VI. ENCLOSURES
 - 1. Composite Well Log .

FIGURES


- 1. Location Map
- 2. Depth versus Time Drilling Chart
- 3. Stratigraphic Section before Drilling
- 4. Stratigraphic Section after Drilling
- 5. Seismic Contour Map
- 6. Time Analysis

APPENDIX I CORE DESCRIPTIONS

ν

- II PETROLOGY
- III PALEONTOLOGY
- IV WATER ANALYSIS
 - VELOCITY SURVEY (accompanies the report as a separate appendix)

(i)

LOCATION MAP

I. SUMMARY

The McDills No.l well was drilled by Amerada Petroleum Corporation of Australia Limited approximately 194 miles southeast of Alice Springs in the southwestern part of the Simpson Desert. The well was based on geophysical data and located on the highest part of a closed Permian structure.

The well was drilled by the Australian Drilling Company Pty. Ltd. Technical control at the well site was by personnel of Amerada Petroleum Corporation of Australia Limited. Gas detection and mud logging was carried out by Core Laboratories Inc. and electrical logging was provided by Welex.

Drilling operations were carried out from May 27, 1965 to September 5, 1965 at which time the well was completed as a water well from the De Souza sandstone.

A normal sequence of Mesozoic sediments were found in the McDills well. Surface sands which cover the Simpson Desert were drilled to 101'. At this depth the well entered the Lower Cretaceous Rumbalara shale and penetrated 1335' of this formation. The Transition beds were encountered at 1436' and the Jurassic De Souza sandstone was entered at 1518'.

The Permian Crown Point formation was found at 2352' and was drilled to 2987'. The Permian was apparently thin on the structure by onlap.

A thick sequence of Upper Devonian-Carboniferous continental fill beds were drilled from 2987-7090'. This sequence has been named the Finke Group to the west of the well and this name adequately covers this sequence in the McDills well.

At 7090' the well entered a sandstone sequence closely resembling the Mereenie sandstone. The well entered the Lower Cambrian dolomite at 9024' and was still in this formation at total depth of 10,515'.

No shows of hydrocarbons were found in the well and porosity was limited to the Mercenic sandstone and younger beds.

The McDills well was a significant deep test of the Simpson Desert area in that it established the presence of Lower Palcozoic sediments within this area.

II. INTRODUCTION

As a result of gravity work during 1962, and reflection seismic surveys in 1963 and 1964 by Geosurveys of Australia Pty. Ltd., a large anticlinal structure was found in the southwestern part of Oil Permit 57, Northern Territory. This structure was named the McDills anticline.

Under an agreement with Beach Petroleum, Amerada became operator of Oil Permit 57 and it was decided to test this structure by drilling the McDills No.1.

The McDills No.1 was located within a Permian closure on the anticline and was drilled to test the potential for reservoir rocks and hydrocarbons of the Permian and pre-Permian beds. It was expected that Lower Paleozoic sediments would be present under the known Permian rocks. The presence of Lower Cambrian carbonates was verified during drilling operations, but younger Cambrian and Ordovician rocks appear to be missing from the structure by erosion.

Ĺ

III. WELL HISTORY

1. GENERAL DATA

Well Name and Number:

McDills No.l

Location:

Latitude Longitude 25° 43' 50" South 135° 47' 25" East

Elevation:

Ground Level	Rotary Table	Kelly Bushing
3961	410,	412'

Name and Address of Tenement Holder:

Beach Petroleum No Liability 68 Grenfell Street Adelaide South Australia

Amerada Petroleum Corporation of Australia Limited 380 Queen Street Brisbane Queensland

Name and Address of Operator:

Amerada Petroleum Corporation of Australia Limited 380 Queen Street Brisbane Queensland

Details of Petroleum Tenement:

Northern Territory Oil Permit No.57

Total Depth:

10,515'(-10,103')

Date Drilling Commenced:

3

May 27, 1965

Date Drilling Completed:

September 2, 1965

Date Well Abandoned:

September 5, 1965

Date Rig Released:

September 5, 1965

Drilling Time in Days to Total Depth:

99 days

Status:

Well abandoned below 2965' and completed as water well through $9\frac{2}{6}"$ OD casing perf. 1950-1955'.

Total Cost:

See subsidy claim and statement of costs.

DRILLING DATA 2.

Name and Address of Drilling Contractor:

Australian Drilling Company Pty. Ltd. Guardian Building 380 Queen Street Brisbane Queensland

Details of Rig, Plant and Equipment:

Drilling Plant:

Make: .National

Type: N-55 Rated Capacity: 10,000' with 4½" OD drill pipe Motors: J superiors, type PTD 6, BHP 325, Total 975

Mast/Derrick:

Make:		Lee C. Moore
Type:	1. A 1. A 1.	Cantilever
Rated	capacity:	550,000 lbs.

Pumps:

Make:	National	Gardner	Denver
Type:	C-350	FΧQ	
Size:	600	300 [°]	

Pump motors same as drilling plant motors.

Blow-out Preventer Equipment:

Make:	Hydrill	Cameron
Model:	G.K.	W.S.
Size:	12" series 900	12" series 900
Working pressure:		3,000 P.S.I.

Hole Sizes and Depths:

(1) 30" hole from K.B. to 34'
 (2) 17¹/₂"hole from 34' to 1201'
 (3) 12¹/₂"hole from 1201'to 3041'
 (4) 8¹/₄" hole from 3041' to 10,515'

Casing and Cementing Details:

•
•
15
•

Drilling Fluids:

Type: Average weight: Treatment: Water base bentonite 9.7 lbs/U.S. Gal. Spersene, XP-20 and caustic were added daily below 5000' to T.D. to maintain good mud properties.

A fresh water flow was shut off by increasing the mud weight to 10.0 lbs/U.S. Gal. at 2375'. No abnormal mud or hole problems were encountered while drilling the well.

Mud Additives Used:

The following quantities of mud additives were used in the McDills No.1 well:

Gel Caustic	. –	101,300	
Caustic	-	9,510	lbs.

5

Spersene	-	28,000	lbs.
XP-20		12,700	lbs.
Barites	-	111,104	lbs.
Sodium Bicarb.	-	. 560	lbs.
Driscose	-	450	lbs.

Total weight of mud material used was 263,624 lbs.

Water Supply:

Water was hauled by two trucks from Dakota Bore in the Northern Territory twenty miles south of McDills No.1. After reaching a depth of 5556' and setting 3015' of $9\frac{5}{2}$ " casing, water was obtained between the $9\frac{5}{2}$ " and $13\frac{5}{6}$ " casing annulus from the De Souza formation to total depth.

Perforation and Shooting Record:

Welex perforated 9%" casing at 1950' to 1955' using Super Dyna charge, 4 holes per foot, .56" diameter.

Plugging:

In plugging the well three abandonment plugs were set at depth intervals listed below:

Plug No.		Depth	Sacks cement
1		7050'-7150'	. 50
.2	,	3300 - 3900	200
- 3		2965'-3065'	50 [.]

Forty sacks of cement were pumped down the annulus between 13%" and 95" casing. A total of 340 sacks of cement were used in plugging McDills No.1.

A metal plate was welded over the 9⁴/₂" casing with a 2" outlet nipple and valve to control the water flow.

Fishing Operations:

A sledge hammer was dropped down the $15\frac{1}{2}$ " casing while installing BOPs, recovered same first trip with Globe junk basket at 1162'. Stuck drill pipe at 7556', spotted diesel oil and water around drill collars and worked pipe free.

3. LOGGING AND TESTING

Ditch Cuttings:

Samples were collected at 10 feet intervals, and at closer intervals where lithology warranted it. Cuts were distributed to Bureau of Mineral Resources, and Mines Branch, Northern Territory.

- 6 -

Examination of the cuttings as they were collected over the shaker was maintained on a 24 hour-a-day basis. Drilling breaks were circulated up and bottom hole circulation samples were obtained before trips where warranted.

Coring:

The first core was cut at 2375'. Routine coring was done at convenient bit change depths to give a coring interval of approximately 300 feet between any two consecutive cores. Cores were extended to 500' with the lithology being uniform by agreement with the Bureau of Mineral Resources.

Coring equipment consisted of a Reed 15' type SK barrel and Reed Roller Co: conventional hard formation core-heads cutting a 415/16'' diameter core, also a 50' Denton and Spencer core-barrel with $6\frac{1}{3}''$ diamond core heads.

Samples of 4" length from the top foot and 4" from every succeeding two foot interval of each core were sent to the Bureau of Mineral Résources, Fyshwick, A.C.T. The remaining core was deposited with the Northern Territory Administration, Mines Branch, Alice Springs.

The following cores were taken:

Core #	Core Depth	Cored	Rec.	% Rec.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2375'-2390' 2690'-2697' 2697'-2740' 2959'-2973' 2973'-2983' 3126'-3138' 3361'-3376' 3645'-376' 3622'-3837' 3837'-3850' 4152'-4167' 4152'-4167' 4469'-4484' 4784'-4796' 5102'-5117'	15' ?' 43' 14' 10' 12' 15' 15' 15' 15' 15' 15' 15' 15' 15' 15	$\begin{array}{c} 1_{3'} \\ 3'_{2'} \\ 9'_{2'} \\ 1_{3'_{2'}} \\ 1_{2'_{2'}} \\ 1_{4'} \\ 1_{5'} \\ 1_{4'} \\ 1_{5'} \\ 2_{3'} \\ 1_{5'_{2'}} \\ 1_{5'_{2'}} \\ 1_{2'_{2'}} \\ 1_{5'$	86.7 64.3 20.9 96.4 10 100 93.3 100 13.3 61.5 100 56.7 100 100 70
20 21 22 23 24	7050'-7060' 7079'-7089' 7608'-7622' 8108'-8114' 8114'-8119'	10' 10' 14' 6' 5'	8, 9, 14, 6, 5,	80 90 100 100 100

7 -

Core #	Core Depth	Cored	Rec.	% Rec.
25	8314:-8320:		421	75
26	8740 - 8741 '	1'	01	0
27	8915'-8925'	10'	101	100 .
28	90431-90531	10'	7'	70
29	93541-93641	10'	91	90
30	96321-96421	.10'	10'	100
31	10,058'-10,068'	10'	9'	90
32	10,505'-10,515'	10'	10'	100
Total	footage cored:	38	80.	

Total footage cored: 500 Total footage recovered: 2812 % recovered: 74.1%

Electrical and Other Logs:

Welex Inducti	on - Electric Logs
Run No.1:	50' - 1195'
Run No.2:	1197' - 1433'
Run No.3:	1400' - 5551'
Run No.4:	5500' - 7615'
Run No.5:	7500' - 10,498'
Welex Acousti	c Velocity - Gamma Ray
Run No.l:	1192' - 5549'
Run No.2:	5500' - 7611'
Run No.3:	7500' - 10,498'
Welex ForXo -	Caliper
Run No.1:	1192' - 5554'
Run No.2:	5500' - 7615'
Run No.3:	7500' - 10,501'

.Welex Dipmeter

Run No.1: 3015' - 10,498'

Penetration Rate Log

A geolograph and a Core Laboratorics Australia Limited drilling rate recorder were used for recording the penetration rate. See Composite Log.

Gas Log

Core Laboratories Australia Limited gas detection and analysing equipment (hot wire detector and programmed hydrocarbon detector) were used for the preparation of a hydrocarbon log. See Composite Log.

Formation Testing:

No drill stem tests were taken.

Deviation Surveys:

Deviation surveys were run before trips using a Lane Wells instrument dropped down the drill pipe and recovered during bit changes to a depth of 9299'. A Totco survey barrel was used for the remainder of the well.

Depth	Deviation	from	Vertical
60 '		00	
159'		0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0	
258		20	
379'		2 1 0	
470		20	
586		10	
710		ĩ۰	
835		20	· ·
950		ĭ°	
1170'	t in the	<u></u> _•്	
1465'		1 0 0	
1950'		1°	
26901	1 N N	l°	
2959'		1 C 0 0	
3361		20	
3490'		17	
3700'		1°.	
3822 '		30.	
4460	· · ·	2.	•
4784 1	100 N 100	20	
5102'	· ,	10	
52521		ī°	
5800 · 🔬		2°	
5815'		2° .	
60201		2 <u>7</u> °	
6123			
6164		3°	
61931		4 <u>2</u> °	
6325 . 6385 .		40	
6528		52° 4°	- ,
65921		3주°	· · · ·
		177	

10

- 9 -

<u>Denth</u>	Deviation from Vertical
6615 6688 7050 7079	No reading 32° 4° 34°
7240 7608 7867 8022 8108	370° 372° No reading 472°
8160' 8314' 8572' 8740'	4° 4° ろ겵° ろ겵° 3°
8800; 8915; 9019; 9043;	40 50 40 40
9152 9226 9354 9403 9403	No reading 54° 61° 7°
9500' 9587' 9632' 9799'	8° 8° 10° 8° 10°
9875 9932 10,058 10,194	12° 12° 12° 14°
10,301; 10,370; 10,431; 10,505;	16° 16° 16° 16 <u>1</u> °

Temperature Surveys:

No temperature surveys were run.

10

Velocity Surveys:

Austral Geo Prospectors Pty. Limited in conjunction with Welex, conducted velocity surveys. These appear as a separate Appendix (V).

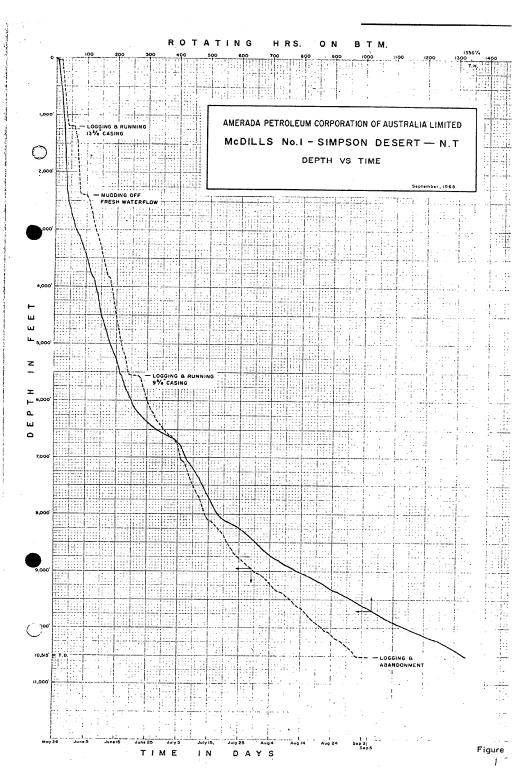
Production Testing:

The well was completed as a water well with perforations from 1950' to 1955' flowing an estim-ated 50 barrels per hour from the De Souza sandstone.

Drilling Observation:

Z

1


3

A total of 13362 rotating hours on bottom were required to drill the McDills No.1 well, resulting in an average drilling rate of 7.87 feet per hour. Sixtyseven bits were used plus 20 conventional and 3 diamond core heads to core 380'.

For details refer to Figures 2 and 6.

11

 ΠL

т	I	Μ	E	Α	N	А	L	Y	s	I	s

OPERATIONS	TIME - HRS	TIME - DAYS	PERCENTAGE
Drilling (Rotating on Btm)	1216.25	50.6771	50.07
Tripping	511.50	21.3125	21.06
Coring	· 120	5.0000	4.94
Surveying	15.25	.6354	.63
Logging	70.25	2.9271	2.89
Reaming	41.75	1.7396	1.72
Reaming undergauge hole	58.50	2.4375	2.41
Casing & Cementing	41.75	1.7396	1.72
W.O.C.	46.75	1.9479	1.93
W.O. Welex	10	•4167 ⁾	.41
W.O. Water	11.75	.4896	. 48
W.O. Wgt Material & Mixing Mud	59.25	2.4687	2.44
Working Stuck Pipe & Fishing	19.25	.8021	.79
Circ. & Cond. Hole	46	1.9167	1.90
Slip & Cut D.L.	20.25	.8437	.83
Nippling up & down	23	•9583	•95
Spotting Abandonment Plugs	3	.1250	.12
Perf. for Water Well	2	.0833	.08
Installing Well Head Equipment	2	.0833	.08
Flowing and Testing Water Well	9	- 3750	• 3?
Rig Maintenance	61.25	2.5521	2.52
Rig Repairs	40.25	1.6771	1.66
		·	

TOTAL:-

2429

101.2083

2429.00

100.00

100.00

SUMMARY	TIME - HRS	PERCENTAGE
Drilling (incl. Reaming, Trips & Surveys)	1843.25	75.89
Hole Evaluation (Coring, Logging & Testing)	199.25	8.20
Lost Time (Rig Repairs)	40.25	1.66
Dead Time (Stuck Pipe, Fishing & W.O. Water	etc.) 100.25	4.12 .
Other (Rig Maintenance, csg., cemt., aband.	etc.) 246.00	10.13

TOTAL: -

OPERATIONS:

From spud date May 27, 1965 @ 12 noon to date rig released September 5, 1965 @ 5.00 pm equals a total of 101 days and 5 hours.

		C	N		•					r - 179 F	-	7 Jana													
		(.	PRINTED IN								ECO										SHE	1			
COUNTY.				FIELD			STATE QUEENSL		SECTI		WNSHIP	RAN	IGE	5-27	10	US		●"	NDER	INTER		SET-SAND ST	RING		
CONTRA	ST CA	<u></u>			11.6.	RIG NO. LEASE	5	WE	LL NO.			Сомр							то	OL PUSH	IER				
Ans.	<u>۳.۸۱.۸</u> 5	AW D	RILL-1146	CO IRIG	PTY 1	M C17-	PUMP P	NO	<u></u>		OILERS -	IAN NO.	AE-E-	DA TED HP	POTY	<u>. C</u>	00.p	•		Synt)		0 ⁰			
NAT						RIDE PTP		SAME							NAT'L				19.			642 416			
						DRILL CO		D. I	.D.		KGTH		M	JD TYPE						SALES	SMAN				
472	05		· 4	1/2 IF		1		, 2	1/8		20	T	1	SPE	CSSM	.,									
RUN NO.	5IZE	MAKE	TYPE	JET SIZE	SERIAL	DEP	то	PEET	HOURS	PER PER HOUR	WEIGHT 1000 POUNDS	RPM	YERTICAL DEV.	PUAP	PUMP OPER- ATION	SPM	D. 1 UNER	NC SPM		M U D		REMARK	< 5		
	15%	Derrie	YT3A-J	2.94	1.4430	- 34	1201	1167	101/	51.85	19/15	60	0		+	4.7	61/2							, ,	
2	834	SEC.	5-3	1-2-1-2-	1			1			1.00		1	500						WATE					
<u> </u>	Pr				167521	12.01	1465	264	3	83,00		75	1/2	500		58	6%.	-	-	WATE					
	834 834	SEC	5-6-1	1	660007	1463	2101		5/2	115.64		75	10	700		55	6%		-	WARE				•	
4		SEC	·.		604-261		2375	274	2 24	99.64		75	10	800		1	675	1	-	WATE		·····.		÷ •	
1.0		CHRIS	1:314	-	5218 C	2375	2390	15	┝-┸	15.00	8	40		600		48	61/2	-	-	WATE	RE	56-13			·
5	874	SEC	5-6-1	3.46	660000	2390	2690	300	61/2	46.15		75	10	9000		55	61/2		-	10 5	6				
1-0	6/8	CHINNS	DIA		5218C	2690	2697	7	<u> </u>	7.00	1	40		800		48	61/	-	-	10 5	O RE	LC - 41/2			,
1-c	618	cheis	Dis		52186	2697	2740	4:3	5	8,60	\$/10	40	. ·	800		48	61/	·	• •••	10 4	8 29	<u> 9'</u>			
6	8. ³ /4	SEC	M4N-J	3-12"	667798	2.740	2959	219	91/4-	23.68	25	75	1/20	1000		58	6%		-	0.25	5		•		
2-C ,	7%	REED	HECH	- '	7443	2959	2973	14	3	4.66	8	40		800		45	61/2	-		10 5	S RI	E.C. 131/2	<u> </u>	· •, `	
3-6	7%	REED	HECH		74.30	2973	2983	10	41/2	2.72	8	40		800	1	45	61/2		-	10 5	OR	=c-1'		. '	
7	8 3/4	SEC	M4N-1	3-9/10	467791	2983	3126	14:5	91/4-	15.46	25	75	1/20	1000		60	61/2	-	-	10.4 6	0	÷.,		· . ·	
4-0	7%	Reed	HECH	-	7431	3126	3189	12	3/4	3.69	8	40		900		48	61/2	. 1	-	10 5	3 8	E.C 12	,	2	
8	334	SEC.	MA-N-J	3-1/2	667313	3138	32.39	101	53/4	17.57	25	75	10	1000	1	55	6V2	-	-	10.2 5.	5-			:	• • •
9	8-3/4	Sec	M4-L	REG	660478	37.39	3361	122	81/2	14.35		75	10	1000			64	1	-	10.15					
5-c	77/2		HECH		7445	3361	3276	15	13/4	8.57×		40	.	800			6%	-	-			Ec 14		CORE	. ,
10	83/4	SEC	M4N-J		667814		3510	134	6%	21.44	25/20	75	10	1000			6%		-	10.35		<u></u>	·		Ś
11	<u>в</u>		MA-L.	1	660873		3645	135		1	1	75	10				- 44		-				· · · · · · · · · · · · · · · · · · ·		
6-0			HFCH	KE6				,		20,17			-1-	1000		59	-			1035			· · · ·	F.	
					7441	3645	3660	15	2	7.50;		40	10	800		50	6%	<u> </u>	-			sc • 15	·	2	
12	84	SEC	M4-L_	REG	608747	3660	3799	139	670.	22.24		75		1000	·		<u>61/2</u>	•	-		4	·			
13	•	sec .	M4-L	RES			3322	23	13/4	13,14		75	10	1000			612	-		3.25	18				
7.0			HECH	•	1138	3822	3857	15	3	5.00	<u>8×</u>	40	0.6	800		45	<u> 674.</u>		~	10,7 5	N Re	<u>ic - 2'</u>		î	
8-0		PEED	114011		5417	3837	3850	13	2	6.50	<u>×s</u> _	40	3/4°	800		48	61/2	-	-	b.2 5	<u>GR</u> E	<u>c - 8'</u>		16 ·	
14	8%	SEC	M4-1-	KCA-	608712	3850	4152	302	13.1/-	22.37	30	75		1000		56	<u> 575-</u>	-	-	10,3,0	5				
										1															

.

