TENNANT CREEK PROJECT

FINAL TECHNICAL REPORT

Exploration Licence 24158

05 September 2005 to 04 September 2014

Date: 16 October 2014

Compiled by: Prosperity Resources - Perth
TITLE PAGE AND BIBLIOGRAPHIC DATA SHEET

Project Name: Tennant Creek

Combined Report number: N/A

Tenement: EL 24158

Tenement operator: Prosperity Resources (Tennant Creek) Pty Ltd

Tenement holder: Prosperity Resources (Tennant Creek) Pty Ltd

Report type: Final Report For Exploration Licence 24158

Author: Prosperity Resources - Perth

Date of report: 16 October 2014

1:250 000 map sheet: SE53-14 Tennant Creek

1:100 000 map sheet: Tennant Creek 5758

Target commodity: Gold, Copper

Keywords: Tennant Creek Inlier, Warramunga Formation, IOCG Deposits, Gold, Copper

Prospects drilled: N/A

List of assays: N/A

Distribution: Department of Mines and Energy (1)

Prosperity Resources Limited (1)

Confidentiality Statement:

The owned information acquired by Prosperity Resources (Tennant Creek) Pty Ltd includes all information under the previous work by Prosperity Resources (Tennant Creek) Pty Ltd and work during year sections. The rest of the information has been sourced from open reports and data through the Department of Mines and Energy. The Minister has authority to publish the copyrighted information accordingly.
SUMMARY

This report compiles activities by Prosperity Resources (Tennant Creek) Pty Ltd related to Exploration Licence 24158 as part of its Tennant Creek Project from grant on 5th September 2005 to surrender on 4th September 2014. The project area is located approximately 800 kilometres south of Darwin in the Tennant Creek Gold Field and is positioned to the northwest of the town of Tennant Creek close to the Orlando Mine. The area was explored and reported as part of a combined group of licences.

During the period of tenure assessment of historic exploration, including geological, geochemical and geophysical data was undertaken to define specific geological and geophysical targets within the licence on which to undertake detailed assessment. Sections of the licence were assessed by geophysical surveying.

Discussions to negotiation grant of access permits to undertake field exploration and other public consultation on work proposals with Aboriginal land holders were undertaken but there were difficulties in concluding access agreements and consequently field work was limited in some areas.

The Tennant Creek Gold Field appears fundamentally structurally controlled (D2 or later) within contact skarn-thermal metamorphic halo marginal to co-deformational or later intrusive porphyritic intrusive dykes and related granite bodies. The more favourable target sites tend to be the more complex structural zones where a variety of anomaly-types form in closely spaced clusters where there has likely been higher rates of fluid flow. The presence of weathered and possibly hematitic geochemically anomalous ironstone or magnetite and chlorite alteration (in areas of higher temperature and reduced fluids) are positive criteria. Prosperity’s group of licences held in the Tennant Creek region including EL 24158 were considered to have a number of prospective but inadequately explored targets that merited additional assessment.
Mapping, soil and rock chip sampling supported by detailed ground magnetic surveying was considered as the most cost effective of defining sites for drill testing.
CONTENTS

SUMMARY

1 INTRODUCTION
2 TENURE
3 REGIONAL GEOLOGY AND MINERALISATION
4 MINERALISATION
5 EXPLORATION HISTORY
6 WORK COMPLETED
7 CONCLUSION AND RECOMMENDATION
8 REFERENCES

LIST OF FIGURES

LIST OF FIGURES SCALE
Figure 1 Location of Tennant Creek Licence areas 1:200,000
Figure 2 Tennant Creek Regional Geology N/A
Figure 3 Deposits and Mines within the Tennant Creek Mineral N/A Field
Figure 4 Schematic of Vertical Sections of TCK Deposits N/A
Figure 5 Historic Exploration Phases at Tennant Creek N/A

LIST OF TABLES
Table 1 Tenement Details
Table 2 Tenement Land Title and Aboriginal Status
Table 3 Historic Gold and Copper Production
LIST OF APPENDICES

 Appendix 1: File Verification List and Digital Data
 Appendix 2: Gravity Survey Processed Imagery
 Appendix 3: Geophysical Modelling of Tennant Creek IOCG Deposits
 Appendix 4: TC Reprocessed Landsat and Radiometric Images
 Appendix 5: Tennant Creek Quick Bird Imagery

