

LYNES, INC.

орынын Argonaut international corp.

WELL WATER AND INO.

Thomas #1

UU2 110.

N

		· · · · · · · · · · · · · · · · · · ·	;
Contractor P.D.S.	_ Top ChokeVariable	Flow No. 1220	Min.
Big No	Bottom Choke <u>1"</u>	Shut-in No. 1 15	Min.
pot	Size Hole 8 1/2"	Flow No. 2	Min.
ec	Size Rat Hole	Shut-in No. 2	Min.
`wp		Flow No. 3	Min.
wp			
ield Wildcat	Size Wt. Pipe I. D. of D. C2 7/8"	Shut-in No. 3	Min.
			·
		Bottom Hole Temp. 236 F	
levation <u>42 M</u>		Mud Weight 9.6	}
ormation	_ Type of Test	Gravity	<u> </u>
	Straddle	Viscosity42	
	· · · · · · · · · · · · · · · · · · ·	Tool opened @ 4:00	
		Outside Rec	order
······		PRD Make Kuster K-3	
NO 20753; KPA 446 &3. THUMPS =1 (K)		No. 20753 Cap. 6475 @_	7170
KPA GUG and	81 (F)		
(Winnes #1			coo
A K			683
	·	Initial Flow B	606
.			123 986
the prime			
			.077
	• .	Second Initial Flow E	
· / • • •	\	Second Final Flow F	
	N	Second Shut-in G	
) \	Third Initial Flow H	
	M	Third Final Flow 1	
	\mathcal{N} ,	Third Shut-in J	
. , / × / - Þ	$\langle \cdot \rangle$		
h a a			

		Lynes Dist .: Australia	
		Our Tester: Kevin Perri	
		Witnessed By: Michael Wil	<u>rentr</u> e
	· · · · · · · · · · · · · · · · · · ·	······································	
· · · · · · · · · · · · · · · ·			
Did Well Flow – Gas <u>No</u> Oil <u>No</u>	Water <u>No</u>		
	Fotal fluid		
	Drilling mud		
848' N	Nuddy water		
580' s	Slightly gas cut water		
11 T (7 T) T (7	mool nlygged and differents	ally stuck	
MISRUN	: Tool plugged and differenti	arty scuck.	
	DEPT OF MINES & ENERGY		
	DO NOT REMOVE	,	

LY-230

P00913

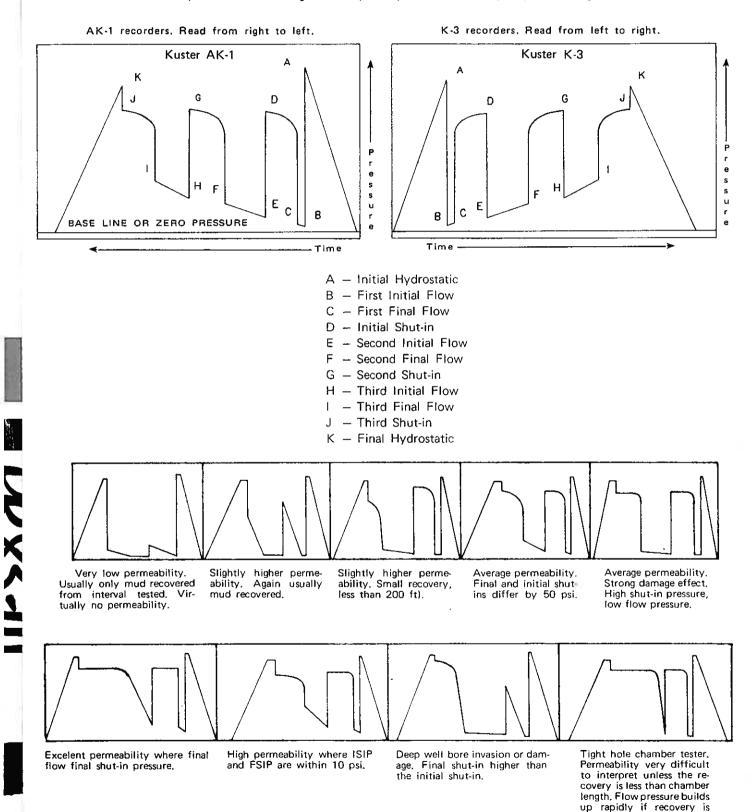
LYNES, INC.