		C	PRINTED IN	U. S. A.			T RE	ECO	RD										SHETL_OF_Z				
COUNTY		<u>-</u> , ,		FIELD			STATE		SECT	ON TO	WNSHIP	RAI	NGE	SPUC		US		U	NDER	INTE	R	SET SAND STRING	
	STRA	Int Pro		<u> </u>	1.C.	RIG NO. LEAS	QUEENSL		LL NO.			COMP		5-27-	65						ISHER	L	·
Aus	572-4	. MAN	DRILLI	16 6			M& DILL							on Pre	C				1			022	
							PUMPP	OWER		E	OILERS	- No.	RA	TED HP	PUMP No	1				PU	MP No	5. 2	
DRILL P	IPE	N	-55 TOOL	D.	PE	DRILL CO		NNE.	I.D.	LET	GTH		м	UD TYPE	1271	C-39	06	315° y	(18'	<u>' G</u>	D, 1	FXD 612 XIL	
_4%	.00		414-	IF			6	;" z	7/8"		30			SPER	CSENE								
RUN NO.	SIZE	MAKE	TYPE.	JET . Size	SERIAL	DEF	1°	PEET	HOURS	PEET	WEIGHT	RPM	VERTICAL	PUMP	PUMP	NC	o. 1	NC). 2	м	UD	REMARKS	=
F				3120		FROM	10			HOUR	POUNDS		DEV.	PRESSURE	OPER- ATION	SPA	UNER	SPM	LINER	w1.	VIS.		
9-6	7%	REED	HECH		731	4152	4167	15	11/4	12×	8	40		800		45	6%		-	10.Z	50	REG - 15	_ <i>י</i> י
15	8¾	SEC	M4-L	REG	660459	4167	4469	302	8%	34.51	30	75	3/4°	1000	÷	55	612	-	-	10.1	54		
9-CRE	ר 3	REEP	HECH	-	731	4469	4484	15	21/2	6.0×	8	40		800		45	61/2	, -	-	10.3	52	REC- 81/2	
16	834	SEC	M4-L	REG	660475	4484	4634-	150	8	18.75	30	75	340	1000		54	61/2			10.0			
17	83/4	SEC	M4-L	REG	660485	4634	A784	150	1/2	20.00	30	75	3/40	1000			61/2		-		50		·
9-CRR	7%	REED	HECH		5417	4784	4796	12	13/4	6.86>	8	40		800		-	61/2	-	-		-	REC - 12'	
18	81/4	SEC	MA-L	REG	660758	4796	5102	306	171/2		30	70	1/0	1000			61/2	-	-		18	har in	- 15
10-C	778	REED	HECH	-	5416	- 5102	5117	15	21/2	6 ×	8	40	<u> </u>	1			61/2		-		-	0.00 10'	- 17
19	83/4.	SEC	144-L	REG	660466	5117	5252	125		13,50	30	40	10	800	· ·		61/2	-	-	10.1		REC - 15	
11-0	1	REED	HECH	-	74.54	5252	5267	15	2.1/4	6.65	8	40		1000				-	-			a	- '_
20	. 71	SEC	MA-L	REG	608563		5544						10	800		46		-	-		52	REC-10/2	-'`.
	-	REED		-	7456	5267		277		21.31	30	65	1.	1000			614	-		10.2			·
,	1.20		HFCH	· · · · · ·		5544	5556	12	3	4.00		40		800			6%	•	-	10.1	54	REC-11	
	8%	SEC	M4-L		660438	5556	5802	246	10/2	23.43	30	60		1200	<u></u>	-	61/2	-	-	100	48	·····	_
1		SEC	M4-L		604.54	5802	58 15	13	2	6.5	30	55	2°	1220		48	6%		•	9.8	40		 .
13-0		CHRIS		2-9/16	TY85041	5815	5825	10	872.	1.187	10	40		805		42	6%	-	-	9.4	38	REC 5	- ·
1	r - 1	REED		1- 12.	D43962	5825	6047	272	12	18,50	20	52	21/4°	1200		48	61/2	/	-	95	42		
24.	-	REED	AHME-7	3-1/2.	<u>V41834</u>	6047	6123	76	8	9.5	Во	50		1200		46	642	-	•	9.5	42		· .
25		REE.D	YHG-J	1-12	D4335B	6123	6164	41	7	5.86	20	60		1200		48	612	-	•	9.5	43		
26	82/4	SEE D	YIIG-J	2.7/1L 1-1/2	D44235	6164	6193	29	4/4	6.82	20	60	3 ³ /4°	1200		50	:1	-	-	9.5	42		
27	8%.	Sec	H-10	3.42	825682	6193	6325	132	231/4	5,55	20	45	·	1200		52	61/2	-	1	9,4	40		
14.0	7%	Read	HFCH	-	7142	6325	6335	10	31/4	3.087	10	40		1200	·	40	61/1		-	7.6	45	Sec - 6:	
28	<u>8%</u>	REED	YHG-J	3.18"	D44518	6385	6391	56	9.	6.22	20	50	31/20	1200		18		-	- 1	9.6			
29	8%	<u>ীয</u> ়ত	YCG-J	3-15"	11-15-14	6391	64.75	84.	20%-	4.10	20	45		1200			672	-			40		-
30			ZHG - J	3.4/2	D42447	64.75	6528	53		3.2%	20	65	4.0	1200		ALC: Y	672	_			44		-
				· .								•		1.2.2.2			-/			1.0			,

 \sim

in the second

. `		1	C	PRINTED IN	U. S. A.					BIJ	RE	ECO	RD)			SHEET_1_OF_3		
	COUNTY	•			FIELD			STATE		SECTIO	N TO	WNSHIP	RAN		SPUID		US	T	UNDE	RINTI	ER	S IND STRIN	G	
	CONTRA	CTOR	1713		¥	. <u>C.</u>	RIG NO. LEASE	QERUSCAN		L NO.	<u> </u>		COMP		5-27-6	51				OOL P	USHER			
	Aust	RALLA	N DY	PE	CO PT	Y 170	Z. M.	DILLS	1				. 416	ERAD	TED HP	TE C	020					U00D		
				PE -55			R PTD 6	PUMP PC	WER MANE		8	OILERS -	No.	RA	4	UMP NO.		1.10		- 1	UMP NO	FY9 641 × 1'5"		
	DRILL PI	≥E ≥E	13				DRILL CC		o. I	.D.		ібтн		м	D TYPE	ALL C	0000	6.72	18	5	ALESM		<u> </u>	
	A.	200		4	14. IF			- 6	2	1/6		30			SPE	೧೭೯೧೩	س							
	RUN NO.	SIZE	MAKE	TYPE	JET SIZE	SERIAL	D E P	тн 10	FEET	HOURS	PEET. · PER HOUR	WEIGHT 1000 POUNDS	RPN	VERTICAL DEV.	PUNP PRESSURE	PUMP OPER- ATION	NO. 594 U		NO. 2 M UNE		vis.	REMARKS		
•	31	83/4	REED	YHG-J	3-1/2	D44549	6528	659Z	64	201/2	3.12	20	65	33/4.0	1200		486	. 1/2 -		9.1	-46			•
	15-0	11/3	REED	AFCH	-	5418	6592	6597	5	3	1.66	k lo	40		1000		45%	<i>y</i> , ·	-	91	446	REG 5	·	
· .	32	8%	Read	Y116-J	3.1/2	D42450	6597	6616	19	5	3.80	20	65		1200		496	12	- -	9.0	640		·	
	33 RR			YCG-J	3-1/2	V44594	6616	6688	72	21/2	3.35	30	40	31/2	1200		52 6	:/	- -	9.1	43	·. ·	- x 1	
	34	8%	REED	NCG-J	2-2/B	144956	6683	1050	362	571/2	9.65	30	40	40	1200		50 6	K.		9.3	43			
	16-0		REED		-	5414	7050	7060	10	4	2,50	10	40		1000		46 6	<u>у</u>		h.:	502	REC 8		-
	35			YHG-J	2-3/8	D44276	7060	7079	19	21/2	7.6	2.0	65	340	1	÷	520		-		3 4 3		— · ·	
·	17-0			HECH	-	5410	7079	70.89	10	4	2.5×	1	40		1350		500			-	1	REC 9'	_	
		24		YHG-J	2.3/8	D442.76		7240	151	17	8.93	30	45	3%	1350		52 6	12		9,0	44			÷.,
	37			YHC-J	2.2/8	D94545	7240	7608	368	321/2	1632	30	45	31/20	1350		500				, 50	•		
	18-C	1	13412 10	HECH		733	7608	7622	14	2%	6.224		40		1000			1/2 -	-			REC 14	 cone∈ ≠ zz	2
	38			YHG-J	2-3/8	D43931	7622	7867	245	221/4	11.01	30	50		1350			1/2 -		-	52	· · ·		-
	39			YHWG-J		043810	7867	8022	155	19	3.16	30	48	41/2	1350	·	54 6		-	9.3			·	
	40	1		,		V41825	8022	8108	86	183/4	4.59	30	55	40	1300		52 6				\$ 47		i	;
	19-0	-	REED	HECH	-	7419	8103	8114	6	31/2	1.71 x	10	40	- 1 .	1000		44 6				50	REC 6	-	·
	20-0		REED	HFC4	-	74-21	8114	8119	5	33/4	1.33*	10	40		1000		14. 6			h.4	. 50	Rec 5	· · .	
	41		-		3-1/2	D43892	8119	8165	46	12/4	3.76	30	48	40	1300		486		-	-	3 4.7			
	AL	8%	SEC	H-10		825804	8165	8314	149	4.4	3.39	30	45		1300		50 E			9.2	54			
	210	71/8	Reed	HECH	-	1316	8314	8320	6	4	1.50×	1	40		1000		54 6	1	-	3:	13	REC 41/2'		
	43		58.C	4-10	2-14	820322	832.0	8572	252	A71/2	5.31	30	45	3 4				1/2			54			• •
	44		SEC	H-10	3.16	821848	8572	8740	168	36%	4.57	30	4.0		14.00		54 6		. -	-	1 50			
	22.C			HECH	-	734	8740	8741	1	2	,5.	10	40		1000		4.4 (1/2		17.1	4.7	No REC.		
	45	8 %	See.co	YCG-J	3. Ma.	V44591	874-1	8803'	62	201/2	3.02	30	45		1400			1/2 -	-	9.	54.			
	46	8%	Cisc.	11-10		821129	8303	89.15	112	31	3.61	20	40		1400			13	-	1				
									1											1	1.		,	

in march and the second

1 .

		C	PRINTED IN I	J. S. A.					вп	RE	co	RD				·					s	HEEF	_OF_4
COUNTEN	1			FIELD			STATE		SECTIC	N TO	WNSHIP	RAN		SPUD		US		01	NDER	INTER	۲.		DSTRING
CONTRAC	<u>17.2 1</u>	AL			<u>w.c.</u>	RIG NO. LEASE	N. T.	WFI	L NO.			COMP	ANY	5-27-6	-5				110	OL PL	SHER		
				0. 5										DL Q.	c	0.00	5		1			NDOD	
MAKE RIG	10011	TY	N-1-1 14 6-	1	POWER		PUMP PC	WER		B	OILERS -	- No.	RA							PU	MP NO	2	
DRILL PH	OND	<u>- M-</u>	55		- Supi	LEIDE PIL	DLI S.	ANS.		LEN	GTH		IM	ID TYPE	11.2.1	<u>C-3</u>	50 5	1.1	(19,	SA	.T)	<u>= × 0 51</u>	2. 1/165
	12" 0	P		4%-7			6		7/8		30			Ser	ಜನನೂ-	15		÷					
RUN	SIZE	MAKE	TYPE	TR.	SERIAL	DEP		FEET	HOURS	FEET	WEICHT	RPM	VERTICAL	Filmp		NO.	. 1	NO	. 2	м	סט	REM	
NO.	5122	MARE	1170	SIZE	JENAL	FROM	10		10013	PER	1000 POUNDS	51 m	DEV.	PRESSURE	PUMP OPER- ATION	\$PM	LINER	5PM	UNER	w1.	vis.		
73.C	6/8	THRIS	DIA	-	51190	8915	8925	10	91/4	1.08,	8	40		1000		46 :	51/2	1	1	9.3	<u>55</u>	REC	0
41	8 %.	SEC	H-10_	3-43	8Z*1987	8925	9019	94	291/2	3,19	30	40	4°	1400		56	51/2	-	-	9.4	53		
48	8%.	SEC	H-10	3-1/8	84.54.74	9019	9043	24	103/4.	2.23	30	40		1400		\$3	51/_	-	-	9.3	54.		
24.6128	6%	CHPIS	DIA	-	51190	9043	9053	10	c.3/2	1.74.×	8	40		1000	•	15	SA-	-		9.3	54	REC .	7
49		REED	YNYIG-J	3-3/2	V41289		9102	49	123/4		30	40		1400		58	5%	-	-	9.3	48		
50		REED	VHWS- R				9152	50	17.3%		20	58		1000		54		-		9.3			
51	8-7/4.	RESD			034-5%		9226	74-	291/2		30	60	5%	1200	-	56		-		9.4			
and the second second second	a below and the	SEC	Y4(· J							3.4.9			- cr	1		58							
					467605		9299	73	21	- Constation		60	61/2	1200		55				9.5			
		sec	S-8-7	2-116	609453		9354	55				60	6/2	1000				-		9.5		2	, <i>.</i> /
25-C PR			DIA	-	2119.6	9354	9364	10	12	.83×		10		1000			5%	-	r			RE.C. O	l
		REED	ل ١١٠	3.7/16	733MS	9364	9403	39		2.69		60	7°	1200	· .	55		~	-	<u>11.5</u>	51	<u> </u>	· · · · ·
5 5	3%	SEC	MAN-R		605714	9403	9450	47	16%	2.89	30	60	8°	1200		55	3%			9.5	00		,
56	8:74	SE.C.	MA-L	RES	660460	9450	9500	50	17/4	2.90	30	60		1200	<u></u>	55	<u>5'/-</u>	-	-	1.6	35		
57	8:4	SEC.	M4N-J	3-7/10	667137	9500	9587	87	2.4.	3.63	30	60	10°	1150		55	5%		-	9.6	52		
58	3%	Sec	MAN-J	3-7/6	667159	1587	9632	45	15	3.00	30	60		1150		\$3	5%	-	-	9.5	56		
26.02R	6/8	CHRIS	DIA	-	51190	9632	9642.	10	53/4	1.74x	10	40		1000		49	5 V.		-	7.6	54	RE.C	10
59	8-3/4	REF1)	YH-J	3-7/1-	738135	1642.	9700	58	221/4.	2.61	30	55	11°	1200		55	5%	-	-	3.6	55		
60	824	SEC	MAN-J	3-74-	667133	9700	9799	99	30	3.30	30	60	10°	1200		55	5%	_	~	4.6	55		
	82/4	SEC	M4H-J	3-16	1.61155	9799	9675	76	25%	2.95		60		1200		5	5%		-	7.7	51		
. 62			YHM G-R			9875	9932	57		2.59		60	12°	1000			<.Y.		-	9:7	50	-	
	1		YINCAR			9937	9968	34	1	2.36		60		1000		51			-	19.7			
64PR			H-10 J		94.5474		10,058	90		2.40		40	14°	1400		1-11	5%.	_	~	9.7			
												1 1 2	14			16	inder.	((1	55	REC	Q'
		Cuers			5119.6	10.053	10,065	10		2.2.2.¥		40		1000					-	1		he have	
65	<u>874</u>	SEC	H-10. J	<u>3 %</u>	345475	10,068	10,194	126	51 74	2.4.6	30	40	15	11.00		57	<u>5%</u>	•-		17.5	<u>12</u>		·
	1	I	1	ŀ		1		1	I	1		1	1	1	1			L	<u> </u>	1	l		

															••••						rtun " tim ,		<i>ۇرىلۇسىيە</i> بىلامىد	ند مد ا
	•	(PRINTED IN						BĽ	T RI	ECC	RD										SHEET	or 5	
COUNTE		271172		FIELD	W. C.		STATE		SECTI	ON TO	WNSHIP	RA	NGE	SPUD		US		U	NDER	INTER			ND STRING	_
			·····			RIG NO. LEAS		WE	LL NO:			COMI		5-27-0						OL PL	JSHEP	<u> </u>		
MAKE RI	157782 3	<u>1.1411</u>	DRILLING PE		PTY LT POWER	MSG	DILLS	Nol ower			BOILERS	An	CRADA RA	Patro I	CONP C	<u>- A</u>	<u>SIENUS</u>	<u>trt</u>	>	5.11	<u>5.8.8</u>	000		
DRILL PI	NO1/	AL N	-55 TOOL J	2.	Suderi Pe	DRILL CO	DLLARS O	AMT2	I.D.		NGTH			UD TYPE	Liri C	- 35	2 5	15.×1	e"			XQ 542	× 16″	
	" or			1/2 IF			6		.7s		SO SO		I M		58:5e.		•			SAU	LESM	4N		÷
RUN NO.	\$17E	MAKE	TYPE	JET SIZE	SERIAL	DEF	·	PEET	HOURS	FEET	WEIGHT	EP.M.	VERTICAL	PLUP	PUMP	-	0.1	NC	0.2	MI	JD	1	· · · · · · · · · · · · · · · · · · ·	
						FROM	10			PER HOUR	1000 POUNDS		DEV.	PRESSURE	OPER- ATION	SPM	LINER	SPM	LINER	WI.	VIS.	REI	ARKS	
66	8º14.	1 .	H-10-7				10,245	1	1		30	45		1400		56	53	-	-	9.6	55	1		
67 68	<u>834</u>	REED REED				10,245	10,301	F F	171/2	1	30	60	16	1210		55	5%	-	-	9.7	58			_
		1 .	1		1	10,301	10,371			2.80		60		1200		56	5%		-	9.7	60	1		_
			M4L M4L·J		60.8752		10,431	60		3.16	05	60		1000		1	514			7.7				_
		CINRIS		1	5119-0	1 .	10,505	1	1934		Bo	60	15	12.00			5%			9.6		-		_
	615	CINIS	UIN		ह्याल-के	10,505	10,515	10	41/2-	2.2.2	10	40		1000		46	5%	-	-	9.7	50	Rrc-1	0	
																-								
• .		· .							·				·											_
. 1			1.1	1		i ,	· .										· .							-
							•											-					<u> </u>	-
									· · · ·						2						-			-
								· ·				. •			-	-								-
																					<u> </u>		· · ·	
						, <u>`</u>																		-
																			•					-
																						~*•		-
																								-
																								-
							· · ·																	-
				· .																				•
															·								• •	•
																						:		•
								4			•	.				Ī			1				•	1

1

• •

IV, GEOLOGY

1. SUMMARY OF PREVIOUS WORK

Prior to the drilling of the McDills well, exploration work on 0.P.57 was by geophysical methods. A geological report written by R.C. Sprigg, "Geology and Petroleum Prospects of the Simpson Desert", speculated on the stratigraphic section to be found in this area.

2,2;

In 1962 an aeromagnetic survey of the Simpson Desert Area was conducted by the Bureau of Mineral Resources, and a gravity survey covering most of 0.P.57 was conducted by Geosurveys of Australia Pty. Ltd. A number of anomalous trends were defined and one, the McDills anomaly, was investigated by seismic surveys.

The seismic program was initiated in the Andado area in October of 1963 and was extended into the Anacora area during the first part of 1964; into the Hale River Floodout area during June and July of 1964 and into the Dakota Bore area during August and September of 1964.

In neighbouring permits seismic surveys have been conducted by Australian Aquitaine Pty. Ltd. in O.P.36, and by the French Petroleum Company Pty. Ltd. in O.E.L. 20 and 21.

SUMMARY OF REGIONAL GEOLOGY

2.

Northern Territory Oil Permit 57 lies within the Simpson Desert, an area in the western part of the Great Artesian Basin characterized by northwest-southeast trending stabilized sand ridges that reach a maximum height of about 60 feet and are often separated by intervening clay pans.

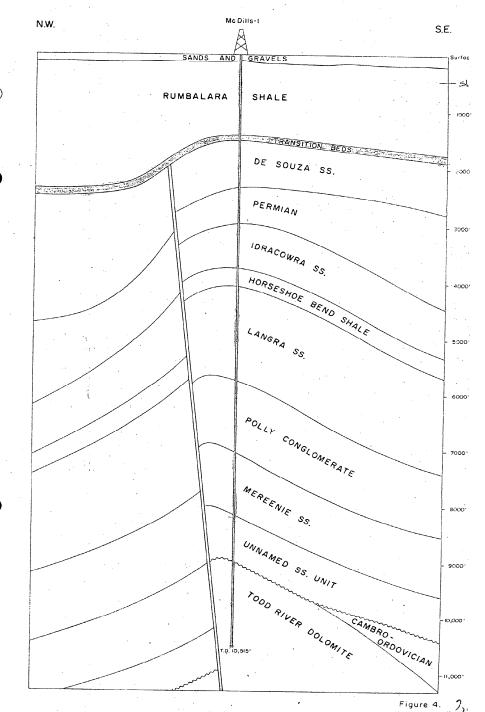
Sediments considered to be of Mesozoic age are exposed in two outcrop areas in the Simpson Desert, one the Hale River area about 30 miles northeast of Andado #2 Bore and the other in the Hay River area. Mesozoic sediments are known in the subsurface from water bores that penetrate the Rumbalara shale and produce water from the De Souza sandstone.

Permian sediments were previously known from the Witchenie and Furni wells drilled by the French Petroleum Company to the south of 0.P.57, and from Malcolm's Bore located just to the north of 0.P.57. Permian sediments were found, as expected, in the McDills well. There is a major unconformity at the base of the Permian, and the overlying Jurassic De Souza sandstone is disconformable with the Permian.

A thick sequence of continental beds, the Finke Group, underlie the Permian. The thickness and extent of those

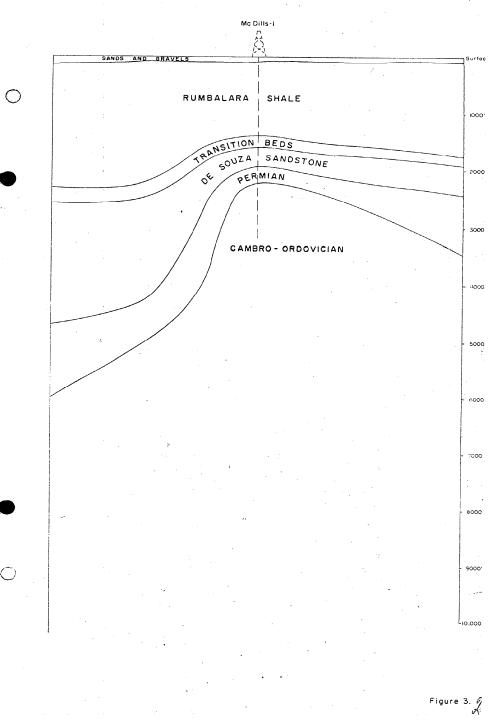
- 12

beds vary widely. They are expected to act as regional fill material with the thickest sequences found in the regionally low areas.


The Mereenie sandstone, a sequence of fluvial clastics, was present in the McDills well and has a widespread regional distribution.

A sequence of highly indurated sandstones encountered below the Mereenie cannot be dated at the present time. This section could be part of the Mereenie sequence, or may eventually correlate with the Upper Ordovician Stairway sandstone.

The dolomite sequence found in the bottom of the McDills well has been dated as Lower Cambrian Todd River dolomite on the basis of the brachiopods found in Core No.30. These brachiopods have been identified as "<u>Micromitra</u>" <u>etheridgei</u> and "<u>Nisusia</u>" <u>compta</u>. The range of these brachiopods limit this **section to the Lower Cambrian**.


23

З

STRATIGRAPHIC INTERPRETATION E

BEFORE DRILLING

3. STRATIGRAPHIC TABLE

AGE	GROUP	FORMATION	DEPTH	SUB SEA ELEVATION K.B.	THICK- NESS
QUATERNARY			SURFACE	+412	1.01
LOWER		Rumbalara Shale	101	+311	1335
CRETACEOUS		Transition Beds	1436	-1024	82
JURASSIC		De Souza Sandstone	1518	-1106	834
PERMIAN		Purni + Crown Point	2352	-1940	635 868
		Idracowra Sandstone	2987 3220	-2595 2808	803 570
UPPER DEVONIAN	Finke	Horseshoe Bend Shale	3790	3378	280
to CARBONIFEROUS	TING	Langra Sandstone	4070	 3658	1730
		Polly Conglomerate	5800	-5388	1290
DEVONIAN?		Mercenie Sandstone	7090	-6678	1120
		Unnamed Unit	8210	-7798	814
LOWER CAMERIAN		Todd River Dolomite	9024	-8612	+1491
		Total Depth	10,515	-10,103	

14 -

2.4

4. STRATIGRAPHY

The stratigraphic succession penetrated in the Amerada McDills No.l is described below:

Quaternary. Surface to 101'

Sandstone, red brown, fine grained, rounded, frosted, grading to tan, coarse to very coarse with granules and pebbles, mostly unconsolidated.

KB= 412

Lower Cretaceous. Rumbalara Shale 101-1436' 1335

Mudstone, dark grey, partly laminated with dark grey siltstone, locally glauconitic, scattered <u>Inoceramus</u> prisms, limonite inclusions, interbedded stringers of tan, cryptocrystalline limestone in lower part.

82

Transition Beds (Aptian-Neocomian). 1436-1518'

Sandstone, fine to very fine grained, subangular, white clay matrix, interbedded dark grey mudstone and siltstone, trace of very coarse quartz grains in lower part.

Jurassic De Souza Sandstone. 1518-2352 \$34

Sandstone, clear quartz grains, fine to very coarse grained, subangular, unconsolidated, becoming pyritic towards base, good porosity. (2352 - 2504) = Upper Purni (1507) 3220 (252 - 2504) = Niddu " (2647) 252 - 2764 = Niddu " (2647) 264 - 2487, isver " (2021) 7/Wickwerz = 363

Sandstone, white to clear, locally grey, fine to medium - locally very coarse grained, trace white clay matrix, mostly porous, very pyritic in part, becoming conglomeratic in lower part.

Upper part contains lignite stringers. Grey shale and siltstone interbedded with the sandstone throughout.

Upper Devonian-Carboniferous Finke Group. 2987-7090': 3220

Idracowra Sandstone. 2987-37901 570 = 174 m

MR BUN WINK MR HING PE.

Y. Sandstone, varicolored, locally white to light grey, very fine to coarse grained, mostly well rounded grains, calcareous in part, fairly porous. Interbedded grey conglomeratic shale and grey siltstone.

Horseshoe Bend Shale. 3790-4070' 280' = 85 m

Shale, red, green, maroon and grey, slightly micaceous, interbedded with red and green siltstone. Lower part contains some white, very fine grained, calcareous sandstone.

Langra Sandstone. 4070-5800! 1730 = 528 m

Sandstone, orange, red, locally white to grey, fine to coarse grained, subangular to well rounded, cross-bedded, slightly calcareous in upper part, conglomeratic in lower part, mostly porous, interbeds of grey to green shale and silty shale. Interval from 4469-4484, very pyritic.