 Appendix 1: File Verification List and Digital Data
 Appendix 3: Iron Oxide Copper, Gold and Bismuth in the Tennant Creek Region: Prospectivity Model and Exploration Review by Kenex Knowledge Systems Ltd, May 2008 (Tennant Creek Cu and Au GIS.pdf)
 Appendix 4: Tennant Creek Project Report – EarthScan.pdf
 Appendix 5: RC and Diamond Drilling – Collar, Survey, Assay and Geology and Down Hole Geophysics Data
 (TC_DRILLHOLE_assays_2008.csv)
 (TC_DRILLHOLE_collars_2008.csv)
 (TC_DRILLHOLE_composites_2008.csv)
 (TC_DRILLHOLE_lithology_2008.csv)
 (TC_DRILLHOLE_samples_2008.csv)
 (TC_DRILLHOLE_surveys_2008.csv)
 Down Hole Geophysical Survey Data
 (Prosperity Tennant Creek Final Reports (1).zip)
 (Prosperity Tennant Creek Final Reports (2).zip)
 (Prosperity Tennant Creek Final Reports (3).zip)
 (Prosperity Tennant Creek Final Reports (4).zip)
 (Prosperity Tennant Creek Final Reports (5).zip)
 Down Hole Geophysics Data
 PTRD1, PTCD4, PTCRC1 to PTCRC24.xls
Appendix 6: PTCD4 Core Photography
(100_5000.jpg to 100_5070.jpg)
Appendix 7: Geological Field Investigations
Appendix 8: Rock Chip Sample Data - (SurfaceGeochem.csv)

1 INTRODUCTION

This report compiles activities by Prosperity Resources (Tennant Creek) Pty Ltd related to Exploration Licence 24158 as part of its Tennant Creek Project from grant on 5th September 2005 to surrender on 4th September 2014. The project area is located approximately 800 kilometres south of Darwin in the Tennant Creek Gold Field and is positioned to the northwest of the town of Tennant Creek close to the Orlando Mine. The area was explored and reported as part of a combined group of licences (Figure 1). Access to the Tennant Creek area is via the Stuart Highway from Darwin or Alice Springs.

2 TENURE

The Tennant Creek Project consisted of ten granted Exploration Licences (ELs 23738, 23818, 23819, 23828, 23846, 23873, 23890, 23895, 23918, 24158) and three applications (ELAs 23817, 23831, 23896). The project area tenements consisted of two groups, one centred on Tennant Creek township, including Exploration Licence 23818 (all originally held by Wirraminna Gold NL – 8 granted ELs and 3 ELAs) and the other between the Orlando and Warrego Mines to the northwest of Tennant Creek (originally held by Bungarra Resources Pty Ltd – ELs 23846 and 24158). Details of these licences are presented in Table 1. Exploration Licence 24158 is highlighted in red in the table below and consisted of three sub-blocks.

Table 1. Tenement Details

<table>
<thead>
<tr>
<th>Tenement</th>
<th>Holder</th>
<th>Date Granted</th>
<th>Previously Surrendered Area (Blocks)</th>
<th>Current Area (Blocks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL23738</td>
<td>Prosperity Resources (Tennant Creek) Pty Ltd</td>
<td>21/10/03</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>EL23818</td>
<td>Prosperity Resources (Tennant Creek) Pty Ltd</td>
<td>15/10/03</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>EL23819</td>
<td>Prosperity Resources (Tennant Creek) Pty Ltd</td>
<td>27/11/03</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>EL23828</td>
<td>Prosperity Resources (Tennant Creek) Pty Ltd</td>
<td>11/08/03</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>EL23846</td>
<td>Prosperity Resources (Tennant Creek) Pty Ltd</td>
<td>9/02/04</td>
<td>-</td>
<td>37</td>
</tr>
<tr>
<td>EL23873</td>
<td>Prosperity Resources</td>
<td>13/02/04</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>
Some tenements are affected by Aboriginal Title or Land Claim as presented below however EL24158 was a Perpetual Pastoral Lease and was unaffected.