PSI Bood A Corr Initial Hydrostatic A 37 Final Hydrostatic K 36 Initial Filow B 6 Initial Shut-in D 11 Second Final Flow F - Second Final Flow H - Third Shut-in G - Second Final Flow H - Third Shut-in J - Second Final Flow H - Third Shut-in J - Second Shut-in G - Third Shut-in J - Second Shut-in J - Third State F - Prove Final Hydrostatic A Second Shut-in J - Third Second - - Prove Cap. Educe - Prove Cap. Educe - Prove Cap. Educe - Initial Hydrostatic A 36 Final Hydrostatic A 36	Argonaut International Corp. Operator	Thomas #1 Well Name and No	DST No
Initial Prydrostatic A 37 Final Hydrostatic K 36 Final Flow C 10 Initial Flow B 6 Final Hydrostatic K 36 Second Shut-in G - Second Shut-in G - Third Flow F - Second Shut-in G - Third Flow H - Third Flow H - Third Flow H - Third Shut-in J - Pressure Blow Bottom P Pressere Blow Bottom P Pressere Blow Sottom	to CAIR IN AS #1	PRD Make Kuster K	-3
Initial Prydrostatic A 37 Final Hydrostatic K 36 Final Flow C 10 Initial Flow B 6 Final Hydrostatic K 36 Second Shut-in G - Second Shut-in G - Third Flow F - Second Shut-in G - Third Flow H - Third Flow H - Third Flow H - Third Shut-in J - Pressure Blow Bottom P Pressere Blow Bottom P Pressere Blow Sottom	NO TUIS THOMAS 1		
Image: hydrostatic A 37 Final Hydrostatic K 36 Initial Flow C 10 Second Shutin G - Third Hydrostatic A 36 Presure Balow Bottom Peters Blow Peters Presure Balow Bottom Peters Peters Presure Balow Bottom Peters Presure Balow Bottom Peters Presure Balow Bottom Peters Presure Balow Bottom Peters Presure Balow Peters Second Shutin Second Shutin Presure Balow Peters Second Shutin Second Shutin Second Shutin Presure Balow Bottom Peters Second Shutin Second Shutin Second Shutin Second Shutin Printal Hydrostatic A	131 0,000	A A A A A A A A A A A A A A A A A	Corre
Initial Flow B 6 Final Initial Flow C 10 Initial Flow C 10 Initial Flow F - Second Initial Flow F - Second Shut-in G - Third Final Flow H - Third Final Flow I - Third Final Flow I - Third Shut-in J - PRD Make Kuster K-3 No. 20752 Cap. 6400 e71 PRD Make No. 20752 Cap. 6400 e71 Presure Balow Bortom Presure Balow Bortom - Presure Balow Bortom - - <			375
Image: Second Shut-in Final Initial Flow C 10 Initial Shut-in D 11 11 Second Final Flow F - Second Shut-in G Image: Second Shut-in G - - Second Shut-in G Image: Second Shut-in J - - Second Shut-in G - Image: Second Shut-in J - - - - - - Image: Second Shut-in J -	γ		367
Initial Shut-in D 11 Second Final Flow E - Second Final Flow H - Third Final Flow H - Third Shut-in J - Second Shut-in G - Third Shut-in J - Second Shut-in G - Third Shut-in J - Third Shut-in J - Pressure Balow Bortom Pressure Balow Bortom Pressure Balow Bortom Pressure Balow Bortom Pressure Balow Bortom - Pressure Balow Bortom Pressure Balow Bortom - Pressure Balow Bortom - - Pressure Balow Bort			69
Second Finial Flow E Second Finial Flow F Second Shut-in G Third Initial Flow H Third Shut-in J Presure Below Bottom Presure Below Bottom	production of the second		102
Image: Second Shut-in G Second Shut-in G <td></td> <td></td> <td>110</td>			110
Second Shut-in G Third Final Flow I Third Final Flow I Third Final Flow I Pressure Below Bottom P P	μ		1.77
Image: Second			
Image: Second Final Flow Image: Second Final Flow Image: Second Final Flow			
Image: Second Shut-in J			