Polly Conglomerate. 5800-7090: 1290 = 394 m

Conglomerate with varicolored pebbles of quartzite, chert, granite and shale in matrix of white to buff and orange to red, fine to coarse grained, subangular sandstone. Some interbedded red to white, fine to medium grained sandstone and varicolored shale.

Devonian? Mereenie Sandstone. 7090-8210

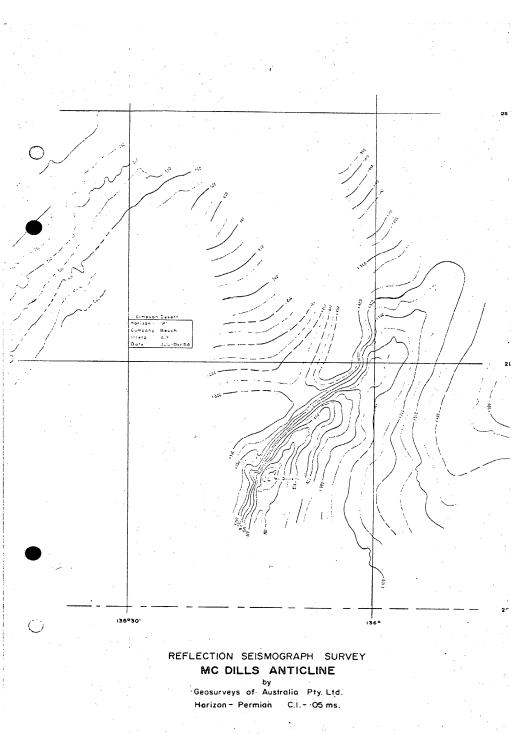
Sandstone, red brown to reddish orange, trace white, fine to coarse grained, subangular to subrounded, friable, fairly porous, locally slightly calcareous, cross-bedded, trace varicolored shale.

Unnamed Unit. 8210-9024

Sandstone, white, pink, red brown, fine grained in upper part - fine to coarse grained in lower part, subangular to well rounded, very indurated and tight, locally gypsiferous? and hematitic, trace red and green shale.

Berla

Lower Cambrian Todd River Dolomite. 9024-10,515'


Dolomite, dark grey, microcrystalline, very dense, argillaceous, thin bands of light to medium grey, microcrystalline limestone, dark shale partings, anhydrite filling in fractures, upper part glauconitic, dips indicated from 20° - 30° .

Note: Brachiopods found in Core No.30 9632'-9642' identified as "<u>Micromitra</u>" <u>etheridgei</u> and "<u>Nisusia</u>" <u>compta</u> indicate a Lower Cambrian age for this formation. Faund <u>Hassenburg</u> 2 & Trib 1956

STRUCTURE

The McDills structure is a northeast-southwest trending anticline delineated first by gravity work and detailed by seismic surveys. This structure has surface expression due to the sand dune cover of the Simpson Desert. It has an indicated length of over

- 16 .

45 miles and is about 5 miles wide, but it has not been completely defined by seismic work at the present time. The indicated closure on the Permian horizon was about 360' at the McDills well.

The west flank of the structure at Permian level is much steeper than the east flank and is presumed to represent faulting. The upper reflector ("C" horizon) appears to originate from the De Souza sandstone. Structure is still indicated at this horizon - although to a lesser degree than at Permian level.

No worthwhile dip information was derived from cores above 8200° due to well developed cross-bedding in the sandstones. Dips found in cores of the Todd River dolomite were $20^{\circ} - 30^{\circ}$. Dipmeter results are in agreement with the dips found in cores of the Todd River dolomite, and are indicated as being in a southeasterly direction.

RELEVANCE TO OCCURRENCE OF PETROLEUM

6.

In the Mesozoic sequence present in the Simpson Desert portion of the Great Artesian Basin the Rumbalara shale is of marine origin, and the De Souza sandstone was deposited under non-marine conditions. The Rumbalara shale is likely source material, but the well-washed De Souza sandstone aquifer does not appear to offer sufficient trapping mechanisms for hydrocarbon accumulation.

The Permian sequence offers both good source material and reservoir sands within the area. The Permian shales are rich in organic material and there are numerous beds of lignite present in the upper part of the Permian. The Permian sands are generally porous and permeable except where they are partly filled by clay material or by excessive amounts of pyrite.

The Finke Group has an abundance of reservoir rock within its predominantly sandstone lithology - but does not have any source material.

The Mercenie sandstone contains good reservoir sands and could easily obtain hydrocarbons from the underlying Lower Paleozoic marine sediments. The Todd River dolomite was totally lacking in porosity, but this formation is a minor part of the Lower Paleozoic sequence which should be found within the area. The Todd River dolomite was very argillaceous and appears to be a possible source rock.

The well was almost totally devoid of shows. A gas show was logged from 1365-1380' in the lower part of the Rumbalara shale. An induction log was run to check the lithology for reservoir potential with negative results.

7. POROSITY AND PERMEABILITY

Good porosity was found in sandstones of the De Souza, Permian, Finke Group and the Mereenie. Average porosities for clean sands taken from the Gamma Ray -Acoustic Velocity log are listed below:

De Souza sandstone	: 25 - 35%	
Permian	: 15 - 25%	
Finke Group	: 20 - 25%	
Mereenie	: 10 - 15%	

No core was analyzed due to the lack of hydrocarbons.

8. CONTRIBUTION TO GEOLOGICAL CONCEPTS

The Mesozoic stratigraphy was fairly well known in this area prior to the drilling of the McDills well and little new information was gained concerning this sequence. Numerous water bores marginal to the well provided information on the Mesozoic rocks and the Jurassic aquifer.

The Permian sequence was also known in a general way from wells in the surrounding area. The Permian sequence of sandstones, shales and lignific beds is confined to the Lower Permian and is similar to the Permian section drilled at the French Petroleum Company's Purni #1 well.

The Finke Beds were similar lithologically to descriptions of these beds to the west and south, but were much thicker than expected. The 4103' assigned to this interval is considerably thicker than found at the French Petroleum Company's Witcherie #1 well to the south or in outcrop areas to the west.

The Mereenie sandstone is 1120' thick in the McDills well - which represents a much thinner section than is found in the outcrop sections to the north. In both the Steeles Gap and Todd River outcrop sections the Mereenie is in excess of 2000' thick. The Mereenie is absent to the south in the French Petroleum Company's Witcherie and Purni wells, and to the west in the Transoil Mt. Charlotte well. This would seem to indicate that the Mereenie is thinning from north to south across the Simpson Desert. The unnamed sandstone section below the Mereenie from 8210' - 9024' cannot be correlated at the present time, but could belong in the Lower Mereenie or possibly equate with the Stairway sandstone.

· 18 -

The carbonate sequence drilled from 9024' to total depth was placed in the Todd River dolomite on the basis of the brachiopods "<u>Micromitra</u>" <u>etheridmei</u> and "<u>Nisusia</u>" <u>compta</u>. These fossils are found in the Todd River dolomite at the Todd River outcrop section to the north; in the Lower Cambrian Ajax limestone at the Mt. Scott section to the south, and in the Wilkawillina limestone in the Lake Frome area. This section was not completely penetrated and is of unknown thickness in this area. It is presumed that the Cambrian section at this location is incomplete due to truncation, and that younger Cambrian sediments and penhaps Ordovician rocks were deposited in this area.

V. REFERENCES

Balme, B.E., 1959, Palynological Report on Malcolm's Bore. Report No.47, University W.A., Nedlands.

Daily, B., 1957, The Cambrian Geology in South Australia. B.M.R. Bulletin No.49.

Ludbrook, N.H., 1961, Permian to Cretaceous Subsurface Stratigraphy between Lake Phillipson and the Peake and Denison Ranges, South Australia. Geol.Survey of S.A., Report Book No.52/37, G.S.No.1934.

Öpik, A.A., et al, 1957, The Cambrian Geology of Australia. B.M.R. Bulletin No.49.

Sprigg, R.C., 1962, Geology and Petroleum Proppects of the Simpson Desert.

Wells, A.T., Stewart, A.J., Swarko, S.K., 1964, The Geology of the Southeastern Part of the Amadeus Basin. B.M.R. Record 1964/35.

- 20

Well Reports:

· Transoil

Mt. Charlotte No.1

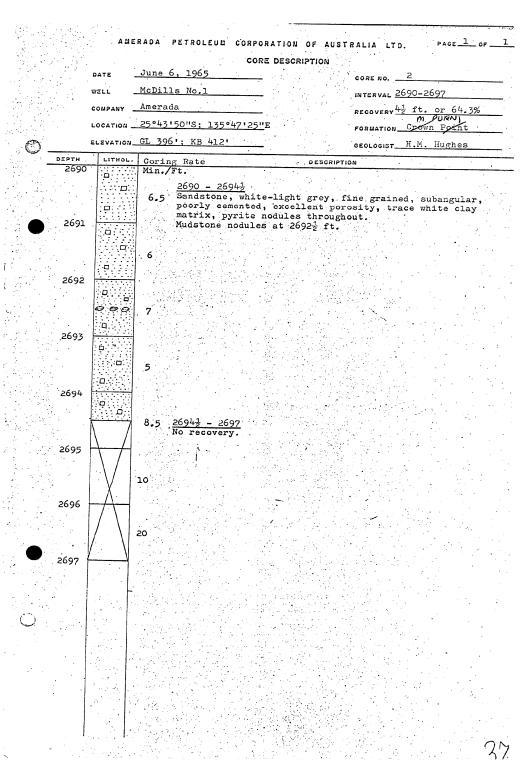
French Petroleum Company Witcherie No.l Purni No.l

Seismic Surveys:

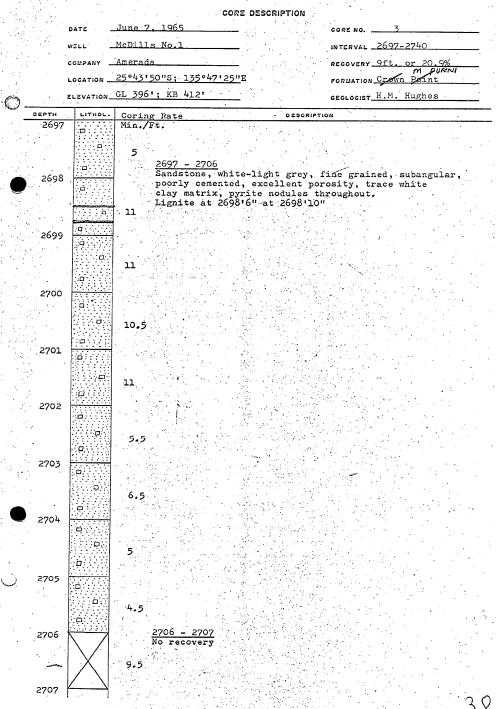
Beach Petroleum N.L. Dakota Bore Seismic Survey

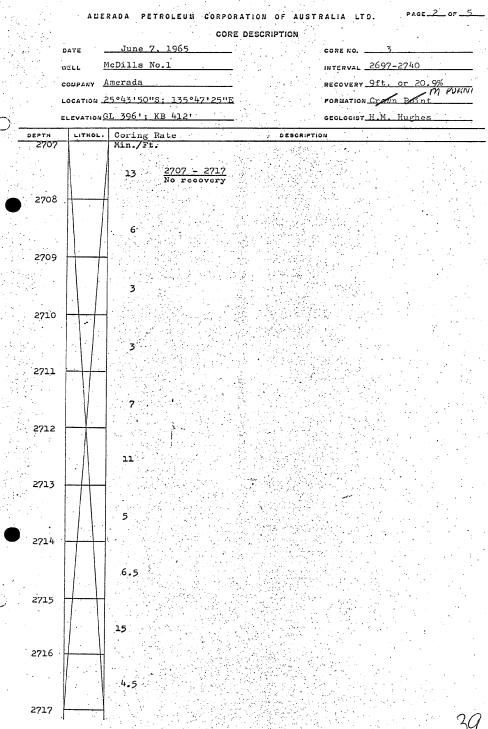
APPENDIX

CORE DESCRIPTIONS

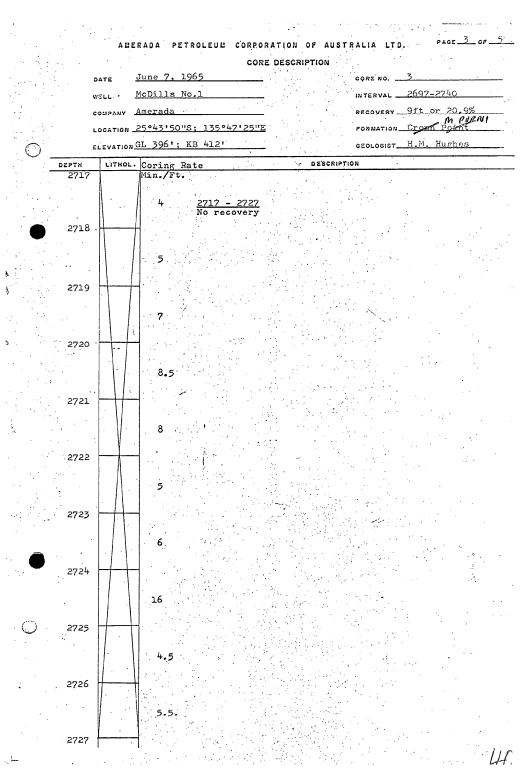

Thirty-two cores were cut for stratigraphic information. Of 380° of formation cored, $281\frac{1}{2}^{\circ}$ or 74.1% were recovered.

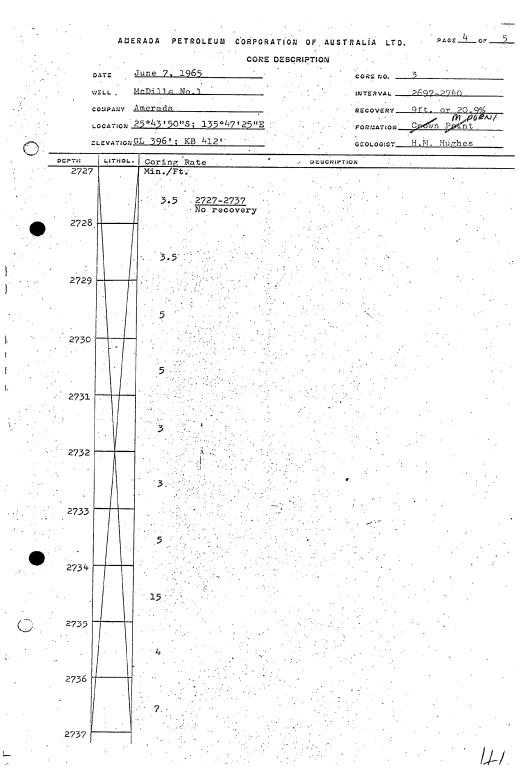
In the following sheets a graphic representation of each core is made as well as a detailed description.

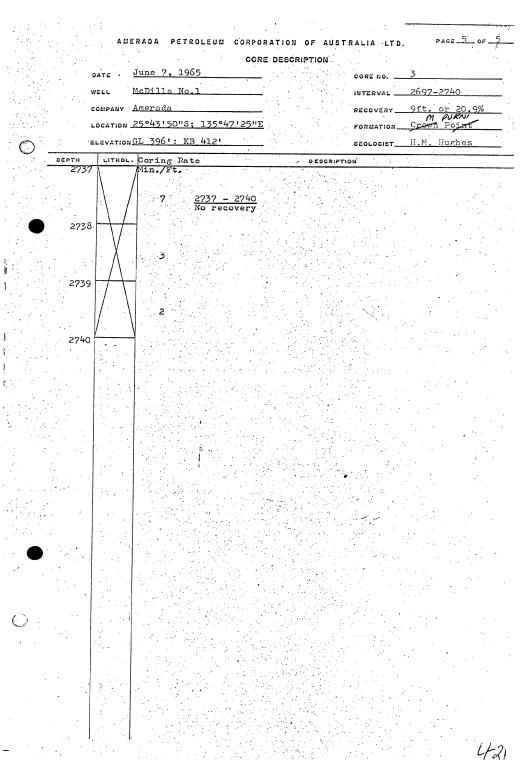

211

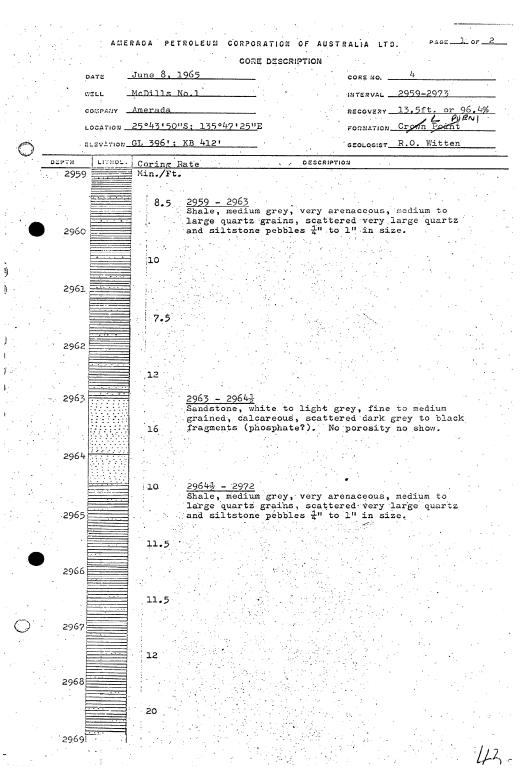

	AMERADA PETROLEUM CORPORATION OF AUSTRALIA LTD. PAGE O	F
	CORE DESCRIPTION	•
	DATE <u>June 4, 1965</u> CORE NO. <u>1</u>	
	WELL MCDILLS NO.1	
	COMPANY Amerada RECOVERY 13 ft or 86.7%	<u> </u>
ana a Ang a	25 PURNI	
~	FORMATION GI 3061. K P 4301	
	GEOLOGIST <u>n.M. Augnes</u>	
2375	DESCRIPTION	· · · · · ·
		. 7
	<u>2375 -23771</u>	
2376	Mudstone, grey, silty with lignite stringers	
Ŭ		
	2.5	
	, 이 그들을, 바람이 있는 것이 같은 것을 가 없는 것이 있는 것이 없다.	
2377	에 <mark>물론을</mark> 가슴을 가지 않는 것을 가장 물건을 받았다. 이 것은 것 같은	
	2 <u>23771-23781</u> Sandstone, fine grained, subangular, micaceous, clay	
2709	interimetric, fairly porous, laminations of black lignite	
2378	and siltstone	
		·.
	3 <u>23787-23807</u>	2
2379	Lignite, black, pyrite nodules, interbedded grey mudstone and siltstone	
. 2380		
r tripe tit.		•
	3 <u>23803-2381</u> Shale, dark grey, fissile, lignite inclusions	÷
2381		
	2381-23824 Siltstone, light grey with grey shale laminations	
. . .	. 📴 김희아이들 첫 문왕이지? 중백 문문이었다. 또	
, 🛡 2382	- <mark>프트</mark> (아이지) 아파는 방송, 방송, 방송, 방송, 방송, 이지, 이제	. •
1	· · · · · · · · · · · · · · · · · · ·	
	2 <u>2382</u> 2-2384	
· · · ·	Sandstone, light grey, fine grained, subangular	
() 2383	micaceous, clay matrix, fair porosity, shale laminations	
-	기 <mark>분 방송</mark> 가 있는 것 같아. 이는 것이 것이 가 많은 것은 것 같은 것이 있는 것이 있다.	÷
• 	2.5 -	
2384	$\frac{2384 - 2385}{\text{Sandstone}}$	
· .	Sandstone, light grey, fine to medium grained, subangular fair porosity, dark grey shale and siltstone laminae	
	3	-
2385		1
2000		;
		1

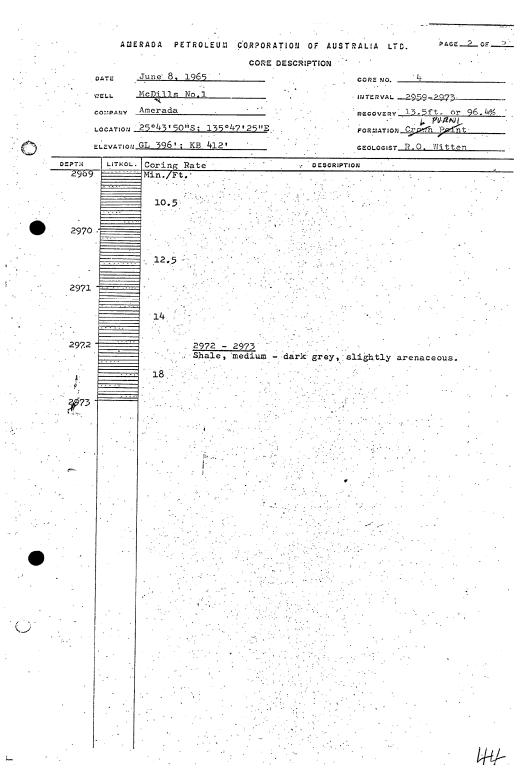
AMERADA PETROLEUM CORPORATION OF AUSTRALIA LTD. PAGE 2 OF 2 CORE DESCRIPTION June 4, 1965 DATE . CORE NO. . McDills No.1 WELL Amerada 5 ft. or 86.7% U PURNI COMPANY 13 ft RECOVERY LOCATION _25°43'50"S; 135°47'25"E. FORMATION CREWN Peint ELEVATION G.L. 396'; KB 412' GEOLOGIST H.M. Hughes DEPTH LITHOL. Coring Rate DESCRIPTION ÷ 2385 Min./Ft. 2385 - 2386 Siltstone, dark grey, subangular, shale laminations 5 a and pyrite nodules. Ę. 2386 2386 - 2387 Siltstone with lignite inclusions. 2387 <u>2387 - 2387</u> Sandstone, light grey, subangular, micaceous, clay matrix, porous. 2 2387½ - 2388 Sandstone, as above, grading in to grey, fissile shale with leaf impressions. 2388 <u> 2388 - 2390</u> No recovery. 2 2389 3 2390 31