Table 2. Tenement Land Title and Aboriginal Status (Exploration Licence 24158 in red)

<table>
<thead>
<tr>
<th>Tenement</th>
<th>Land Status</th>
<th>Aboriginal Title Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL23738</td>
<td>Perpetual Pastoral Lease # 946</td>
<td>Not Affected</td>
</tr>
<tr>
<td>EL23817</td>
<td>Warramungu Aboriginal Freehold</td>
<td>Consent to Negotiate 1 July 2003</td>
</tr>
<tr>
<td>EL23818</td>
<td>Crown Lease Term #1149 (Joseph Schmidt)</td>
<td>CLC Claim TC No. 2 NTD 8/06</td>
</tr>
<tr>
<td>EL23819</td>
<td>Crown Land in Perpetuity # 1443</td>
<td>Not Affected</td>
</tr>
<tr>
<td>EL23828</td>
<td>Freehold - Tennant Creek No. 1 Pty Ltd</td>
<td>Not Affected</td>
</tr>
<tr>
<td>EL23831</td>
<td>Warramungu Aboriginal Freehold</td>
<td>Consent to Negotiate 28 July 2003</td>
</tr>
<tr>
<td>EL23846</td>
<td>Perpetual Pastoral Lease 946</td>
<td>Not Affected</td>
</tr>
<tr>
<td>EL23873</td>
<td>Partta Aboriginal Corporation</td>
<td>CLC Land Claim NTD 6004/03</td>
</tr>
<tr>
<td>EL23890</td>
<td>Crown Land</td>
<td>CLC Claim TC No. 2 NTD 8/06</td>
</tr>
<tr>
<td>EL23895</td>
<td>TC Golf Course SPL # 132</td>
<td>Not Affected</td>
</tr>
<tr>
<td>EL23896</td>
<td>Warramungu Aboriginal Freehold</td>
<td>Consent to Negotiate 8 Aug 2003</td>
</tr>
<tr>
<td>EL23918</td>
<td>Partta Aboriginal Corporation</td>
<td>CLC Land Claim NTD 6004/03</td>
</tr>
<tr>
<td>EL24158</td>
<td>Perpetual Pastoral Lease 946</td>
<td>Not Affected</td>
</tr>
</tbody>
</table>

3 REGIONAL GEOLOGY

Tennant Creek ("TCK") is a Proterozoic inlier formed during orogenic uplift (1650 Ma) and rifting in an intra-continental setting, characterised by horizontal shortening, low pressure metamorphism, voluminous felsic-dominated magmatism, and the development of thick turbiditic sequences (Figure 2).
The successive period of crustal extension was associated with the formation of basins on Early Proterozoic crust. The Tennant Creek Mineral Field (“TCMF”) is situated in the Warramunga Province, which is bordered to the north by the Tompkinson Creek Province and to the south by the Davenport Province. These three provinces collectively form the Tennant Creek Region. Younger basins overlie the Tennant Creek Region to the west (Wiso Basin) and east (Georgina Basin).

The region is characterised by volcaniclastic and volcanic rocks and flysch sediments, which are intruded by granites and Porphyry dykes and which are unconformably overlain by relatively undeformed predominantly sedimentary successions.

Four main ductile deformation events (D1-D4) have affected the Tennant Creek Province:

- D1 formed the regionally pervasive east-west S1 foliation and numerous upright (near vertical axial plane and near horizontal fold axis) F1 folds.
- D2 was heterogeneously developed and formed local crenulations and folds with shallowly dipping axial planes. D2 also rotated S1 by top-to-the-north and top-to-the-south shear.
- D3 formed north-south meso-scale folds with rare axial plane S3.
- D4 formed east-west striking folds, reactivated/re-used previously developed S1, forming a composite S1-4 foliation.

Rocks of the Warramunga Formation are the oldest outcropping rocks in the Tennant Creek goldfield (≈1,860 Ma) and have undergone multiple deformational events. The Formation is comprised of arenite, greywacke, siltstone, terrigenous mudstone and hematitic shale. The sediments contain immature volcanic detritus and are regarded as medium grained turbidite facies derived as a succession that becomes increasingly coarse as it moves upwards; it has been metamorphosed to greenschist facies. Younger felsic volcanics, volcaniclastic and clastic sediments are deposited unconformably on the deformed Warramunga Formation.
In terms of magnetic intensity and texture, four distinct magnetic domains within the Warramunga Formation are recognized:

- Pw(m) High magnetic (siltstone)
- Pw(m) Low magnetic (siltstone)
- Pw(s) Low magnetic (sandstone)
- Pw(m) washed out magnetic response (alteration)

Figure 2. Tennant Creek Regional Geology
The Warramunga Province is intruded by granite and porphyry of the Tennant Creek Supersuite (≈1845 Ma), the Treasure Suite (≈1810 Ma) and the Devils Suites (≈1710 Ma). The Treasure Suite which includes porphyry, granophyre, monzodiorite, diorite and dolerite has little outcrop. The Devils Suite is alkaline in nature and comprised of shoshonitic-lamprophyre and syenite. There are also other late-stage lamprophyre intrusives thought to postdate the Devils Suite.