Wo 20352. Thomas #1 No 20352. Thomas #1 A K Initial Hydrostatic A A K Initial Flow B Initial Flow C Becond Initial Flow C Final Initial Flow C B Initial Flow Final Flow C B Initial Flow Final Flow C B Initial Flow Final Flow Initial Flow Finit Flow			
Packer Bled To Packer Bled To PRD Make Kuster K-3 No 20752 Cap. 6400 @ 71 Press PRD Make Corr No 20752 Cap. 6400 @ 71 Press Corr Initial Hydrostatic A 36 Initial Flow B 1 Final Hydrostatic K 36 Initial Flow B 1 Final Hydrostatic C 9 Initial Shut-in D 10 Second Shut-in G - Second Shut-in G - Third Final Flow H - Third Final Flow I - Third Shut-in J - Pressure Below Bottom		T Iniro Snut-in J	
Packer Bied To Packer Bied To PRD Make Kuster K-3 No 20752 Cap. 6400 @ 71 Press PRD Make Kuster K-3 No 20752 Cap. 6400 @ 71 Press Cor Initial Hydrostatic A 36 Final Hydrostatic K 36 Initial Flow B 1 Final Initial Flow C 9 Initial Shut-in D 10 Second Shut-in G - Second Shut-in G - Third Final Flow H - Third Final Flow H - Third Final Flow I Pressure Below Bottom		N:	
Packer Bled To Packer Bled To PRD Make Kuster K-3 No 20752 Cap. 6400 @ 71 Press PRD Make Correct A 36 Initial Hydrostatic A 36 Final Hydrostatic K 36 Initial Flow B 1 Final Initial Flow C 9 Initial Shut-in D 10 Second Final Flow F Second Shut-in G Third Final Flow H Third Shut-in J Pressure Below Bottom		2 K.	
Wo 20752. Thomas #1 PRD Make Kuster K-3 No 20752. Cap. 6400 071 Press Con Initial Hydrostatic A 36 Final Hydrostatic K 36 Initial Flow B 1 Final Initial Flow C 0 Initial Shut-in D 10 Second Final Flow F - Second Final Flow F - Second Shut-in G - Third Final Flow I - Third Final Flow I - Pressure Below Bottom - -			
Wo 20352 Themas #/ KPA441306 Themas #/ A K Initial Hydrostatic A A K Initial Flow B Final Initial Flow C Initial Shut-in D Second Final Flow F Second Shut-in G Third Shut-in J Third Shut-in J Pressure Below Bottom	а. Ка		
Wo 20552 . Thomas #/ KPA44126 . Thomas #/ A K A K C D B C D Pressure Below Bottom	Ϋ́		. <u></u>
Wo 20552. RPA44726.	X		` ~
A K Final Hydrostatic A 36 Final Hydrostatic K 36 Initial Flow B 1 Final Initial Flow C 9 Initial Shut-in D 10 Second Initial Flow F - Second Shut-in G - Third Initial Flow H - Third Shut-in J - Pressure Below Bottom	10207Q.		
A K Final Hydrostatic A 36 Final Hydrostatic K 36 Initial Flow B 1 Final Initial Flow C 9 Initial Shut-in D 10 Second Initial Flow F - Second Shut-in G - Third Initial Flow H - Third Shut-in J - Pressure Below Bottom	SPALGISG. homas in		
A K A K Initial Flow B Initial Flow C Initial Shut-in D Initial Shut-in D Second Initial Flow F Second Shut-in G Third Initial Flow H Third Shut-in J Pressure Below Bottom P			Corr
Initial Flow B 1 Final Initial Flow C 9 Initial Shut-in D 10 Second Initial Flow F	A		368
Final Initial Flow C g Initial Shut-in D 10 Second Initial Flow E			
Initial Shut-in D 10 Second Initial Flow E			
B Second Initial Flow E Second Final Flow F Second Shut-in G Third Initial Flow H Third Final Flow I Third Shut-in J Pressure Below Bottom			1
Second Final Flow F Second Shut-in G Third Initial Flow H Third Final Flow I Third Shut-in J Pressure Below Bottom			
Second Shut-in G Third Initial Flow H Third Final Flow 1 Third Shut-in J Pressure Below Bottom	· / / /		
B C D Third Final Flow I Third Shut-in J - Pressure Below Bottom			
E O Find Final Flow Third Shut-in J Pressure Below Bottom			
E Third Shut-in J Pressure Below Bottom			
Pressure Below Bottom			
Packer Bied To			