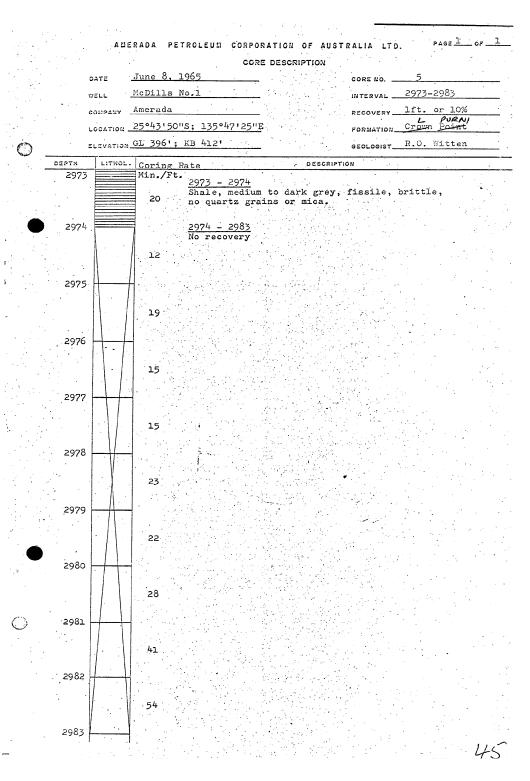

AMERADA PETROLEUM CORPORATION OF AUSTRALIA LTD. PAGE_____OF_5___

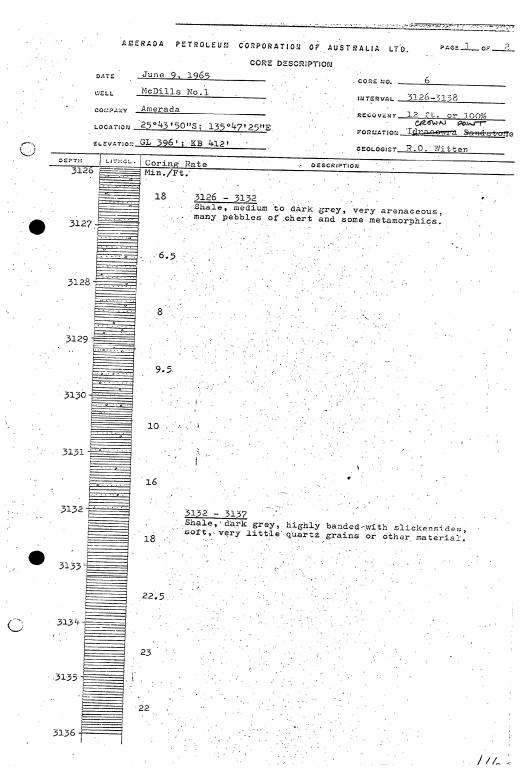


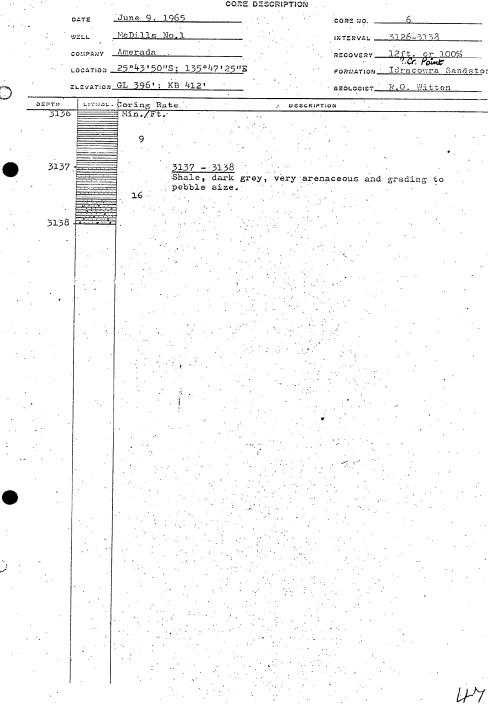


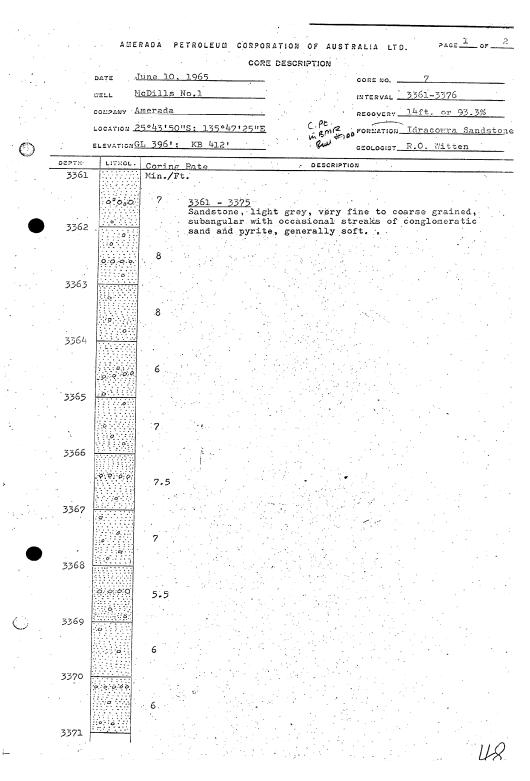

τ,

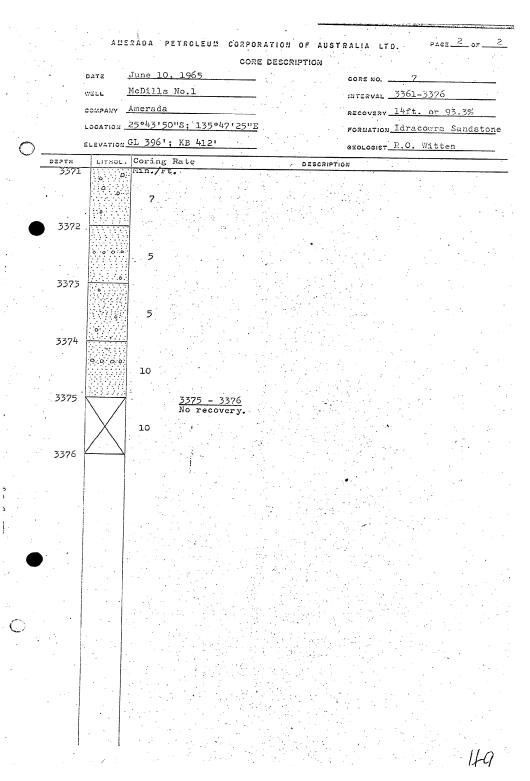

JY :

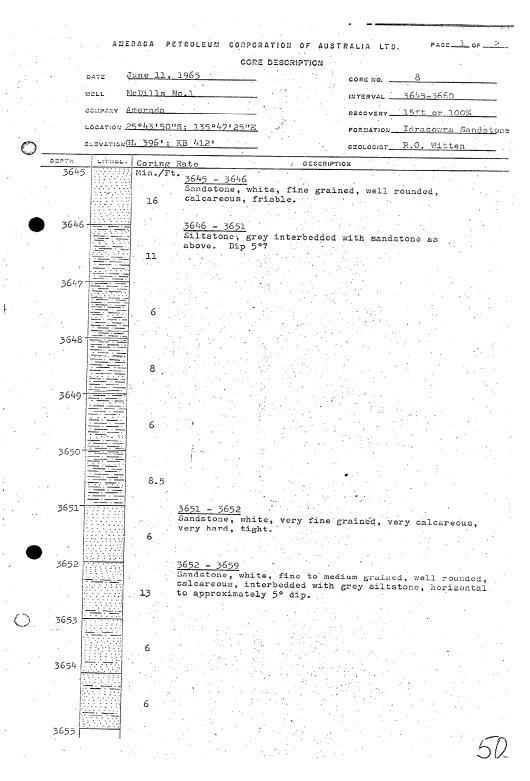


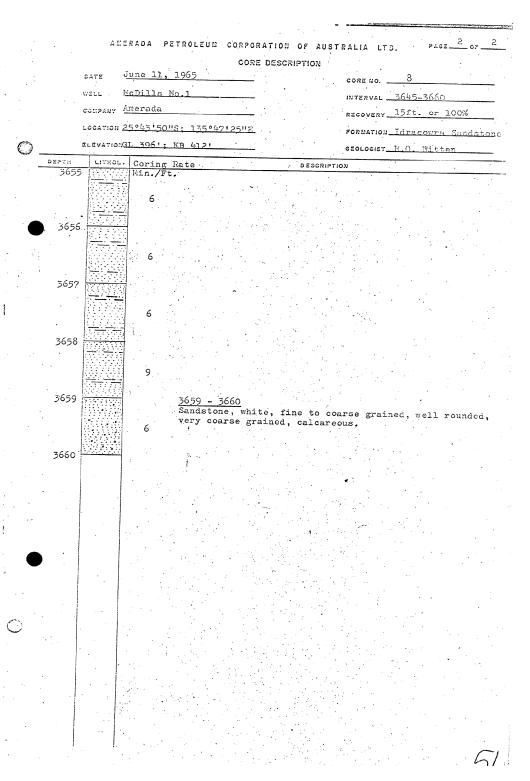


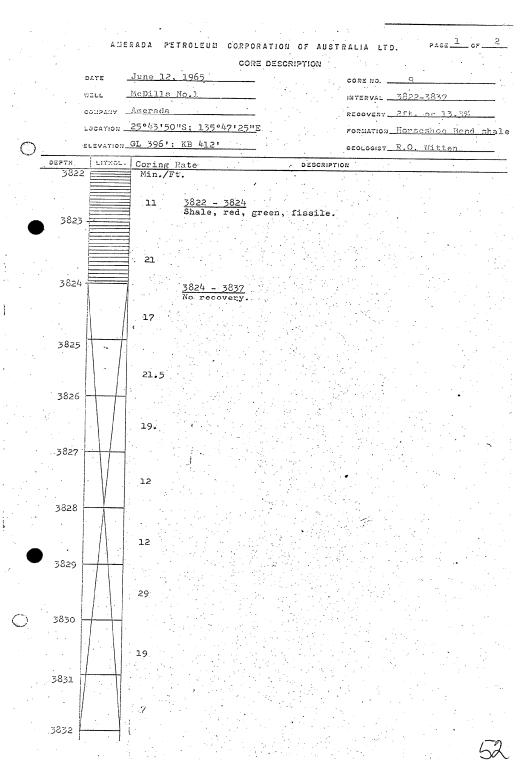


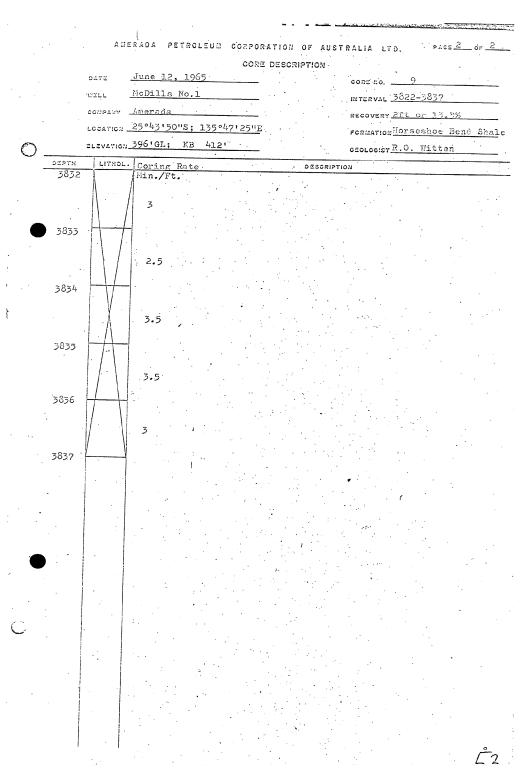


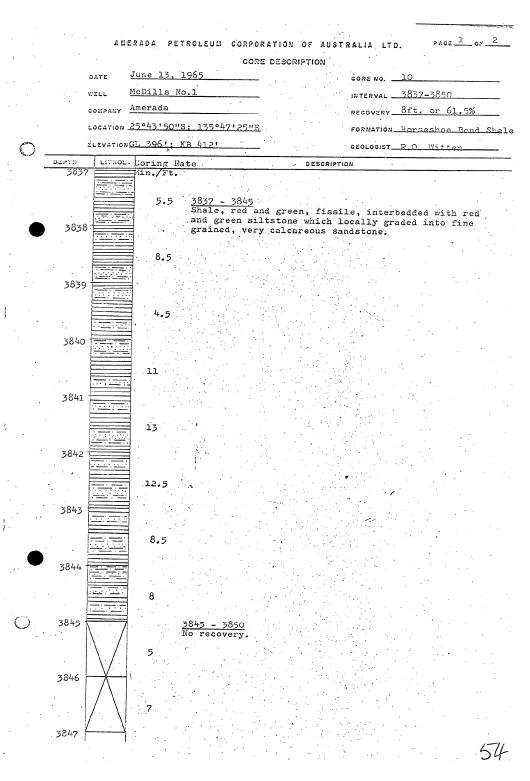

AMERADA PETROLEUM CORPORATION OF AUSTRALIA LTD.

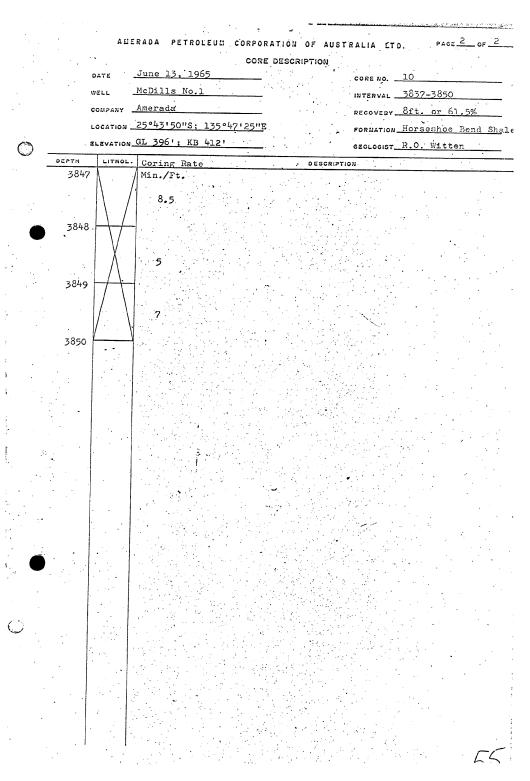


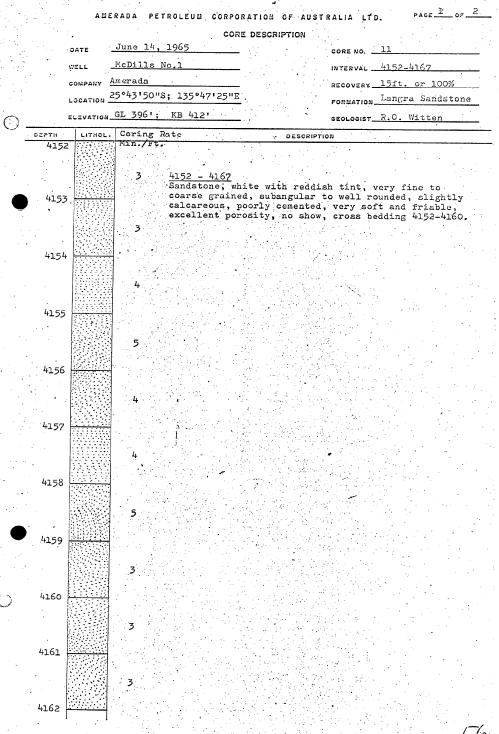


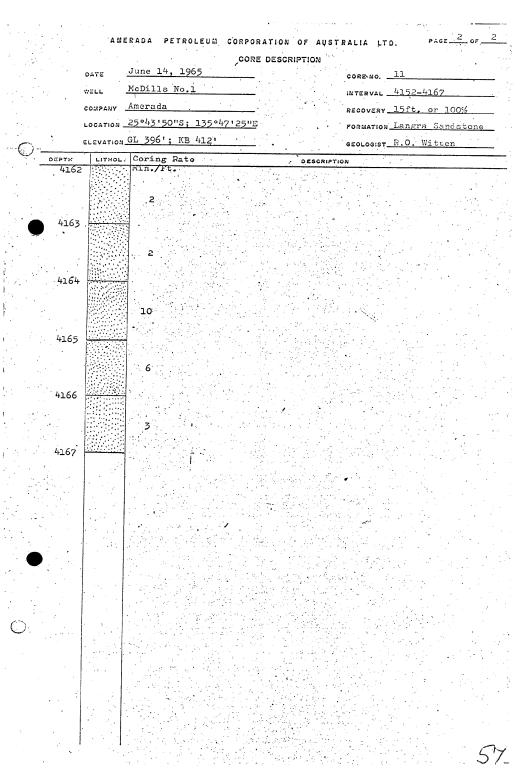


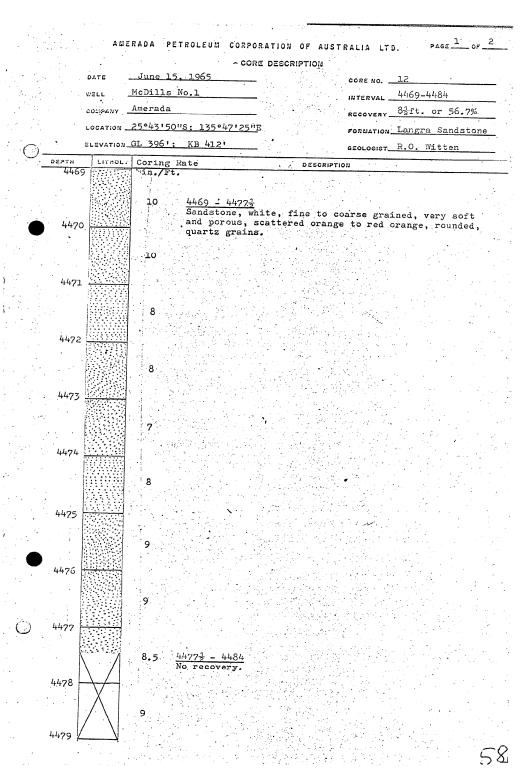


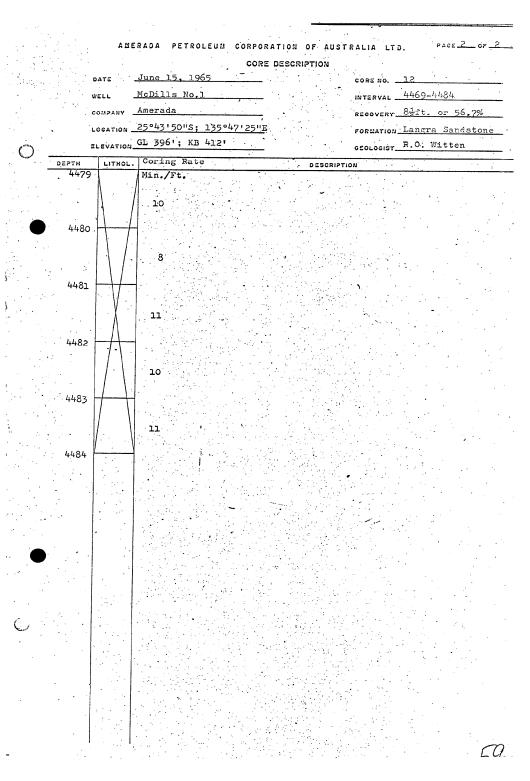


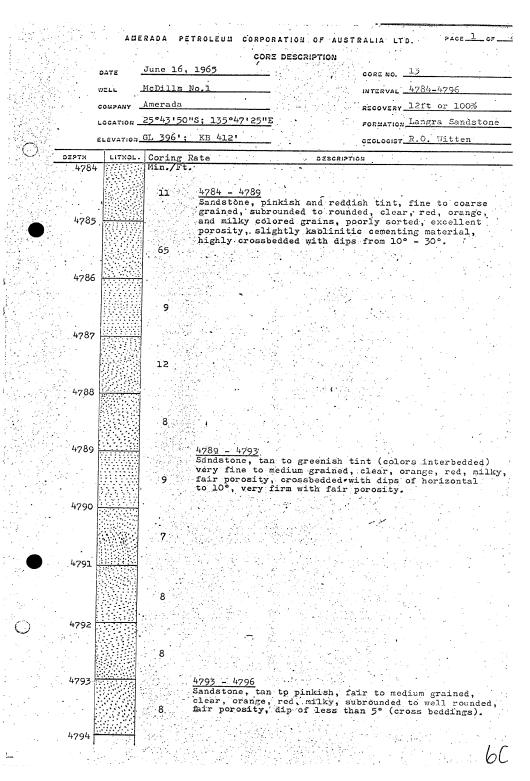




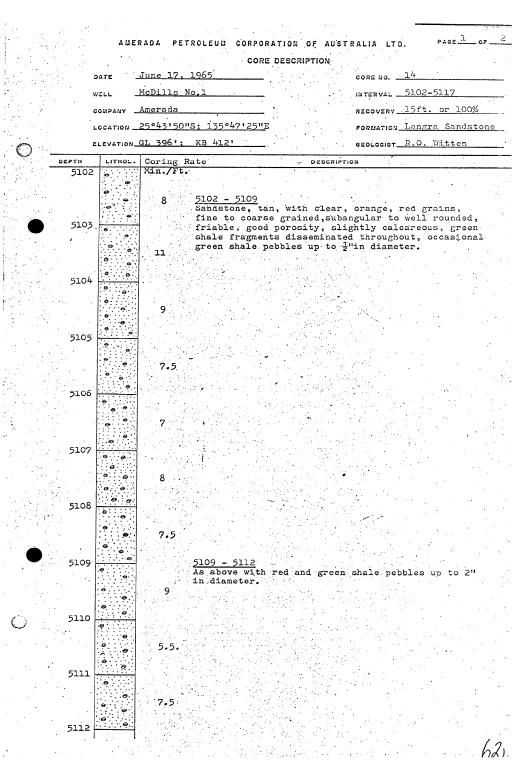


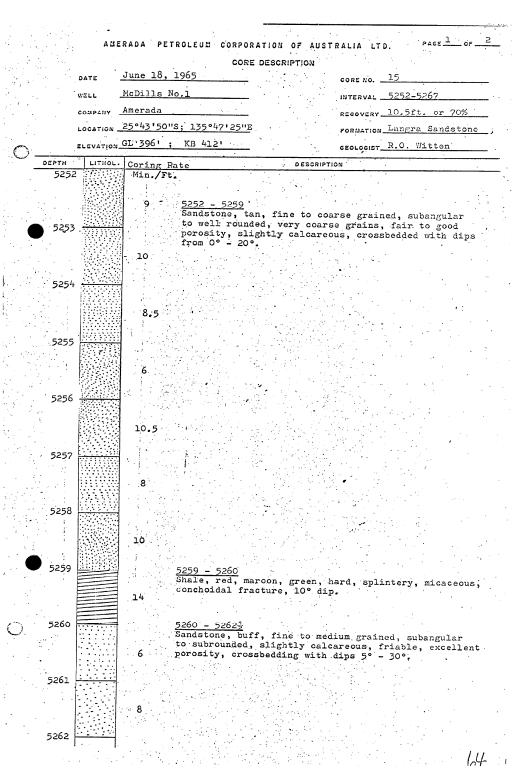


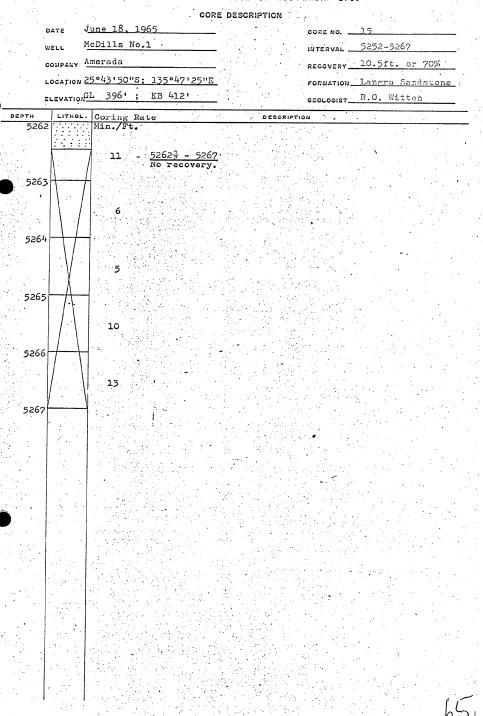


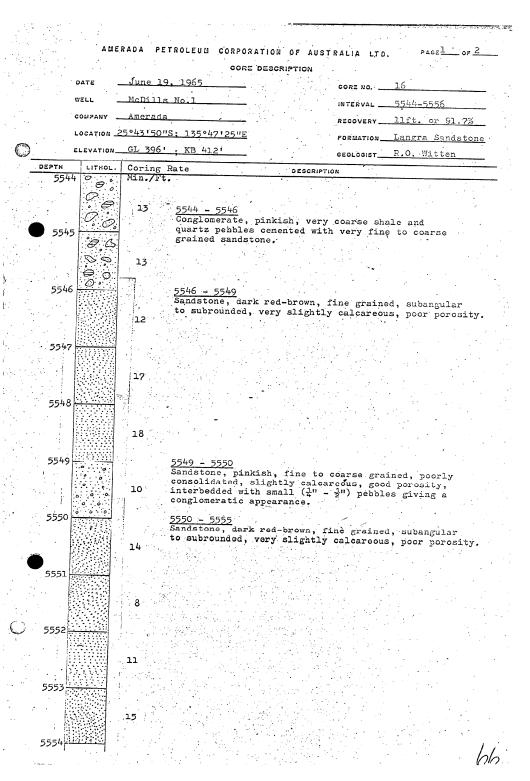


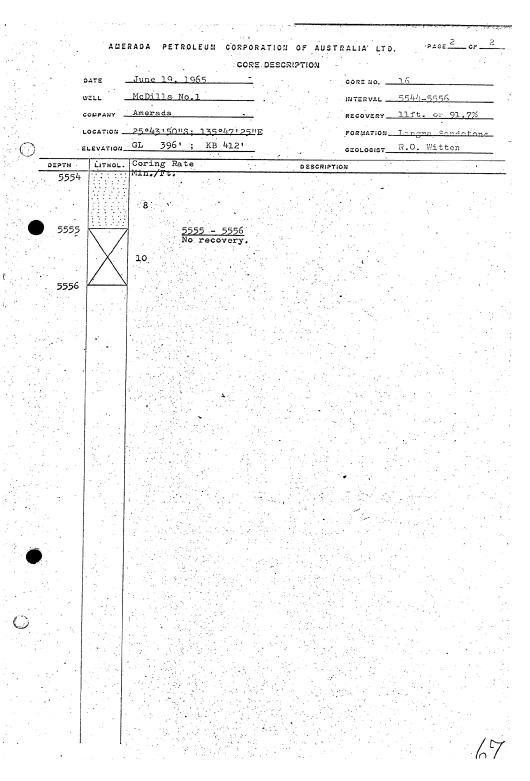
50-

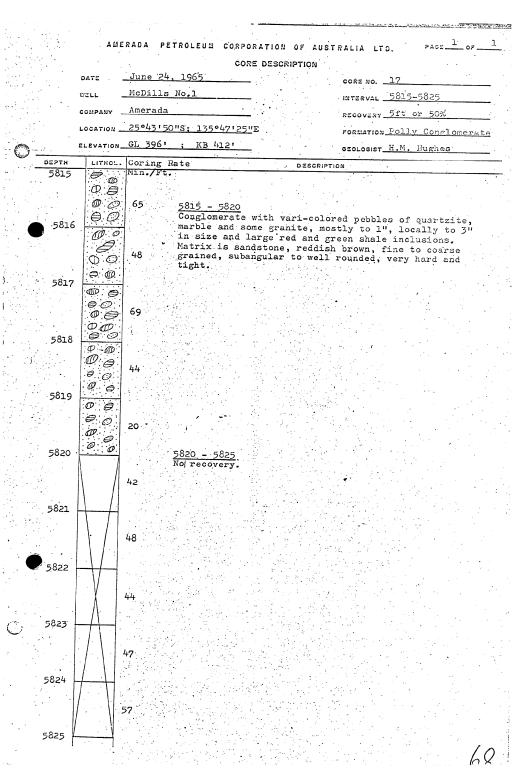


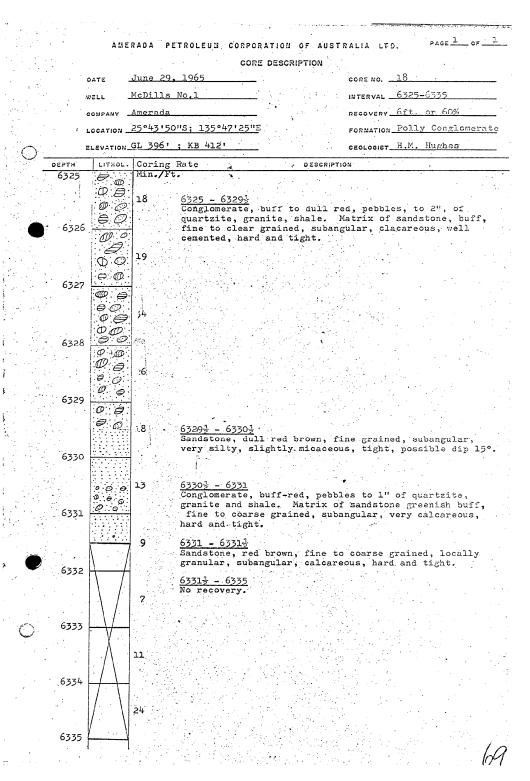


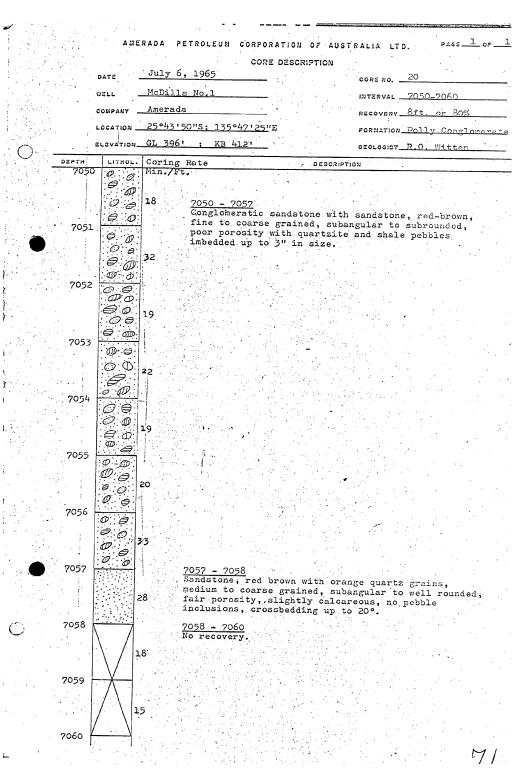

PAGE 2 08 2 AMERADA PETROLEUM CORPORATION OF AUSTRALIA LTD. CORE DESCRIPTION DATE June 16, 1965 CORE NO. 13 McDills No.1 WELL INTERVAL 4784-4796 COMPANY Amerada RECOVERY 12ft or 100% LOCATION _25º43'50"S; 135º47'25"E FORMATION Langra Sandstone ELEVATION CL 396 : KB 4121 GEOLOGIGT R.O. Witten DEPTH LITROL. Coring Rate DESCRIPTION e. 4794 7.5 4795 12 4796

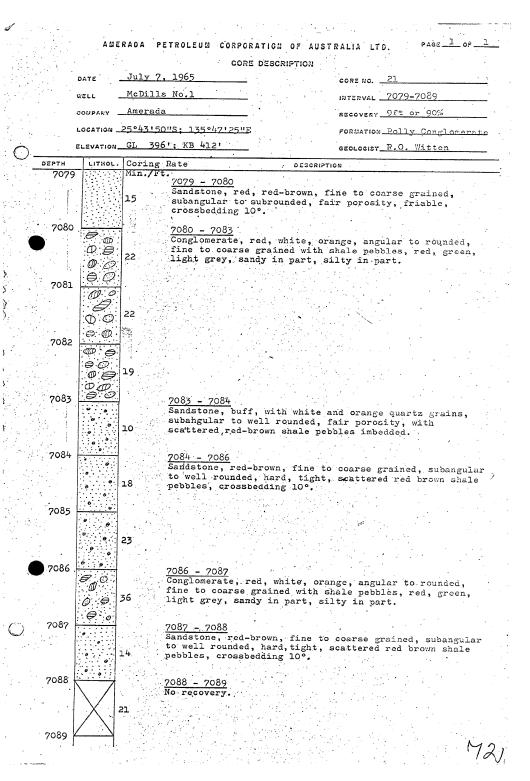


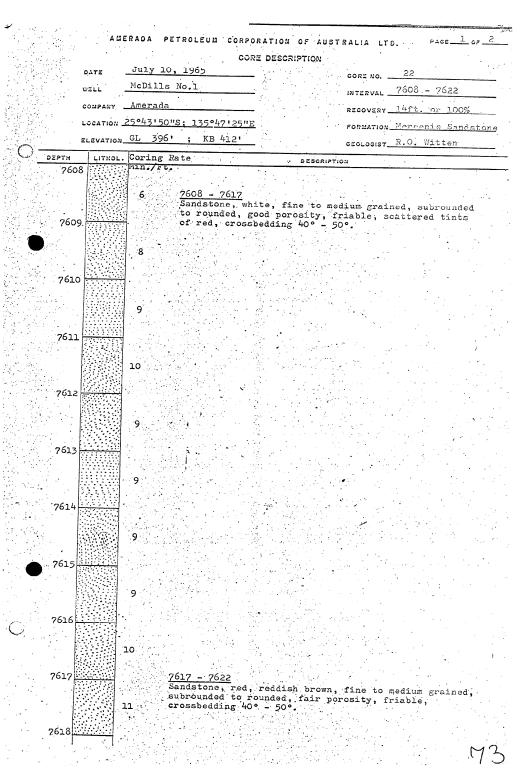

	an sertin N	• • • •			ORE DESCRIPT		· · ·	
		DATE _	June 17.	1965	—		o. <u>14</u>	
			McDills N	0.1			AL _5102 -	
		COMPANY _				1 - E	RY 15ft. 0	
				s; 135°47'2	<u>5"E</u>	· · · · · ·	ION Langra	
\bigcirc	. 1	ELEVATION_	GL 396';	кв 412 /	<u> </u>	GEOLOG	IST R.O. Wi	tten
-	DEPTH	LITHOL.			0	ESCRIPTION		
	5112	Э						
	•		7	5112 - 511	7			
	•	Θ		Sandstone,	tan, fine t	o medium gra		
	5113					grains, suba fair porosi		
		Θ.				in shale cont		
			. 8	<i>y</i> = ±0 .			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
							- e 	
	5114	6 6						
	• •.							
	ат. С.	Θ	8					
	5115	• •						
	•	8						1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
			7.5		•			
	5116	0 			e e la constant de la			•
		°					e e e e e e e e e e e e e e e e e e e	
			7					•
					•			
	5117							*
		4						$(A_{i},A_{i}) = (A_{i},A_{i})$
					с.		· · · · · · · · · · · · · · · · · · ·	
stan dag								
. •								
		1.0						
·								
2	•							
					유민이 바다			· · · ·
								·
n de la composition de la comp							· · · · · ·	: .
						이는 것이 가지 않는 것이. 1985년 1987년 19	a da ang	
							· · · · · ·	• • • •
	· · · ·							18.00
•								
		1 .						

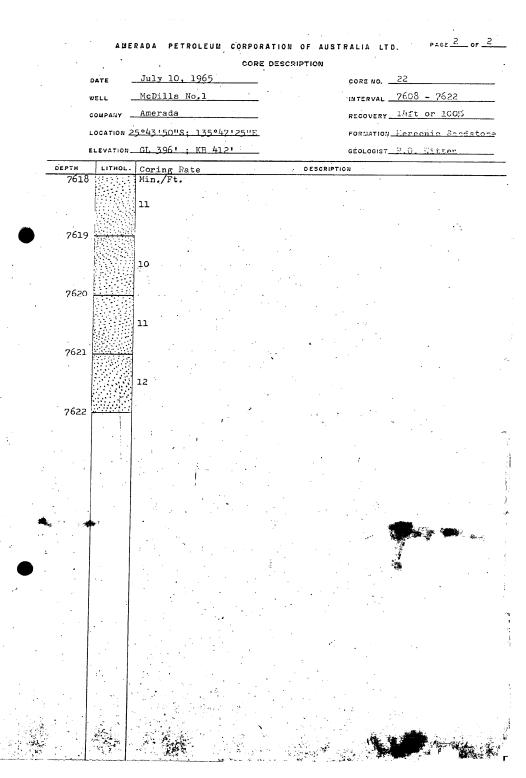


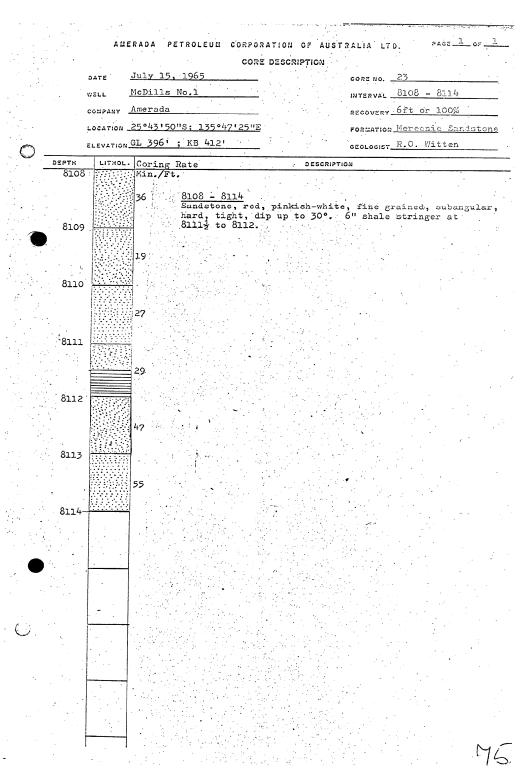

AMERADA PETROLEUM CORPORATION OF AUSTRALIA LTD. PAGE 2 OF 2

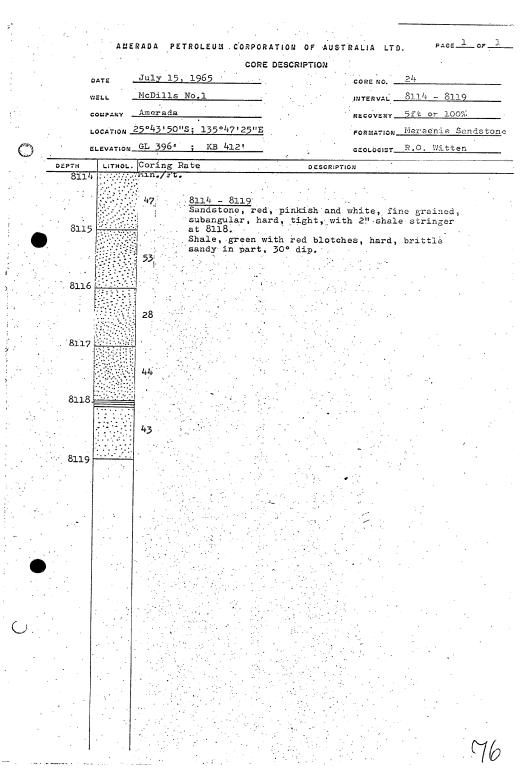








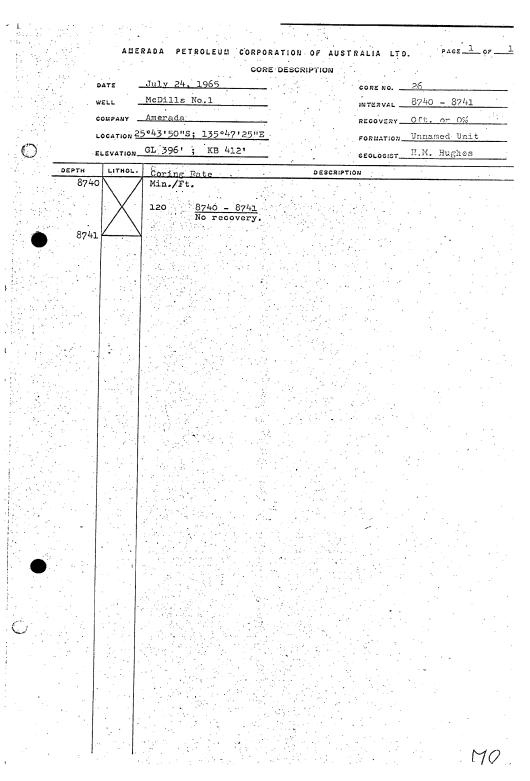

-		ADES	ADA PETROLEUM CORPO	RATION OF AUSTRALIA LTD. PACE
•				E DESCRIPTION
• •		ATE	_July 2, 1965	
•			McDills No.1	CORE NO. 19
		ELL	Amerada	INTERVAL
•	· · · c	OMPANY	· · ·	RECOVERY 5ft. or 100%
	L	OCATION	25°43'50"S; 135°47'25	TORNATION
(LEVATION_	GL 396' ; KB 412'	egologist_H.M. Hughes
	DEPTH	LITHOL.	Coring Rate	DESCRIPTION
: -	6592	Ø	Min./Ft.	
	2	0 Ø	10	
		00	19 <u>6592 - 6597</u> Conglomerate.	dull red, peobles of sandstone and
	6593		quartzite with	1 matrix of sandstone, dull red-buff.
	· · · ·	\mathcal{O}°	well cemented	e grained, subangular to subrounded, , hard, tight, slightly calcareous
		$\bigcirc O$	20	
		€.		
	6594	P		
• • • •		30		
			36	
		$\bigcirc \bigcirc \bigcirc \bigcirc$		
e dag	6595	Q-@		
an ta An ta		\mathcal{O}	29	
		0	29	
	6596	0.0		
		00		
et de la		0	46	
		Ø Ø		
	6597	0		
•.				
-,	-	· · · ·		
•				
\mathcal{I}_{i}				
	· · · ·			
;				
		19		
	· ·			\sim
		· · · · · · ·	and the second second second second	$I \to I \to$



AMERADA PETROLEUM CORPORATION OF AUSTRALIA LTD.

PAGE 1 OF 1

art July 19, 1965 cors so. 25 velt Merkille Ro.1 mreada mreada cosrswr Amreada resurted 23/4 - 2320 icecartes 25/4/3/50/8; 135/4/7-25/E resurted Testeval 20/4 - 23/2 icecartes 25/4/3/50/8; 135/4/7-25/E resurted Testeval 10/4 33 10/2 - 23/2 resurted resurted 10/4 34 10/2 - 23/2 resurted 10/4 10/4 3515 10/2 - 23/2 resurted 10/4 10/4 36 25 25/4 - 23/2 26 37 26 26 26 38319 26 26 38320 63 83/2 63				CORE DESCRIPTION	t i i i i i i i i i i i i i i i i i i i	
coursest Amorada RECOVERT 4.514. or 73% coursest 250/31500851 13554/9125905 resurves_United Unit coursest 250/31500851 13554/9125905 resurves_United coursest 250/31500851 13554/9125905 coucest R.C. Witten 33 8314 - 83183 33 8314 - 83183 33 8314 - 83183 33 8314 - 83183 33 8314 - 83183 33 8314 - 83183 33 8316 33 8316 - 83263 8317 Recovery 8318 8317 28 83184 - 8320 63 63		DATE _			CORE NO	25
LICCATION 25 ²⁴ 23 ¹ 20 ¹ Si 135 ⁹ 47125 ¹ E POSILITION Encance Encit ELEVATION. EL 295 ¹ ; KB 412 ¹ COLOURT E.O. Witten 0 UTROL Coring Rate DESCRIPTION 0 0 Sild DESCRIPTION 0 0 Sild Sild 0 0 Sild DESCRIPTION 0 0 O DESCRIPTION 0 0 0 DESCRIPTION 0 0 0 DESCRIPTION 0 0 DESCRIPTION		WELL _	McDills No.1		INTERVAL _	8314 - 8320
control ESTATE 135*477 ESTE control ESTATE 135*477 ESTE control ESTATE State State <td< th=""><th></th><th>COMPANY _</th><th>Amerada</th><th></th><th>RECOVERY_</th><th></th></td<>		COMPANY _	Amerada		RECOVERY_	
Dervi Urnoi. Coring Rate Descurron 0314 Fin./Ft. Descurron 33 B315 B314 B315 34 Fin./Ft. Descurron Distriction 8315 B315 B316 Distriction 8316 B316 B316 Distriction Distriction 8316 B317 Distriction Distriction Distriction 8318 Distriction Distriction Distriction Distriction 8319 28 B318 Distriction Distriction 8320 63 Distriction Distriction Distriction		LOCATION 2	5°43'50"S; 135°47'2	5"E	FORMATION	? Ontr Unnamed Unit
DEFTN LITNOL. Coring Rate DESCRIPTION 8314 8314 8314 8314 8315 8315 8315 8316 8316 8316 8316 8316 8316 8318 8318 8318 8319 63	A					
 8314 Min./Pt. 33 <u>8214 - 83183</u> trace of green, very fine to fine grained, subargular to rounded, very hard, tight, quartaitic in part, many thin 's" or less) shale partings, red to green. No discernable dip. 8316 8317 8318 8318 8319 63 63 	DEPTN		Coring Rate	DESCRIPTIO	0 N	
Sandstone, red brown, pinkieh, purple, white, trace of green, very hard, tight, quarkaine subangular to rounded, very hard, tight, quarkaine in part, many thin 1, ¹ or less) shale partings, red to green. No discernable dip. 226 8318 3319 63 8320 63						
Sandstone, red brown, pinkieh, purple, white, trace of green, very hard, tight, quarkaine subangular to rounded, very hard, tight, quarkaine in part, many thin 1, ¹ or less) shale partings, red to green. No discernable dip. 226 8318 3319 63 8320 63			77. 9×1. 971	51		
 8315 8316 8316 8316 8316 26 8317 28 8318 8319 63 			Sandstone,	red brown, pinkish	1, purple	, white,
.in part, many thin 's" or less) shale partings, red .in part, many thin 's" or less) shale parting shale parting shale parting shale parting shale partin	8315		trace of gr	een, very fine to	fine grat	lned,
31 No discernable dip. 8316 26 8317 29 8318 29 8318 29 8319 63 63 63			in part, ma	any thin 'a" or les	ss) shale	partings, red
26 8317 8318 8319 63 63				able dip.		
26 8317 8318 8319 63 63						
8317 8318 8319 8320 63 63	8316	5				
8317 8318 8319 8320 63 63						
29 8318 8319 8320 63	· · · .		26			and a second second second
29 8318 8319 8320 63	9710				•. •	•
8318 8319 8320 63 8320 63	. 160					
8318 8319 8320 63 8320 63			29			
28 <u>83183 - 8320</u> 8319 63						
28 <u>8319</u> 8319 63	8318				• • • •	
28 <u>8319</u> 8319 63						·
	8710					
	0,19					
			63			
	•					
	8320	-				
					144	
					e ja se e	
	Ö ler					
	_				· · ·	
3						
	O				•••••	
	•					· · · · · · · · · · · · · · · · · · ·
	•					
						аны алы алы алы алы алы алы алы алы алы ал
		· .]				· · · · · · ·
	· · · · · ·				· · · ·	MM
$\mathbb{T}_{\mathcal{A}}$, we have the product approximation of the second state of the second state $\mathbb{T}_{\mathcal{A}}$.					·	$\sim P($


1

1

,

_(

L____

] PAGE ____ OF __ AMERADA PETROLEUM CORPORATION OF AUSTRALIA LTD. CORE DESCRIPTION July 28, 1965 CORE NO. 27 DATE INTERVAL 8915 - 8925 McDills No.1 11211 RECOVERY 10ft or 100% Amerada COMPANY Ordin LOCATION _25°43'50"S; 135°47'25"E FORMATION Unnamed Unit ILEVATION GL 396' ; KB 412' CEOLOGICT H.M. Hughes DEPTH LITHOL. Coring Rate DESCRIPTION Min./Ft 8915 - 8916 8915 Sandstone, white, fine to medium grained, pcorly sorted, subangular to subrounded, oth gouartzitic in part, 67 highly fractured, shale partings, green, fissile, micaceous. 8916 8916 - 8918'8" Sandstone, lavender, coarse grained, rounded, well. sorted, argillaceous, white clay matrix. 44 8917 31 8918 <u> 8918'8" - 8919'9"</u> Quartzite, white to light lavender, probably fine grained, many secondary quartz crystalxs, fractures all filled with siliceous material. 53 8919 8919'9" - 8920 Shale, red-green, mottled, flow structures and slickensides, very micaceous, anhydritic. 68

8920 - 8921'4" Shale, dull red, fissile, hematitic.

46

39

76

84

8921 4" - 8923 9"

892319" - 8925

arenaceous, anhydritic.

Shale, dull maroon, fissile, bedded 30°, locally very

Sandstone, white to light green, fine to coarse grained,

poorly sorted, subangular to rounded, white to light green, argillaceous, micaceous, matrix, hard, tight.

Pebble conglomerate at 8923'10" and 8925.