.

LY-232

PRESSURE CHARTS


ð

large, similar to a shut-in.

GUIDE TO INTERPRETATION AND IDENTIFICATION OF LYNES DRILL STEM TEST PRESSURE CHARTS

In making any interpretation, our employees will give Customer the benefit of their best judgment as to the correct interpretation. Nevertheless, since all interpretations are opinions based on inferences from electrical, mechanical or other measurements, we cannot, and do not, guarantee the accuracy or correctness of any interpretations, and we shall not be liable or responsible, except in the case of gross or wilful negligence on our part, for any loss, costs, damages or expenses incurred or sustained by Customer resulting from any interpretation made by any of our agents or employees.

NOMENCLATURE (Definition of Symbols)

- Q = average production rate during test, bbls./day
- Q_{κ} = measured gas production rate during test, MCF/day
- k = permeability, md
- h = net pay thickness, ft. (when unknown, test interval is chosen)
- μ = fluid viscosity, centipoise
- Z = compressibility factor
- T_f = reservoir temperature, ^o Rankine
- m = slope of final SIP buildup plot, psig/cycle (psig²/cycle for gas)
 - = approximate radius of investigation, feet
- r_w = wellbore radius, feet
- to = total flowing time, minutes
- P_o = Extrapolated maximum reservoir pressure, psig
- P_t = final flowing pressure, psig
- P.I. = productivity index, bbls./day/psi
- $P.I._t$ = theoretical productivity index with damage removed, bbl./day/psi
- D.R. = damage ratio

ь

- E.D.R. = estimated damage ratio
- AOF = absolute open flow potential, MCF/D
- AOF_t = theoretical absolute open flow if damage were removed
- ₹ = subsea depth
- W = water gradient based on salinity
- H, = potentiometric surface