8921

8920

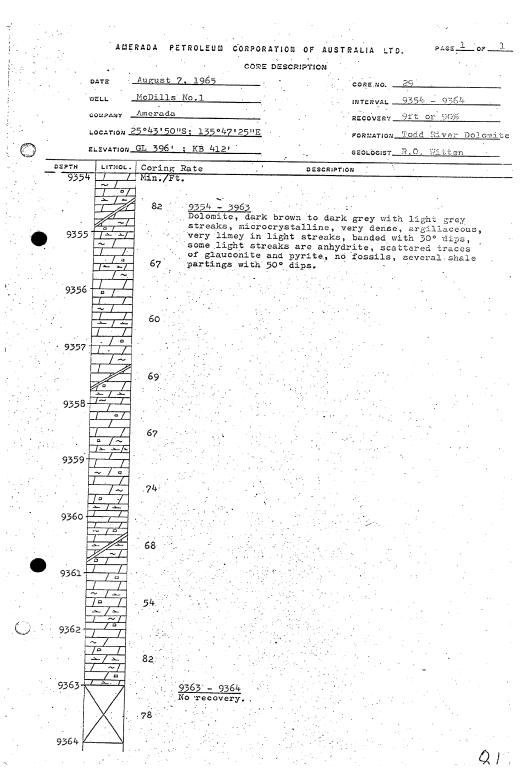
8922

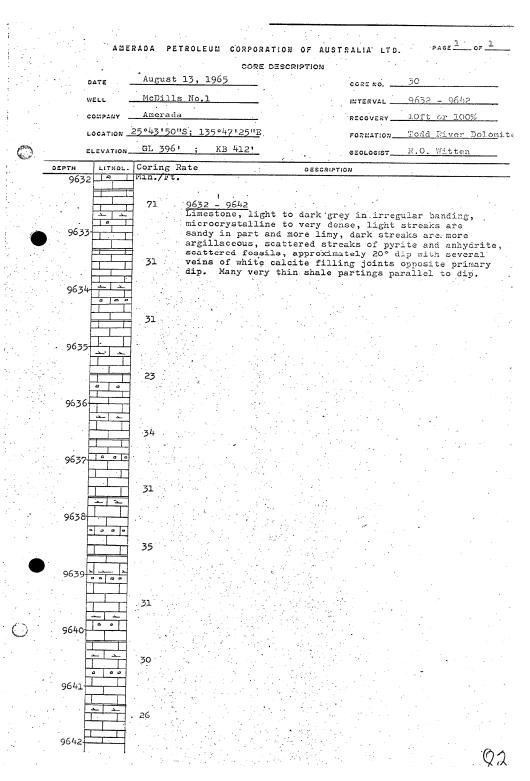
. 8923

8924

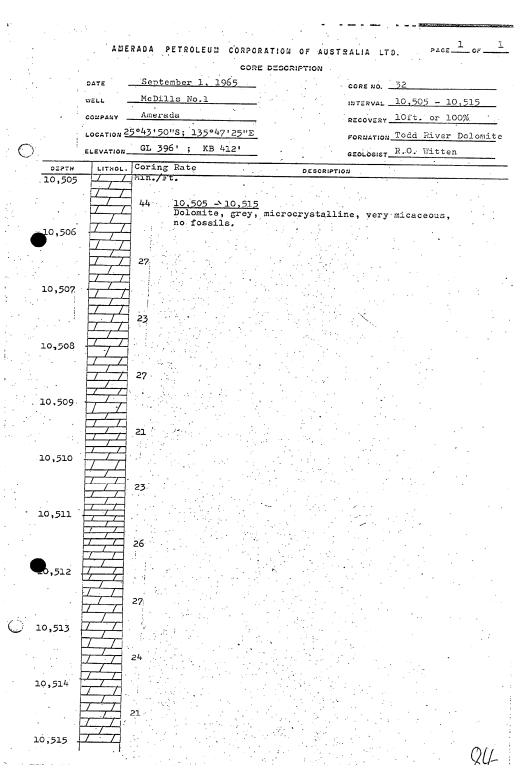
8925

- 75


00


79

	e e se						аран (м. р. с.		
	•	AME	RADA PET	FROLEUM CO	RPORATION	OF AUSTRA	LIA LTD.	PAGE 1	_ OF
		÷.	• •	. *	CORE DESCR				
	. ·	DATE	July 31,				ORE NO. <u>28</u>	·	·
		WELL .	McDills	No.l			ITERVAL 9043		
			Amerada			· · ·	ECOVERY 71t		<u></u>
				<u>S: 135°47'2</u>	<u>25"E</u>		ORMATION TODA		<u>olomit</u> e
. O _		ELEVATION.	GL 396'	: KB 412'		6	EOLOSIST <u>H.</u>	Huches	
· ·	DEPTH 9043		Coring R Min./Ft.		· · · · · ·	DESCRIPTION			
	90 +9			`			-		
			30	<u>9043 - 905</u>	<u>50</u> dank mor	mionoonus	talline to		
	9044			crystallir	ne, very ha	ard, tight,	no joints,	fractur	es,
				megascopio	eximénita	ng planes c ation.	or fossils a	vident i	rom
			40						
	•						анан сарана 1911 г. – С	•	
	9045		-						
			40						
	•	7,7			•				
	. 9046	T., T							
		777					•		
		7,7	31			e de la dese			
	9047	$\mathbb{Z}_{\mathcal{T}}$	-					· · ·	
	9047	177				•		· · .	
· ·		777	30		n forske stander Generale stander			• • •	
		4						i 4	
·	9048	4							
	,		28				· . ·	•	
			20						
	9049	· - / - /							
•			30						
	9050	77		9050 - 905	3		•		
an 2 - A		Λ /		No recover	<u> ४</u> -				
		\. · /	30						
· · ·		$\left \right\rangle /$							
\cup	9051								
	· ·		27						
		$ \Lambda $					ч. т. 		
· · ·	9052								
	·	/ . \					• • • •		
			25						
	9053	<u> </u>			111.11			:. ·	
		1 1			n fan de se Selan wage ste			•	80
		•			••	te the second of the			00


1

•	•	AME	RADA PETROLEUD	CORPORATIO	N OF ANST		PAGE 1	0;
·		1		CORE DESC		ARCIA LID		
		DATE _	August 22, 1965			CORE NO	31	
		WELL _	McDills No.1				10,058 - 10	.068
		COMPANY _	Amerada				91t or 90%	,000
	· · · ·		5°43'50"8; 135°47	'25"E			Todd River	Dolomito
ſ	3		GL 396'; KB 41		÷,		H.M. Hughes	
143.			Coring Rate		DESCRIPTIO	·····.	it.in. inumes	
	10,058		Min./Ft.		DESCRIPTIO			
		I I	33 10,058 -	10 067		· · · ·	· · ·	
		THI	Dolomite,	dark grey	to laminat	ed light	grey, micro	tò
	10 059	THE	black sha	crystallin le laminae.	e, hard, t Vertical	ight, loc ioints (ally with th filled with	in
		T	ciear. cr	vstalline.	anhvdrite)	1/16# ÷d	글 wide. 1 e of the col	LO®
		T	29 is due to	banding of	different	size cry	stals.	.01
2 ¹	10,060	ITT				•		
		TI						
	· ·	TT	23				1 1	in a ge
·	A. Arte - A	T				-	• .	
•	10,061					· ·		
$\left f^{\prime} \right\rangle$		1-AL	23					
		F_H	2)					
, ·	10,062	F _4				ан сайта. Стара		· · · · · ·
	•	T					•	
		TI	21					
11	10,063	FT.						н. А. А.
	,,	FA.						
		47	26					
	· ·	HAF:						
	10,064							
		L_	27				· .	
•	<u>`</u>	174	-1					et de la companya
	0,065	IN I		2				• •
	,	工工						
			22					1. 1
(10,066	TAZ					n for and Galeria de la companya	
							n an trainn An trainn	an a
•	•••	-T-	21					
	10.00						5 - E - C	
	10,067 -	$\langle \cdot \rangle$	<u>10,067 - 10</u> No recovery	<u>,068</u>			· ·	
			24					
	·						n de la composición de	•
	10,068							
		1						22
	- 1							

APPENDIX II

PETROLOGY

Selected intervals were examined petrologically by A.R. Turner and I.F. Scott at the Australian Mineral Development Laboratories in Parkside, South Australia, and by Dr. W. Layton, University of Queensland.

Ö

THE PETROGRAPHY OF 4 ROCKS FROM THE AMERADA McDILLS NO.1 BORE HOLE CONSIDERED FOR THE PURPOSES OF AGE DETERMINATION

. INTRODUCTION

The petrography of the following specimens has been carried out at the request of Dr. W. Compston of the Australian National University as a necessary pre-requisite for their use in agedetermination investigations.

PETROGRAPHY

Amerada: McDills No.1: Core 23: 8111/2-8112 ft: TS16268

This specimen is a fine-grained <u>feldspathic guartzite</u> compose of detrital fragments set in a matrix of carbonates and clay. In hand specimen the rock is a pale bluish green in colour and exhibits crudely defined, cross stratified bedding. The bluish green colouration is imparted to the rock by a clay mineral which is sometimes stained a bright reddish brown by finely disseminated <u>Phematite</u>. They alternate, in this way imparting an incipient fissility to the rock. Secondary guartz has been deposited in an irregular network across the surfaces of the clay-rich layers.

In thin section the rock is found to be composed of numerous subrounded to subangular quartz grains which have a size distribution in the range 0.85 to 0.05 mm. The majority of the grains lie in the size range 0.30 to 0.1 mm and are well sorted, however, isolated larger grains are randomly distributed. The grains contain numerous finely disseminated inclusions of iron oxides, rare apatite grains, muscovite and tourmaline. Randomly distributed throughout the detrital fraction are grains of feldspar which have a similar habit to the guartz although they show considerably more rounding. The grains are composed of microcline and plagioclase, the later having a composition of approximately albite. Both feldspars show well defined strain features not exhibited by the quartz which suggests two distinct provenances for the detrital fraction. Randomly distributed throughout the rock, but orientated in a direction subparallel to that of the bedding; are lenses of a <u>carbonate</u> mineral. The remainder of the rock is composed of a <u>clay mineral</u> which coats each of the detrital grains in a fine veneer and forms incipiently schistose layers between the quartz and feldspar The nature of the clay mineral could not be determined grains. optically however, some of it appears to have recrystallized to sericite. The rock has been subjected to partial recrystallization accompanied by the introduction of secondary silica which forms ribs and veinlets in the clay layers.

Amerada: McDills No.1: Core 24: 8114-8119 ft: TS16269

2.

This specimen is a <u>quartz-feldspar-clay shale</u> and is similar in mineral composition to the specimen from Core 23 above, however a number of structural differences were observed. In hand specimen the rock is a bluish green colour and very finely laminated due to primary bedding. The mineral phases are more evenly distributed than in the specimen from Core 23 and there is an absence of ?hematite stained clay. In thin section the following differences were observed:

- Grain size decreased to the range 0.15 to 0.02 mm and a uniform distribution
- Marked increase in the percentage of clay minerals at the expense of detrital grains
- 3. Microcline common no plagioclase was observed
- 4. Accessory rounded tourmaline fragments common

6.

- 5. Finely disseminated iron oxide inclusions in quartz very minor
 - One grain of an emerald-green mineral, possibly glauconite or chlorite, was observed in the section cut. A large volume of the rock would have to be processed before a separation could be made to adequately determine the composition of this mineral.
- 7. Clay minerals have recrystallized and are orientated parallel to the bedding planes. There appears to be no way in which to decide the method of recrystallization of the clay mineral - diagenesis or metamorphism however, the former seems the more probable.
- 8. Bedding is delicately defined by alternate relatively quartz-rich and relatively clay-rich laminations.

Amerada: McDills No.1: Core 27: 8917-89171/2 ft: TS16270

This specimen is a <u>ferruginous shale</u>. The rock is coloured a deep reddish-brown in hand-specimen and exhibits well defined cross-bedding.

In thin section the rock is found to be composed of numerous, finely divided, <u>guartz grains</u>, recrystallized <u>clay</u> <u>minerals</u>, and abundant <u>ferruginous material</u>. The guartz grains are irregular in shape, rounded to subangular, and have a size distribution in the range 0.1 to 0.02 mm. Randomly distributed throughout the detrital quartz fraction are grains of <u>microcline</u> which have a similar habit to that of the quartz grains. Accessory grains of green <u>tourmaline</u> are randomly distributed throughout the rock. A matrix to the detrital fraction is formed by <u>chlorite</u>, <u>sericite</u>, recrystallized clay minerals, <u>micas</u> and <u>opaque material</u>. The ferruginous material is present throughout the specimen but tends to be concentrated into laminations which are irregularly spaced but in the order of 2-3 mm thick. Associated with the ferruginous material are incipiently foliated, elongated laths of an unidentified mica.

Amerada: McDills No.1: Core 27: 8919-89191/2 ft: TS16271

This specimen is a ferruginous shale and almost identical to that described previously from Core 27. Differences in composition and structure include the following:

- Laminations are subparallel and more clearly defined. They alternate at approximately 1.5 to 0.25 mm.
- Percentage of ferruginous material shows a marked decrease and is concentrated into the laminations rich in micaceous and recrystallized clay mineral components.
- 3. The grain size and composition of detrital particles are similar.
- Laths of a pleochroic green biotite-like mica are present in the micaceous layers.
 - It appears probable that recrystallization is due to diagenetic processes.

REPORT ON TWO SAMPLES SUBMITTED BY

AMERADA PETROLEUM CORPORATION

Modillis No. 1 Nove 25 Sample 8314 - 16.

Sandstone composed of well sorted, relatively fine angular quartz grains. Concavo-convex structures are rarely present but some elongation of the grains does occur. Overgrowth features are present but uncommon. Fresh feldspar appears and the whole is cemented by ferruginous clayey material. Carbonates are absent.

MeDills No. 1 Cove 25 Sample 8318 - 182.

Sandstone composed of rounded, well sorted quartz grains. Packing is tight and some concavo-convex characters are observed. Quartz shows undulose extinction which may be due to packing pressures. Fresh feldspar appears and pore spaces are filled with clay and sericite. No carbonates are present.

W. Layton

LIMESTONES FROM MCDILLS NO.1 WELL, N.T.

9355 feet: TS16390

This rock is a fine-grained, sandy, <u>dolomitic limestone</u> consisting of grains less than 0.13 mm in diameter. Dolomite forms more than 80% of the rock for the most part. Clastic fragments include quartz, microcline, muscovite, emerald green ?glauconite, brown ?mica, tourmaline and dusty opaques. Except for quartz these minerals are present only in accessory amounts. Lighter coloured bands in the rock are quartz-rich, the quartz forming up to 20% of the rock in places.

The dolomite is at least partly recrystallized or secondary in nature, frequently replacing parts of the clastic fragments. The concentration of dusty opaque material is proportional to the carbonate content. Consequently the quartz-rich bands are also quite poor in opaques.

9356 feet to 9357 feet: TS16391 to TS16397

These chip samples are virtually identical to TS16390. The sedimentary structures vary a little with some samples being well bedded while others exhibit irregular layering. This is partly due to the orientation of the thin section relative to the bedding.

No organic fragments were observed.

nb:1

APPENDIX III

PALEONTOLOGY

Dr. P. R. Evans of the Bureau of Mineral Resources examined cores from the Permian and underlying Finke Series and his results appear in the following text.

J. Gilbert-Tomlinson of the Bureau of Mineral Resources identified the brachiopods found in the Todd River dolomite and her results appear in this section.

A1

AMERADA MCDILL'S NO. 1 WELL, NORTHERN TERRITORY

30th July, 1965.

ASSISTANT DIRECTOR (GEOLOGY):

Subject:--

A request was received from Amerada Petroleum Corporation to conduct a palynological examination of their well, McDill's No. 1. After consultation with Mr. T. Pearson of Amerada Petroleum and Mr. A. Stowart (B.M.R.), six core samples were processed. Microspores and pollens observed within the assemblages extracted from these samples are listed in the attached Table. Only the Upper Carboniferous and Lower Permian cores produced microfossils. The two cores taken from the presumed Finke Group, Core 14 and Core 18, the only cores taken from lithologies likely to yield spores, in fact were barren.

Core 1 is thought to represent the Lower Permian palynological It is probably older than the assemblage noticed by B.E. Balme unit P1b. in Malcolm's bore on Andado Station. Cores 4 and 6 are referrable to unit Pla, containing microfloras closely comparable with that previously described from shallow bore hole samples from the Crown Point Formation. Core 8 is probably of C1 or C2 age. Striate pollens appear to be absent from this core but specimens referrable to Vallatisporites sp. 37, typical of C1 and C2 are present. Unfortunately other pteridophyte spores characteristic of Unit C1 and C2 could not be found. In fact the assemblage is remarkable for its low pteridophytic spore content. No evidence of marine micro-organists could be observed in any of the cores. Only the alga Botryococcus was present in core 8.

Although the lower limit of this Carboniferous-Permian sequence in McDill's No. 1 may be firmly fixed, its upper boundary remains undetermined. Cuttings from above core 1 will be examined in order to define the upper boundary.

(P.R. Evans)

Altached is why of the little divisions as applied to E. alt.

AMERADA McDILL'S NO. 1: MICROFOSSIL DISTRIBUTION CHART

(

AÇE		C1-2	Pla	р1Ъ
AMPLE MICROFOSSIL	MFP3828 C.18 6325 ft MFP3833 C.14 5112 ft	MFP3832 C.8 3647 ft	MFP3831 C.6 3128 ft MFP3830 C.4 2908 ft	MFP3829 GI 2381 ft
aff. Botryococcus Punctatisporites sp. Aniculatisporites sp. Aniculatisporites sp. Vallatisporites sp. Monosacciti sp. Calamospora sp. Retusotriletes diversiformis Parasaccites sp. Potonicisporites neglectus lophotriletes sp. Lophotriletes sp. Monocolpates sp. Cingulati spr. 185 Monocolpates sp. 261 Aniculatisporites sp. 186 concolpates sp. 187 Parasaccites sp. 188 Cingulati sp. 186 Parasaccites sp. 187 Parasaccites sp. 198 Disaccites indet. Punctatisporites gretensis 5 Kraeuselisporites sp. 38 5 Kraeuselisporites sp. 39 41 Protohaploxypinus sp. 79			+ + + + + + + + + + + + + +	C + + t + + + c + + + c + + + c + + + c + + + c + + + c + + + c + + + c + + + c + + + c + + + c + + + + c + + + + c + + + + + c +
Protohaploxypinus sp. 80 Klausipollenites sp. 82 Granulatisporites sp. 161 Apiculati sp. 204		1	1 (1997) 	? ? + +

Thickospores + Ponens

.

UNIT HUGHENDEN SPRINGSURE SHELF DENISON TROUGH **P**4 Betts Ck Beds upper Bandanna Formation* P3a lower Bandanna Formation* P3c base of " Peawaddy Formation Catherine Sst. P3b Colinlea Sst. Ingelara Fm. top few feet of Aldebaran Sst. Aldebaran Sst. **P2** Cattle Ck Fm. Sirius Shale Plc (?) unnamed beds "undivided with <u>Glossopteris</u> freshwater sediments" 🔆 (?) Orion Sh. Plb Boonderoo Beds Pla C2 Cl Joe Joe Formation TABLE 1: SUMMARY OF FORMATIONS ASSOCIATED WITH PERMIAN AND CARBONIFEROUS PALYNOLOGICAL UNITS. "Correlation Some Deep Wells NE EROMATIGA Basin QIA" by EVINIS From Record 1964/197 C. Mollan is proposing to re-name these upper and lower divisions of the Bandanna Formation as the "Aubrey Coal Measures" and "Black Alley Shale" respectively.

65.6725

A CONTRACTOR OF THE PARTY OF TH

LOWER CAMBRIAN FOSSILS IN AMERADA MCDILLS NO. 1 WELL, NORTHERN DERRITORY

J. Gilbert-Tomlinson

by

Dopth

The fossils occur between 9634 and 9641 feet (Core 30).

The fossiliferous part of the section is overlain by barron sandstone of uncertain age.

Lithology

The rock is a dark grey dolomitic siltstone preserving traces of lamination. It is very compact, jointed and veined, and occurs in a folded sequence.

Fossils

The fossils consist of fragmentary shells of phosphetic brachiopods referable to the South Australian species "<u>Micromitra</u>" <u>ethericke</u>i (Tate) and "<u>Misusia</u>" <u>compta</u> (Tate) (Tate; 1892; Malcott, 1912).

As indicated by the quotation marks, they are generically unrelated to the typical <u>Micromitra</u> Meek or <u>Misusia</u> Walcott of the North American Cambrian, but the names must be retained until new ones are available. A systematic revision is now being undertaken by Dr. B. Daily of the University of Adelaide.

Stratigraphic conclusions based on the known ranges of the typical <u>Micromitra</u> and <u>Misusia</u> do not apply to these species.

Correlation, age, and palacogeography

The fossils are part of a unique indigenous trachioped fauna found in other parts of the Northern Territory as well as in South Australia:

Northern Territory -

1. North-eastern part of Amadeus Basin (lower part of Todd River Dolomito); absent in other parts of Basin, including south-eastern part immediately north of McDills No. 1 Well.

2. South-western part of Georginz Basin (Mount Baldwin Beds); unknown elsewhere in Basin.

South Australia -

3. Known in all areas except Kulpara and Kangaroo Island (Assemblage 2 of Ajax Limestone and correlates) (Daily, 1956).

Archaeocyatthids are commonly associated or interbedded with the brachiopods but have not been found in the McDills core.

Stratigraphic context in all areas indicates a Lower Cambrish age, probably early in the latter half of the Epoch.

This new discovery is the most southerly known for the faune in the Morthern Territory. It confirms a prediction for the existence of the Lower Cambrian sea in this area made by Opik in 1956.

n,

References

DAILY, B., 1956 -	The Cambrian in South Australia in CAMERIAN vol. 2. 20th Int. geol. Congr., Mexico. pp.	
ÖPIK, A.A., 1956 –	Cambrian palaeogeography of Australia. IBID.; pp. 239-284.	
TATE, R., 1892 -	The Cambrian fossils of South Australia. <u>Tr. roy. Soc. S. Aust</u> ., 15, pp. 183-189.	
MALCOTT, C.D., 1912 -	Cambrian Brachiopoda. U.S. Geol. Surv., Mon	1. 51.

(J. Gilbert-Tomlinson)

'In

20.9.6

WATER ANALYSIS

APPENDIX

IV

Water recovered during an artesian flow at 2375' was analyzed by the Mines Branch, Alice Springs, and is included in this Appendix.

. This was the only water analyzed from the McDills well.

WATER ANALY SHEET RESIDENT GEOLOGI		Name of Bo	ore	4 MILE		
Analysis by		COILLS NO.1		LEASE	 New A 10⁻⁷ er og sin anderen som er og sin at som er og sin a Som er og sin at som er og sin	
		s per million) S		m Artesian		·5 ·
Hardness Total "Temporary "Permanent Free Alkali				4	5	
Chloride	1120					
Sulphate	211					
Fluoride	-6					
Alcium	120.					ههي الج المراجع المراجع
Bicarbonate	193 nil					
Carbonate	660_					
Potassium	32					
Magnesium	85					
Nitrate	2.					
	<i>v</i>					
Total Salts	2423					
REACTING VALUES rcl						
$r(SO_4 + NO_3)$ $r(CO_5 + HCO_3)$		······································				
r(Na + K)						i
rCa						
Total						<u> </u>
					_	
$\% (SO_4 + NO_3)$ $\% (SO_3 + HCO_3)$						••••• •••••
··· (>- + K)					•••	•••••
% Ca			······	•		
Error Primary Salinity		·····				
Secondary Salinity Primary Alkalinity Sciendary Alkalinity			······			······
omerks		<u> </u>				-
		·····				····

oleum Technology Laboratory, Bureau of Mineral Resources, Geology and Geophysics, Canberra

ę

-73

CORE ANALYSIS RESULTS

KOIE:- (i) Unless otherwise stated, the porosities and permeabilities were determined on two small plugs (V&H) cut at right angles from the core, Ruska porosimeter and permeameter were used with, air at 30 p.s.l.g. and dry nitrogene, respectively, as the saturating and flowing media. (ii) Residual oil and water saturations were determined using soxhlet type apparatus. (iii) Acetone test precipitates are recorded as nil, trace, fair, strong or very strong.

								•	. ·		, · ·		
Core No.	Depth From:- To:-	Lithology	Average Effective Porosity from	Peri	Absolute Permeability (Millidarcy)				Saturation pre space)		Core Water Salinity	Solubility in 15% HC1 (% Bulk vol.)	Fluorescence of freshly braken core.
			two plugs (Z Bulk Yol.)	٧	H	Dry Bulk	Apparent Grain	Water	Dil	· · ·	(P.P.M. NaC1)	(2000	
1 '	238410" 238413"	Sandstone pyritic	. 6 .	Nil	Nil .	2.95	3.12	.8	Nil	Nil	N.D.	N.D.	Bright whitis
2	269217" 2692111"	Sandstone	19	187 ·	127	2.16	2.67	Nil	"	"	t1	11	Ni).
3	270210" 270213"	Sandstone	. 25	135	168	2.11	2 . 69	11	и	и. 	12	a	i)
4	296310" 296314"	Siltstone & claystone	6	Nil	Nil	2.49	2.65	н.	11	. "	11	"	tr .
4	2972'1" 2972'5"	Shale	18	Nil	Nii	2.31	2.64	H.D.	ĸ.D.	N.D.		11	N.D.
5	29731 29831	Shale	SMALL	CHIPS	ONLY	NOT	SUITA	Ъñ .	OR A	Y31 8			
<u>6</u>	313210"" 313214"	Shale & siltstone,	24	N.D.	K.D.	2.21	2.89	N.D.	H.D.	N.D.	H.D.	E.D.	 X.D.

Remarks:-

65/4156

ſ

λ.

COPY 3

General File No. 52/399. Well File No. 57/5156 Petroleum Technology Laboratory, Bureau of Mineral Resources, Geology and Geophysics, Canberra

CORE ANALYSIS RESULTS

NOIE:- (i) Unless otherwise stated, the porosities and permeabilities were determined on two snall plugs (V&H) cut at right angles from the core. Ruska porosimeter and permeameter were used with, air at 30 p.s.i.g. and dry nitrogene, respectively, as the saturating and flowing media. (ii) Residual oil and water saturations were determined using soxhlet type apparatus. (iii) Acetone test precipitates are recorded as nil, trace, fair, strong or very strong.

L NAME A	ND NO.	McDILLS	No. 1					DA	TE OF TEST	•	18th JAM	JARY 1966	······		
Core No.	Depth From:- To:-	Lithology	Average Effective Porosity from	Perm	reability		Absolute Permeability (Millidarcy)				Fluid Saturation (% of pore space)		Core Water Salinity (P.P.M.	Solubility `In 15≴ HC1 (≵ Bulk vol.)	Fluorescence of freshly broken core.
а – а а	· · · ·		two plugs (% Bulk Vol.)	Ŷ	H	Dry Bulk	Apparent Grain	Water	011		- NaC1)				
7	3363'4" 3363'8"	Sandstone	23	650	1, 400	2.07	2.68	15	Nil	Nil	N.D.	N.D.	Hil		
7	3369"4" 3370"0"	Sandstone	23	31	153	2.11	2.68	N.J.	N.D.	- N.D.	ţ	. 11			
8	3650'8" 3650'11"	Sandstone	22	270	329	2.08	2.66	Nil	Nil.	Nil ·	H	11	Mil		
9		Siltstone & Shale	16	N.D.	N.D.	2.28	2.70	E.D.	E.D.	N.D.		····	H.D.		
10	383914" 383916"	Sandstone	20	Nij	Nil	2.21	2.78	12	Nil	Mil	11		. Nil		
11	4153'8" 4154'0"	Sandstone	24	1,036	1,248	2.00	2.64	II.D	į I.D.	x.p. [н <u>.</u>	11	E.D.		
	4158 1 5" 415818"	Sandstone	23	1,250	2,500	2.04	2.66	11	Nil	Nil	11	H	Mil		

General File No. 62/399. Well File No. 65/3156

Remarks: -

Petroleum Technology Laboratory, Bureau of Mineral Resources, Geology and Geophysics, Canberra

CORE ANALYSIS RESULTS

NOIE:- (i) Unless otherwise stated, the porosities and permeabilities were determined on two small plugs (V&H) cut at right angles from the core. Ruska porosimeter and permeameter were used with, air at 30 p.s.l.g. and dry nitrogene, respectively, as the saturating and flowing media. (ii) Residual oil and water saturations were determined using soxhlet type apparatus. (iii) Acetone test precipitates are recorded as nil, trace, fair, strong or very strong.

	r	r			2	•			DATE OF TES		Sth JAEU/I	1965	
Core No.	Depth Fron:- To:-	Lithology	Average Effective Porosity from two plugs	Per	olute meability llidarcy)	D	verage ensity gm:/cc.)	Fluid (% of p	Saturation ore space)	Acetone ' Test	Core Vater Salinity	Solubility in 15≵ HC1	Fluorescence of freshly braken core.
			(% Bulk Vol.)	۷	H	Dry Bulk	Apparent Grain	Water	011		(P.P.M. NaC1)	(\$ 8u]k vo].	or unen core.
.12	·4469'0" 4469'5"	Sandstone	20	528	447	2.13	2.65	2	Nil	Nil	N.D.		
12	4473 ' 5". 4473 ' 9"	11	20	54	426	2.12	2.65	N.D.	<u> </u>			M.D.	Nil
.13	4784'0" 4784'5"	11	22	557	818	2.07					N.D.	N.D.	. N.D.
14	5108'0"					2.01	2.65	1	Nil	Nil	K.D.	N.D.	Nil
	5108'3"		16	82	77	2.24	2.65	Nil	Nil	liil	N.D.	E.D.	Nil
14	5110'5" 5110'8"	11	16	206	432	2.25	2.65	11.D.	N.D.	N.D.	H.D.	K.D.	N.J.
15	525417" 525510"	11	20	298	637	2.13	2.65		rii				
16	5560'2"		47							****	E.9.	U.D.	Fil
	556015"		17	26	55	2.22	.2.68	3	15.1	Nil	N.D.	E.D.	Vil

Remarks:-

General File No. 62/399. Well File No. 65/4156

Petroleum lechnology Laboratory, Bureau of Mineral Resources, Geology and Geophysics, Canberra

7;

CORE ANALYSIS RESULTS

NOTE:- (i) Unless otherwise stated, the porosities and permeabilities were determined on two small plugs (V&H) cut at right angles from the core. Ruska porosimeter and permeameter were used with, air at 30 p.s.l.g. and dry nitrogene, respectively, as the saturating and flowing media. (ii) Residual oil and water saturations were determined using soxhiet type apparatus. (iii) Acetone test precipitates are recorded as nil, trace, fair, strong or very strong.

WELL	NANE	AND NO.	McDILLS		No.		1	· `	
------	------	---------	---------	--	-----	--	---	-----	--

DATE OF TEST. 18th JANUARY 1966

General File No. 62/399. Well File No.

05/4150

Core No.	Depth From:- To:-	Lithology	Average Effective Porosity from two plugs	Per	olute meability llidarcy)	. D	verage lensity gm:/cc.}		Saturation pre space)		Salinity	Solubility in 15% HC1 (% Bulk vol.)	fluorescence of freshly broken core.
			(% Bulk Vol.)	V	н	Dry Bulk	Apparent Grain	Water			(P.P.M. NaC1)	LA DUIK VOI.	
17	581510" 581514"	Conglomera	te 6	Nil	Nil,	2.60	2.72	10	Nil	Nil	N.D.	N.D.	Dull glow in part
18	632516" 6325"10"	, ii	7	1	Fil	2.54	2.72	14	11	. 11	11	11	Nil
19	659618" 659710"	11	6	Nil	Nil	2.56	2.71	. 15	~ 11	11	u.		11
20 .	7054 ' 0" 7054 ' 4"	11	11	40	45	2.37	2.66	Nil		11	11	11	а
21	7075 1 0" 707514"	Sandstone	18	103 /	196	2.19	2.66		"		11	91	
22	7616 1 7" 7616111"	Sandstone	18	208	321	2,19	2.68			u	и.	11	11
23 %		Siltstone & claystone	6	Til .	Nil	/ 2.53	.2.68	н.р.	Ř.D.	P	17	ù.	

Remarks: -

'Dal

Petroleum Technology Laboratory, Bureau of Mineral Resources, Geology and Geophysics, Camberra

63) -

CORE ANALYSIS RESULTS

NOIE:- (1) Unless otherwise stated, the porosities and permeabilities were determined on two small plugs (V&H) cut at right angles from the core. Ruska porosimeter and permeameter were used with, air at 30 p.s.i.g. and dry nitrogene, respectively, as the saturating and flowing media. (11) Residual oil and water saturations were determined using soxhlet type apparatus. (111) Acetore test precipitates are recorded as nil, trace, fair, strong or very strong.

ELL NAKE	AND NO	McDILLS	No. 1						DATE OF TE	er an			
	r			· · ·						31	th JATUA	<u>1966 - 1966 - 1966 - 1966 - 1966 - 1966 - 1966 - 1966 - 1966 - 1966 - 1966 - 1966 - 1966 - 1966 - 1966 - 1966</u>	
Core No.	Depth From:- To:-	Lithology	Porosity from two plugs	Per	solute meability llidarcy}	1 . 1	Average Density gm /cc.)	Fluid (% of p	Saturation ore space)	Acetone Test	Core Water Salinity	Solubility in 15% HC1	Flucrescence of freshly broken core.
			(% Bulk Vol.)	, V	H	Dry Bulk	Apparent Grain	Water	011		(P.P.M. NaC1)	(Z Bulk vol.	uruken core.
24	`8116'7" 8116'11"	Sandstone	11	1	Nil	2.43		11	Nil				
25	8314'0" 8314'3"	Claystone	6	Ni1	Nil	2.57		ì.D.	к.р.	Nil	N.D.	N.D.	Nil
26	8740' 8741'	cd	RE	RECOVER	Y	NIL		1	1	N.D.	H.D.	I.D.	E.D.
27	8917'0" 8917'4"	Sandstons siliceous	4	Nil	Nil	2.56	2.68	N.D.					
28	904818" 904910"	Shale	. 1				÷		N.D.	N.D.	H.D.	N.D.	r.b.
29	9357110 935812"	"	1			2.74	2,76			"	"		- 12
30	9635'0"					2.72	2.74			11	. 11 .	н	
L	96351.4"		1	a.	n - 1	- 2.71	2.73	÷ н	in .	11	. 11		

Remarks:-

General File No. 62/399. Well File No. 65/2156

300

Petroreum Technology Laboratory, Bureau of Mineral Resources, Geology and Geophysics, Canberra

CORE ANALYSIS RESULTS

NOIE:- (i) Unless otherwise stated, the porosities and permeabilities were determined on two small plugs (V&H) cut at right angles from the core. Ruska porosimeter and permeameter were used with, air at 30 p.s.l.g. and dry nitrogene, respectively, as the saturating and flowing media. (ii) Residual oil and vater saturations were determined using soxhiet type apparatus. (iii) Acetone test precipitates are recorded as nil, trace, fair, strong or very strong.

Core No.	Depth From:- To:-	Lithology	Average Effective Porosity from two plugs (\$ Bulk Vol.)	Absolute Perseability (Millidarcy)		Average Density (gm:/cc.)		Fluid Saturation (% of pore space)		Acetone Test	Core Water Salinity	Solubility in 15≴ HCl (≵ Bulk vol.)	Fluorescence of freshly broken core.
				Ŷ	K	Dry Bulk	Apparent Grain	Water	011		(P.P.M. NaC1)		
31	10,062'1' 10,062'4'	Shale	1	Nil	Nil	2.70	2.73	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
32	10,511'0' 10,511'4'		1	"	. 11	2.71	2.72	11	11	"	11	11	
					<i></i>								
·			· · · ·										
	2			1									
								+					
marks:-						l .	1.	<u>-</u> _		k -		eral File No. 6 I File No. o	52/399. 5/4156

APPENDIX V

Report on

WELL VELOCITY SURVEY

AMERADA PETROLEUM CORPORATION

OF AUSTRALIA, LIMITED

McDILLS NO.1

OIL PERMIT 57

NORTHERN TERRITORY, AUSTRALIA

Shot by

AUSTRAL GEO PROSPECTORS PTY. LTD.

November, 1965

10!

WELL VELOCITY SURVEY

AMERADA McDILLS NO.1

A Velocity Survey of the Amerada McDills No.l well, located in Oil Permit No.57 of Northern Territory at Latitude 25°43'50" South, Longitude 135°47'25" East, was conducted by Austral Geo Prospectors Pty. Ltd. on June 20, 1965 and September 3, 1965.

The Velocity Survey was conducted in two stages. The first stage, on June 20, 1965 by AGP Crew #2, was to a depth of 3500' prior to setting casing to 3000'. The second stage, on September 3, 1965, by AGP Crew #3, was conducted after the well had reached total depth at 10,515'. The holes designated "A" and "B" on the survey plat were used in the first stage. The holes designated "C" and "D" were used in the second stage.

The pressure sensitive well geophone used was supplied by Austral Geo Prospectors and lowered by Welex truck and cable. SIE PT-100 amplifiers were used to make the records. Quality of the well geophone breaks were from good to very poor, the majority being fair or poor. The trace arrangement on the Velocity Survey records is as follows:

Trace No. 1	Time break.
Trace No. 2	Uphole geophone.
Trace No. 3	Well geophone, high gain.
Trace No. 4	Well geophone, medium gain.
Trace No. 5	Well geophone, low gain.

Profile 119 on Line D of the Dakota Bore Seismic Survey was used for the reflection profile. Shot point 119 is located 1590' north-west of McDills No.1. This profile was shot by Geoseismic (Australia) Pty. Ltd., and used by courtesy of Beach Petroleum No Liability.

The reflection profile and all calculations in the Velocity Survey are corrected to a +300' datum plane. Since the well

10

- 1 -

geophone depths were selected from sample tops, they do not necessarily coincide with definite geological markers. Times to these geological markers may be read from the time-depth curve for reflection identification.

Respectfully submitted,

AMERADA PETROLEUM CORPORATION OF AUSTRALIA, LIMITED

more E.H. Prigmore, Chior Computer

con Gilliam, Geophysical Supervisor

Enclosures:

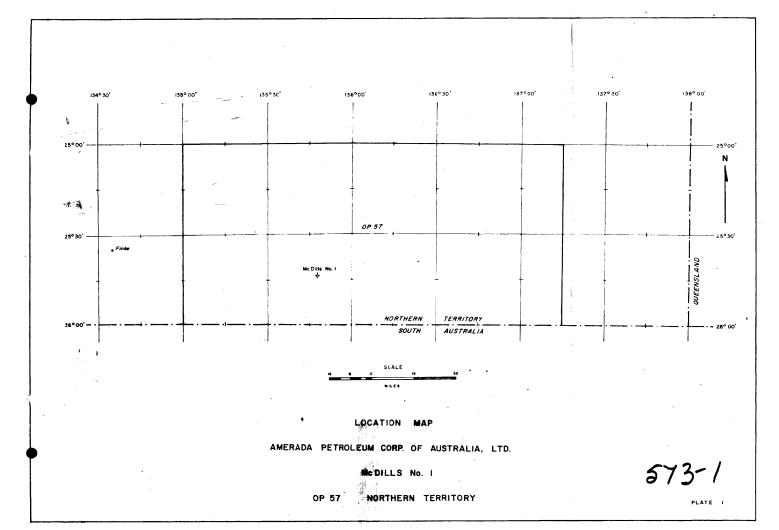
Plate 1 Location Map Plate 2 Layout of Shot Holes Plate 3 Computation Sheet Plate 4 Uphole Velocity Survey Plate 5 Well Velocity Curves Plate 6 Reduced Copies of Records Plate 7 Reflection Profile

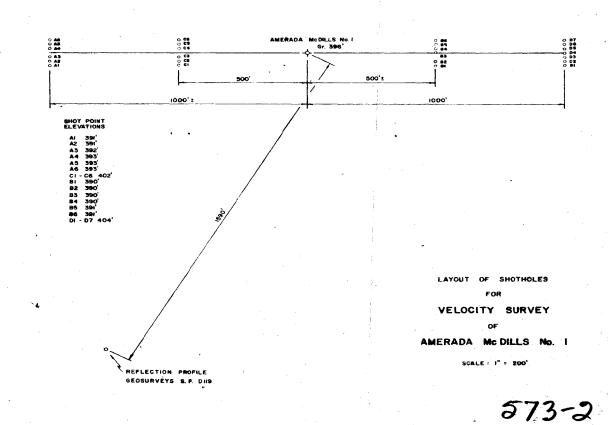
- 2 -

SUB SEA ELEVATION AGE GROUP FORMATION . DEPTH THICKк.в. MESS. QUATERNARY SURFACE +412 3.01 Rumbalara 101 +311 1335 Shale LOWER CRETACEOUS Transition 1436 -1024 82 Beds De Souza JURASSIC 1518 -1106 834 Sandstone .. Crown PERMIAN 2352 -1940 635 Point 3220 Idracowra 2987 -3575 قصفر Sandstone UPPER Horseshoe Bend 3790 -3378 280 DEVONIAN Shale Finke to Langra 4070 -3658 1730 CARBONIFEROUS Sandstone Polly 5800 -5388 1290 Conglomerate 1.1 . Mercenie 7090 -6678 1120 DEVONIAN? Sandstone Unnamed. 8210 -7798 814 Unit Todd River 9024 -8612 +1491 LOWER CAMBRIAN Dolomite -1 Total 10,515 -10,103 Depth

ING

AMERADA PETROLEUM AMERADA NO DILLS NO 1


68

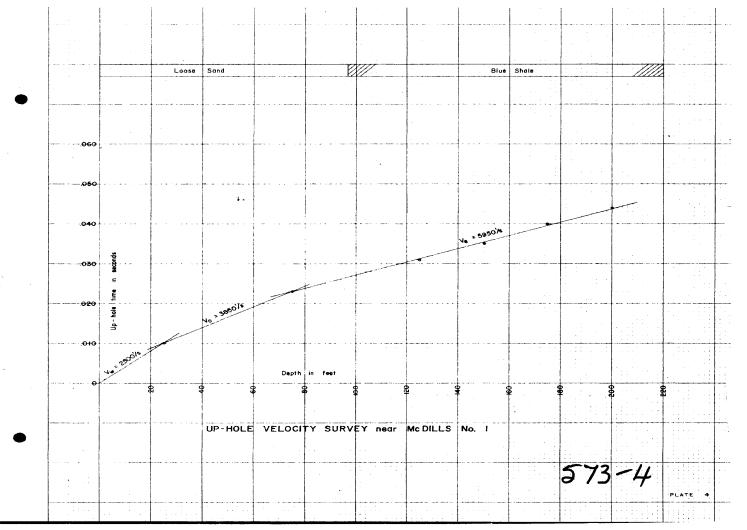

ENV 543 PANTE | LOCATION MAD LAYOUT OF SHOTHOLES FOR VELOCITY SURVEY SITOF HOLE FLEORA 2 **C***. 3 ~ 3 UP-HOLG VELOCITY SURVEY Nº NODILS 4 "4 COMPOSITE WALL LOR 5 ч **S** 6

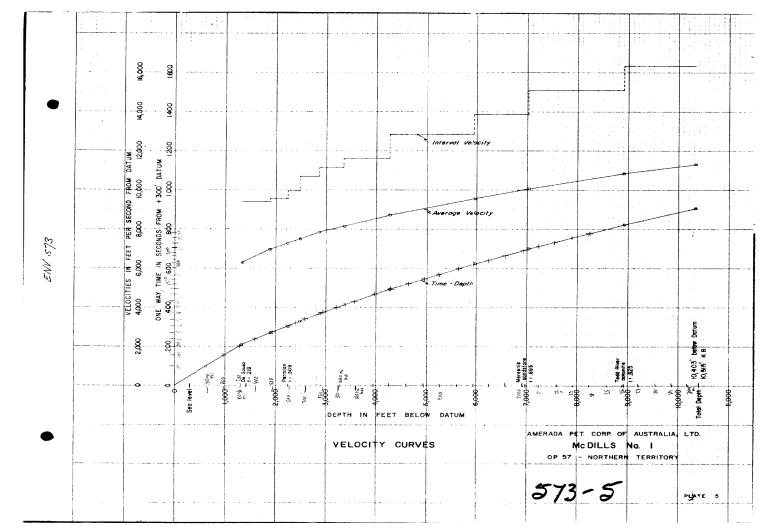
RELEASED

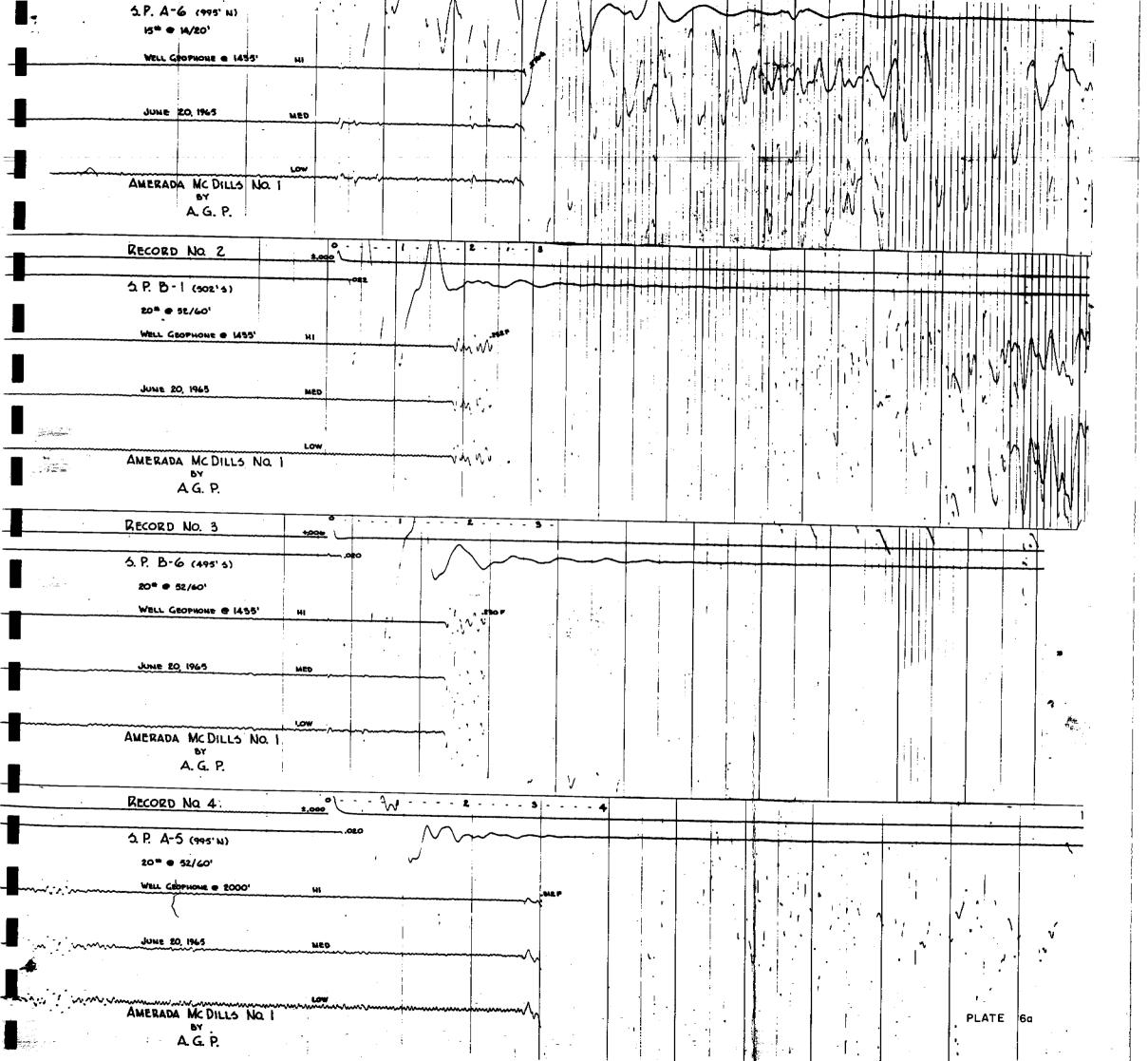
					Je.										
J								نى <u>تە</u> تقىمىد							
						I	CDILLS	1							
-			P	edirka	Basin	2	MCD-1 25 44 s	. lat.	135	47 e.	long.				
	+	H	FT	%I-C	x0-c	ŽN	ZH	S1	67.	TMAX					
-	1	308	1010	2.6	2.29			0.13	0.9	467	PI.	HI	GP		
	2	473	1550	4.3	2.03			0.57	1.8	467	0.12	40	1.0		
	3	724	2375	0.3	63.63			3.56	160.4		0.24	87	2.3		
·	4	725	2379	0.6	48.93			5.47	139.0	493	0.02	252	164.0		
	5	726	2382	0.7	7.29			0.52		491	0.04	284	144.5		
	6	823	2699	0.1	0.70			bd1	11.6	474	0.04	159	12.1		
<u> </u>	7	905	2969	1.6	1.43			0.11	bdl	ndm					
	8	906	2972	1.5	1.36				0.4	479	0.22	26	0.5		
•	9	1028	3371	0.5	0.82	•		bdl	0.3	476		25	0.4		
_	10	1114	3654	1.0	0.88			bd1	pq1 ,	ndar		•••			
	11	1557	5108	5.9	0.68			0.08	0.3	471	0.23	32 -	0.4		
	12	2536	8317	0.7	1.10			bd1	bd1	ndm	·• •• ••				
	13	2757	9043	55.2	0.97			bd1	0.5	427		44	0.5		
-	14	2853	9358	57.6	0.61		·	bdl	0.3	479		32	0.3		
	15	2938	9635					0.07	0.5	474	0.13	03	0.6		
	16	3051	10006	30.5	1.06			bd1	0.2	476		21	0.3		
-	17	3204	10508		1.08			bd1	bd1	nda					
	18	3204		20.3	1.37			0.08	0.9	430	0.03	66	1.0		
_	10	3403	10514	16.2	1.56	·		0.06	6d1	ndma	• • •	•••	0.2		
	Pyr	olysis	run wit	h CDS P	yroprobe	and or	ininal								
	Mi	s samp	le depth	in met	ers.		ratuat	interia	ice: Ina	IX INac	curate.				
	FT ·	is sam	ole⊹dent	h in fe	at						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
	ZI-(C is i	norganic	carbon	35 7 05	loium o									
	20-1	C is o	rganic c	arbon a	s % carb	an in ea	srbunat	e in ro	ICK.						
-	2N :	is Z n	itrogen	in rock		on in re	JCK.			· ·					
	ZH :	is Z h	ydrogen	in rock	•						21				
	S1 i	is nur	nlusie f	non-bud											
	S2 -	is nur/	nlveie k		rocarbon	signal	(mg hy	drocarb	ons/g r	ock).					
	PI i	is pro	duction	indev f	signal () 51/(S1+S)	mg 52 hy	drocar	bons/g	rock).	1					
	TNAS	(ie +			51/(51+5.										
	HT i	ie bude	superato.	re at wi	nich S2	signal i	s maxi	num (de	g C).						
~ -	GP i	is nyar	tio na	oex (mg	hydroca	rbons/g	0-C).								
	1641	l' mone	FULC DOLL	ential ((kg hydr	carbons	/ton r	ock) (S	1+52).						
		uea:	12 0610	w <u>detec</u> i	CION lim:	11.12	''	neans '	not det	ermine	d'.				
-	1.03	, mear	is no di	erinitiv	e maximu	Jm'.					11 A.				
									!						
•															

.