INTERPRETATION CALCULATIONS ((OIL/WATER)
AVERAGE PRODUCTION RATE DURING TEST	er - 197 - 11
Q = 1440 (dr.it collar capacity + recovery + drill pipe app initial flow time + funal flow time	ac a receivery)
$= \frac{1440 [()()+ ())()}{()+ ()}$	
= 1440 (.0145 or .0073) () ()	Mud Espan n ft. (Dr C ar Conversion) is Considered
= bbls./day	\ Is Considered /
FLUID PROPERTIES Estimate	d Bottom Hole Temperature
API Gravity @ 60° F Specific Gravity @ 60° F.	Est. Viscosity cp
TRANSMISSIBILITY	
$\frac{bh}{\mu} = \frac{162.6Q}{m} = \frac{162.6}{()} =$	mdft/cp
IN SITU CAPACITY	,,
kh == ()()=md.ft.	
AVERAGE EFFECTIVE PERMEABILITY	Estimated Pay Thickness Et
$k = \underbrace{()}_{1} = \dots md.$	Actual Pay Thickness Ft.
PRODUCTIVITY INDEX	
$P_1 = \frac{Q}{P_{\bullet} \cdot P_{f}} = \frac{(1)}{(1-1)} = \dots$	bbi./day-psi
DAMAGE RATIO	
D.R. = $\frac{0.183(P_{0}, P_{d})}{m} = \frac{0.183[1]}{(1)} = \frac{0.183[1]}{(1)} = \frac{1}{(1)}$	
PRODUCTIVITY INDEX WITH DAMAGE REMOVED	
P.J. _t = P.I.s D.R. = () () =bbl	./day•psi
APPROXIMATE RADIUS OF INVESTIGATION	
$b = \sqrt{H_*} = \sqrt{\frac{1}{1}} = \dots + f_1.$	
Drewdown Factor = $\frac{1.5.1.P. + F.S.I.P. + 100 = {} () - () - () }{1.5.1.P. + 100 = {} }$	j x 100 =
Potentiometric Surface = $H_{\psi} = \overline{z} + \frac{p_{\psi}}{w}$ $h_{\psi} = \frac{1}{1}$) = +±

INTERPRETATION CALCULATIONS (GAS)				
ESTIMATED GAS PROPERTIES Gravity@60° F	R{Tr}) ≈ ° ; Estimated Bottom Hole Temperature ° Compressibility Factor {Z}			
TRANSMISS(BILITY Measured D.S.T. Gas Ret	a =mci/d.			
$\frac{kh}{\mu} \approx \frac{1637 \ Q_{g} \ ZT_{e}}{m} = 1637 \ () \ () \ () \ () \ () \ () \ () \ ($) = <u>mdft.</u> cp.			
IN SITU CAPACITY				
lth = () () =md.ft.				
AVERAGE EFFECTIVE PERMEABILITY	Estimated Pay Thickness Ft			
k = () - md.	Actual Pay Thickness Ft.			
APPROXIMATE RADIUS OF INVESTIGATION				
$b = 0.02 \sqrt{kt_{e}P_{e}} = 0.02 \sqrt{(})$	() = ft.			
ACTUAL CAPACITY				
$kh = \frac{3270 \ Q_{g} \ \mu \ Z}{P_{g}^{\ p} \ P_{g}^{\ p}} = \frac{3270 \ () \ () \ }{() \ }$	() () =md.ft,			
ESTIMATED DAMAGE RATIO				
E.D.R = $\frac{(P_r^2 - P_r^2)}{m [\log T_r + 2.65]}$	E.D.R. ≈			
ESTIMATED RANGE OF A OF POTENTIAL				
$M_{0x} AOF = \frac{Q_{0}P_{0}^{*}}{P_{0}^{*} - P_{1}^{*}} = \frac{(1)(1)^{*}}{[(1)^{*} - (1)^{*}]} = \dots MCF/D$				
Min. AOF = $\frac{Q_{g}P_{e}}{\sqrt{P_{e}^{2} - P_{f}^{2}}} = \frac{1}{\sqrt{1}} + \frac{1}{1 - 1} = \frac{1}{1 - 1}$	1 = MCF/D			
ESTIMATED RANGE OF AOF POTENTIAL DAMAGE REMO	VED			
Max. AOF, = (Max AOF D.R } () Min AOF, = (Min AOF) D.R } ()	= MCF/D			
Drawdown Factor = $\frac{ SIP - FSIP \times 00}{ SIP} \times 00 \frac{(-1)}{(-1)}$	1 x 100 =/ 4% to 5% is considered serious or substantial			
Potentiometric Surface = $H_{*} = \frac{Z}{Z} + \frac{P_{*}}{W} = \frac{1}{W}$	· () = + ±			

226 344

in