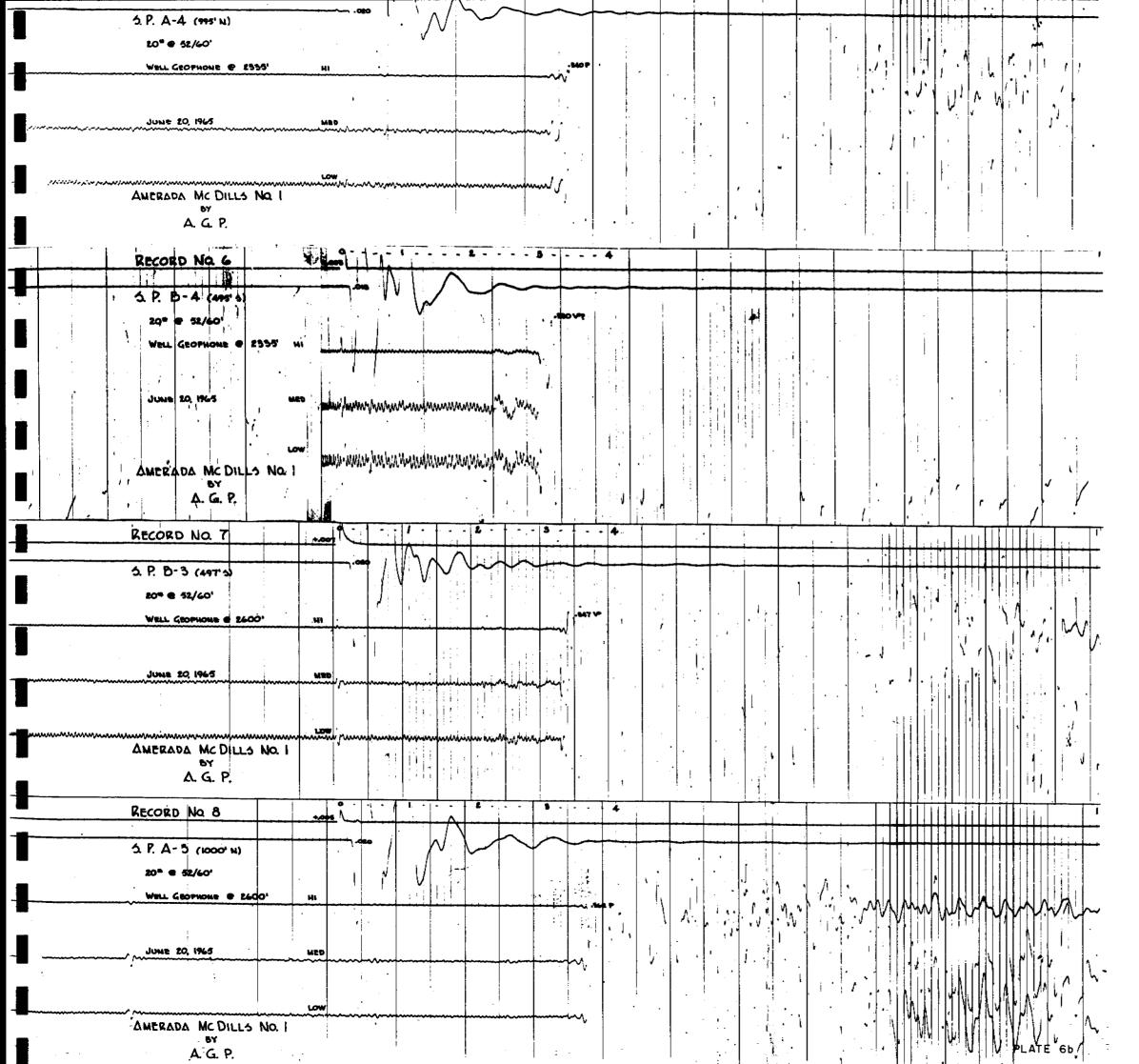
.

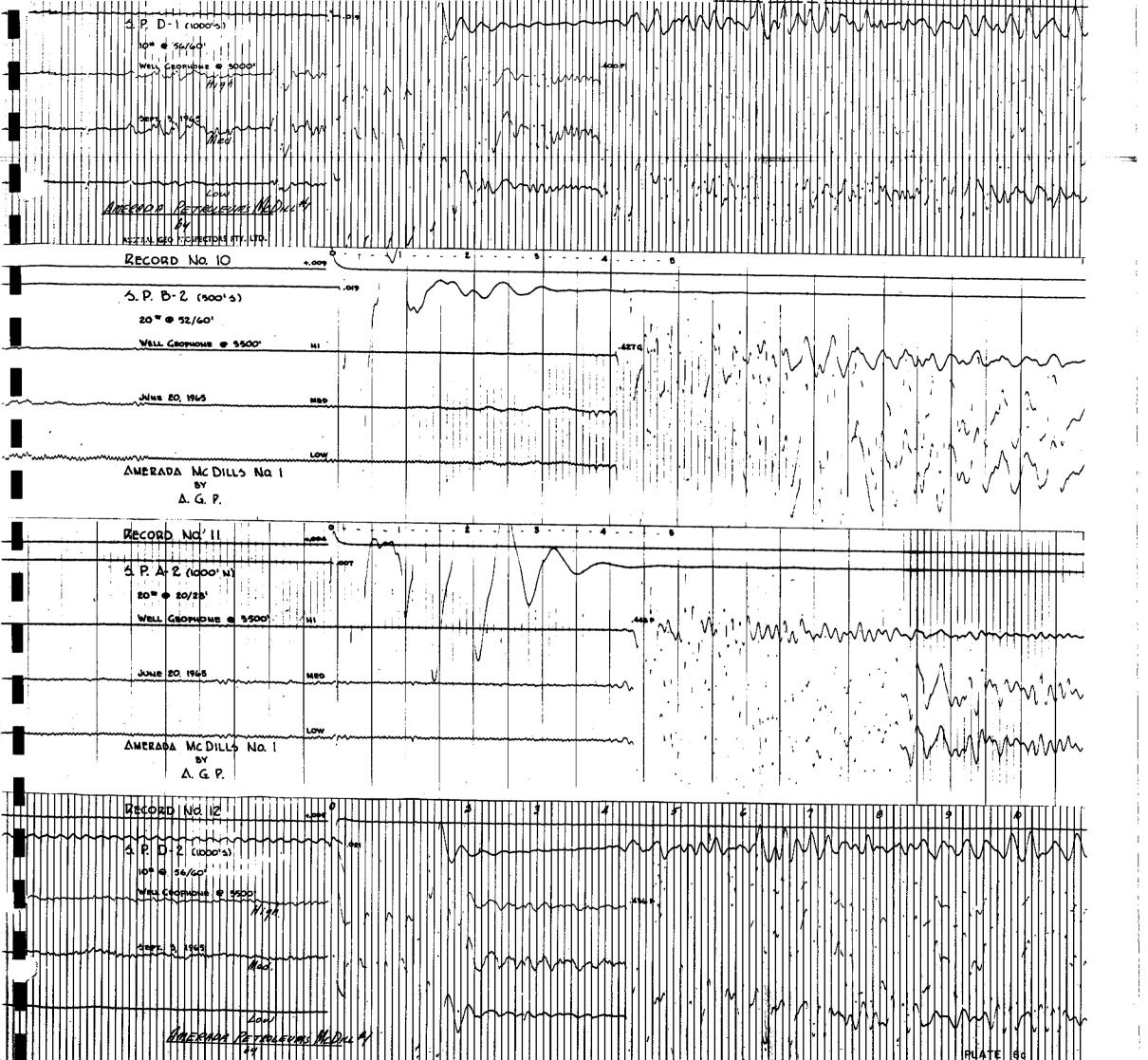

True North

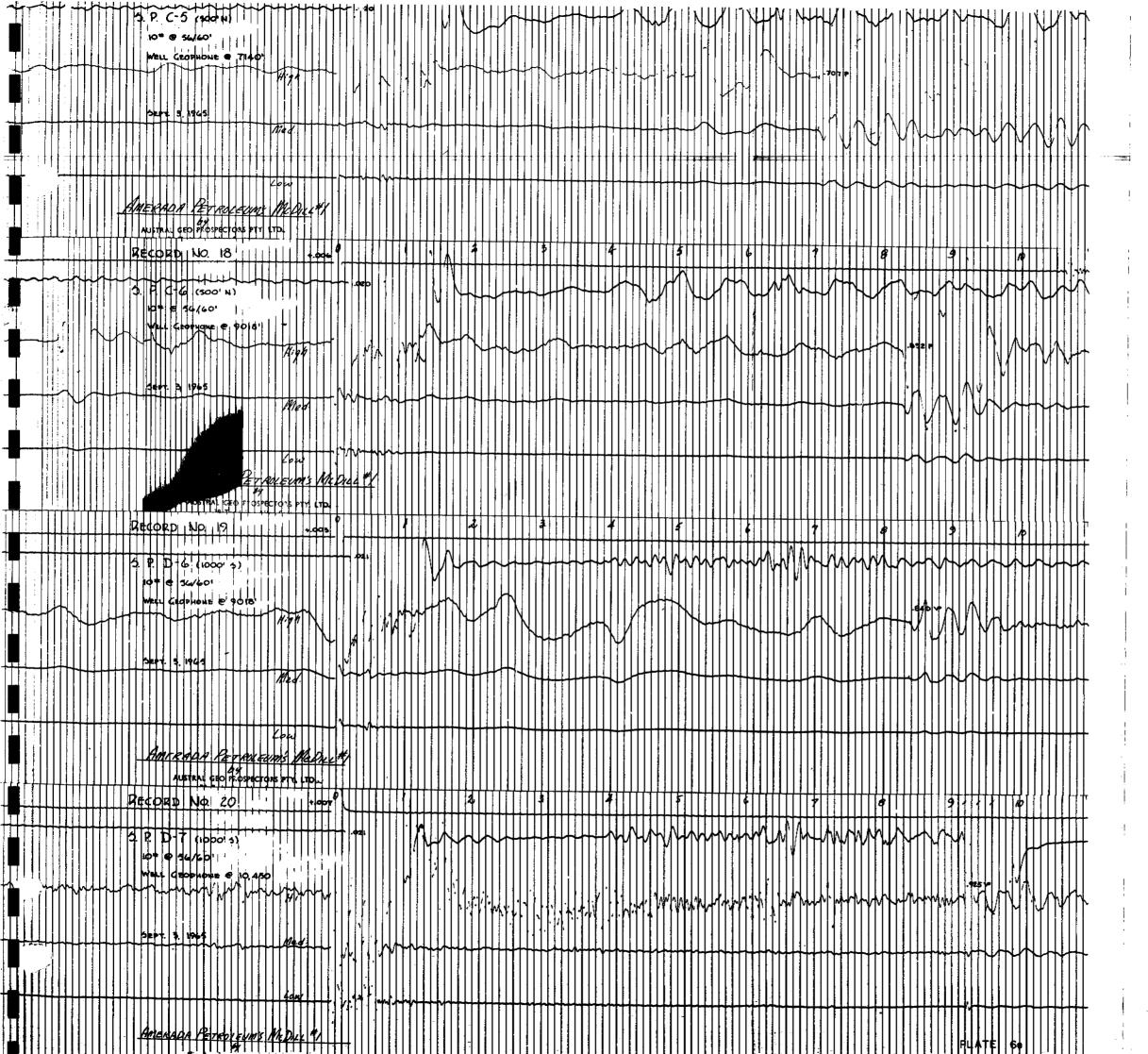

٢


PLATE 2

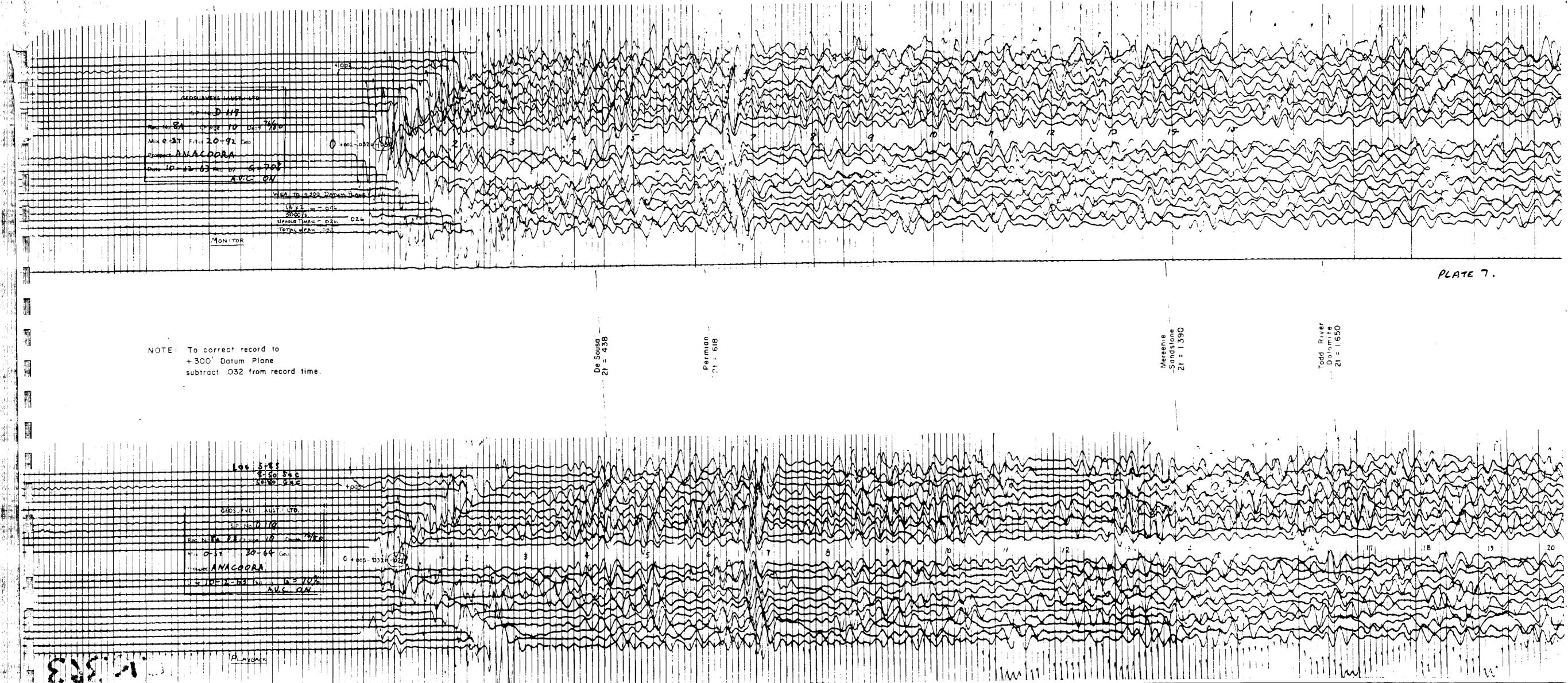
	Mana Surve Comp	SURVEY I load by load by load by load by s of survey	E. A. E. Jur	M. Hof G.P. Ci H. Prig M. 20,	fman ews 2 jmore 1965		AME	RAD	AP	ET. CO McD		DF AU No. I		LIA,	LTD.	Wel Elevot K.B.= Gr =	+412'	otal Depth D, 515'	Co	-ordinates	135° OP 57	43' 50" 47' 25"	E Long.	·	E _h - E _d - Es -	
Recor	d Shot		1	pt. 3,	1	Shot	-									1	be △	ł	Tad		rn Territ		V i	Va Va	·.	
Nbr.	Nbr.	Dgm	Tus	D _s	Δe	Hole Elev	Ε,	Dws	Δsd	Dgs	н	Cot i	Cosi	т	Grade	Tgs	VR	Tgd	Average	Dgđ	ΔTgd	ΔDgd	Interval Velocity	Average Velocity		Digen Digen
1	A-6	1435	.005		+19	395	+	39	-73	1396	995	1.403	.814	.276	G	.2247	0146	.2101						1	1	5 D _{gd}
2	B-1	1435	.022	60	+22	390	+	82	-30	1353	502	2.695	.937	232	F	.2174	-,0060	.2114	+				•	1	1	<u></u> ∠i-
3	B-6	1435	.020	60	+21	391	331	81	-31	1354	495	2.735	.939	.230	F	.2160	0062	.2098	.2104	1323	.0601	565	9401	6288	-	
4									Ļ									1					1	<u> </u>		= Elevation of Shot
F	A-5	2000	.020	60	+19	393	333	79	-35	1921	995	1.931	.888	1.312	F	2771	:0066	.2705	.2705	1888				6980	E	 Elevation of Mouth of Shot Hole Elevation of Datum Plane
5		2335	020	60	+19	393	333	70	-33	2251	20.6	22/7	015	140	Р	••••	0.04	10015			.0351	335	9544		4	= +300' = Elevation of Well
6			020		+22		330		-30	2256	995 495	2.267	.915 .977	340		.3111	0066	.3045	1051	2222						 Well Geophone Depth measured from Well Elevation
F.	. 4	2333	.018	60	1-22	370	1321	02	-30	6200	475	4,002	.711	.520	1000	.5120	0060	.3066	.3056	2723				7274	Dgs	= Well Geophone Depth measured from
7	B-3	2600	.020	60	+22	390	330	82	-30	2518	497	5.066	.981	.347	v	3404	0060	3344	1		.0266	265	9962	}	D _{od}	Shot Elevation = Well Geophone Depth measured from
18		2600	· · · · · ·		+	+	332	80	-32	2520		2.520		362		.3363	0064		.3322	2488				7489	D,	Datum Elevation. = Depth of Shot
			,,								1000	2.300						1.5277		2400	.0374	400	10,695		H.	 Herizontel Distance from Well to Shot Hole Straight Line Travel Path from Shot to
9	D-1	3000	.019	60	+8	404	344	68	-44	2932	1000	2.932	946	.400	P	.3784	-,0088	3696	.3696	2888				7814	1	Well Geophone
						T		1									1	1	112.2							= Uphole Time at Shot Hole = Difference in Elevation between Well and
10	B-2	3500	.019	60	+22	390	330	82	-30	3418	500	6.836	.989	.427	G	.4223	-,0060	.4163			.0449	500	11,136		Δ.	Datum Plane = E _w - E _d = Difference in Elevation between Well and
11	A-2	3500	.007	28	+21	391	363	49	-63	3451	1000	3.451	.960	448	Р	.4301	0126	.4175								Shot Hole = Ew - Eh
12	D-2	3500	.021	60	+ 8	404	344	68	-44	3432	1000	3.432	.960	436	F	4186	0088	.4098	.4145	3388				8174	D _{ws} Asd	= Difference in Elevation between Datum
	+				1.1																.0776	900	11,598	-	0.0	Plane and Shat = D _{ws} - D _{wd} or Ed - Ee = D _{am} - D _{ws}
13	C-1	4400	.021	60	+10	402	342	70	-42	4330	500	8.660	.993	.504	F	.5005	-,0084	.4921	.4921	4288				8714	· ·	Dos H
							ļ											L			1307	1675	12816		Tgs	= T cosi = Vertical Travel Time from Shot
14	٢-2	6075	.021	60		+	342	70	-42	6005	500	12.010	.997	.632	Р	.6301	0084	.6217	L			101.5	1.2,010		I	to Well Geophone
15	C-2	6075	.019	56	+10	402	346	66	-46	6009	500	12.018	.997	.635	F	.6331	- 0092	.6239	.6228	5963				9575		= $T_{gs} + \frac{\Delta_{sd}}{V_R}$ = Vertical Travel Time from Datum Plane to Well Geophone
<u> </u>	+					·											ļ	ļ			.076B	1065	13867		Dçđ	= Dgm - Dvd = Dgs + Asd = Vertical Distance from Datum Plane to Well Geophone
16	+	7140	.021	60	+	1	344	68	-44	7072	1000	7.072	.990	.718	Р	7108	-,0088	,7020		ļ				l	v,	ΔD _{gd}
17	C-5	7140	.020	60	+10	402	342	70	-42	7070	500	14.140	.998	.707	Р	.7056	0084	.6972	.6996	7028			+	10,046	l .	Pret
⊢	<u> </u>							l													1245	1878	15084	 		= Average Velocity Tgd = Replacement Velocity = 5000 ¹ /sec.
18	6-6	9018		60	+10		-	70	-42			17.896	.998	832	F	.8303		1						 	T	= Observed Time from Shot to Well
19	D-6	9018	.021	60	+8	404	344	68	-44	8950	1000	8.950	.994	.840	~	.8350	-,0088	.82.62	.8241	8906	.0875	1432	16,366	10,807	1	Geophone
-	D-7	10 450	02:	10		10:	1.0														-		†	1	ł	PLATE 3
20	10-1	10,450	OZ1	60	18	404	344	68	-44	10,382	1000	10.382	.995	.925	14	.9204	-,0088	.9116	.9116	10,338				11,341	1	, LAIL J


573-3









┶┿ ╆┿┿┿		, 641																			ΊΠ		T							Ī
	10 * • 54/60 Well Geographe 5 \$400 ///:		•											•				v					•							
╺╌┶╍┲╼╋╼╋╼╋╼╋						┢╋╋	┝╼┼┥		┝┼┿┥	┢┑┿┿				ì		/\]			++/	Ŷ				$\frac{1}{1}$	\mathbb{H}	\mathbb{N}	┢┼	+	μ	∦
	ретт. з. 1945			μ	h	-	┝┝┝┥	+++		4	44		Í	λh	$\frac{1}{2}$	٨N			4		h	Μ	\mathbb{H}	$\ $		X,	Щ	H	h	\parallel
					4	4																	1	Υ	M					
	Амекара Ретессин'я Мерил У					╋┯╃╃		╅┿╄╇					ΥH	\downarrow	$\uparrow\uparrow$	hh		┝┶┼	+++	\mathcal{W}	h	h	╢	╢	μ	\downarrow	╫	╆	$\left \right\rangle$	╀
	РИЧЕКИЦИ ЛЕУКОСЕСИЛА ЛИСТИЦА Ал Ал																								-					
		++++++		┼┼┼	2	<mark>+</mark> +++		3		4.					4	╞		7			8							10		Д
	1. P. C. Z. (500' N)	12 6																				M	Ŵ	M	\mathbb{M}	Į۴	11	\mathbb{H}	M	Ŋ
	WELL GEOPHONE & 6075'											\mathcal{H}				.632	┍	11						1						
	<i>Mi</i> 9 6					~		H											W	~ ~		Ĩ	1[· `-						
~~~~	Alex 3. 1945				μħ	·///	γ	\downarrow	μh	$\downarrow \downarrow \downarrow$	H	\rightarrow	$\downarrow \uparrow \downarrow \downarrow$	$\frac{1}{1}$	┽┽			μľ	W	\mathcal{N}	\mathbb{W}	\downarrow	세	W	M		N	W	V	N
				$\langle \downarrow \rangle$													١Ц													
	AMERADA RETROCEUMS MCDILL															M	Π	W	Y	γ			\cap		$\ $	Υ	N	Π	\mathcal{H}	$\left \right $
			,	┼╅╿╇																										
						╈		\$		4			$\left\{ + + + + + + + + + + + + + + + + + + +$		4						8	╈		 			$\left \right $	10		+
	3. P. C-2 (soq' µ) µo≠e sz/sc+	019				H	┝┝┍	H^{++}				1	\mathbb{N}	1	N	1		╎			1	1	\cap	们	\mathbb{N}	H	$\frac{1}{1}$	\mathbb{H}	₩	ſſ
-									L,								5 7									N	h			\downarrow
							.							$\ $					IY				VII		Υ	4		$\ $	M	
	Mer Ner	┝┼┮		╫┼		┿┿	┼┼┼	┽╇┿			┝┼┼╴		┝			М	Ŵ	₩	\mathbb{N}	\mathbb{H}	H	╟	₼	\mathbb{W}	\downarrow	╢	\mathbb{H}	¥	Щ	╢
	1 Low 1	11111						Π								Π	Ш	M			\square			\square		\rightarrow				
	ADERADA RETROLEUMS MCDILL													111			111	111	111		111			111						
	ADERACA RETROLEUMS MCDILLA																	1.6												
	RECORD NO. 16				8																									
	RECORD NO. 16									*	 					· · · · ·				-4										
	RECORD NO. 16 3. P. D-5 (1000'3) 107 € 56/60' WELL CEOPHONE € 7140'	GR,										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~																		
	RECORD NO. 16 3. P. D-5 (1000' \$) 10 [∞] € 56/60' WELL GEOPHONE € 7140'																													
	ADERACIA RESPONSIMIS MCDILL & AST MA. GEO PIC RECTORS MY. LTD. RECORD NO. 16 107 E SC/60' WELL CEOPHONE & TIAO' 4194																													

!!!

-