4 MINERALISATION

The Tennant Creek Mineral Field has produced approximately 5.5 million ounces of gold and 45,000 tonnes of copper since its discovery in the 1930’s. The bulk this production was extracted from eight mines developed into complex deposits with varying amounts of Au, Cu and Bi. Bismuth was produced commercially from the Warrego, Peko and Juno mines with a combined output of approximately 21,500 tonnes of bismuth.

The deposits although typically small in size have high grades and have contributed to the growth and development of several companies including Normandy Poseidon, Australian Development and Peko Wallsend.

The vast majority of the Tennant Creek deposits occur in association with iron-oxide concentrations (pods) overprinted by magnetite/haematite rich alteration. Collectively and separately, these iron-oxide concentrations are locally termed ‘ironstones’. Ore-grade mineralisation has a (Fe)-Au-Cu-Bi association and is closely related to the complex magmatic and structural history at Tennant Creek. High grades are a feature of the Tennant Creek mineral field and suggest both highly effective precipitation processes and metal-rich ore fluids which suggest a skarn affinity.

Minor shear-hosted Au mineralisation is also noted. Gold also occurs with quartz in veins in shear zones but this is late and overprints vein selvedges and vein fractures. The shear-hosted gold mineralisation has a different geophysical expression (low
magnetic response) to the more common ironstone (magnetite)-hosted deposits and has not been a major focus of exploration in previous years.

![Figure 3: Deposits and Mines within the Tennant Creek Mineral Field](image)

Most of the known (Fe)-Au-Cu-Bi deposits are confined to the siltstone-dominated Warramunga Formation rocks with only a few small deposits occurring in magnetically subdued sandstone lithofacies, which could relate to physical (e.g. permeability) and chemical properties (e.g. chemical reactivity) of the rocks. It might instead reflect the presence of mineralisation of unrecognized nature such as skarns.
The concentration and relationship of Au, Cu and Bi within the deposits is variable and they have both a hematite and magnetite association. An overall zoning (from top to bottom) of copper, bismuth and gold has been noted in deposits. In addition, there can be an outer zone of Pb, Zn and Ag mineralisation, which may be associated with talc-carbonate alteration and Au-Bi zones.

Table 3. Historic Gold and Copper Production (Source: Gold Deposits of the Northern Territory, Report 11, NTGS, Department of Mines and Energy, pg 47)

<table>
<thead>
<tr>
<th>Mine</th>
<th>Years</th>
<th>Ore (Tonnes)</th>
<th>Ore Grades</th>
<th>Metal Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warrego</td>
<td>1973-1969</td>
<td>4,944,000</td>
<td>7.6 g/t Au</td>
<td>1,208,064 tonnes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.3% Bi</td>
<td>12,000 tonnes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0% Cu</td>
<td>91,500 tonnes</td>
</tr>
<tr>
<td>Peko</td>
<td>1951-1975</td>
<td>3,160,000</td>
<td>3.5 g/t Au</td>
<td>240,523 ounces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.0% Cu</td>
<td>118,884 tonnes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2% Bi</td>
<td>7,350 tonnes</td>
</tr>
<tr>
<td>Nobles Nob</td>
<td>1949-1965</td>
<td>2,138,156</td>
<td>16.5 g/t Au</td>
<td>1,134,282 ounces</td>
</tr>
<tr>
<td>Juno</td>
<td>1967-1977</td>
<td>454,938</td>
<td>59 g/t Au</td>
<td>862,982 ounces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.6% Bi</td>
<td>2,293 tonnes</td>
</tr>
<tr>
<td>Gecko</td>
<td>1973-1997</td>
<td>2,320,000</td>
<td>1.3 g/t Au</td>
<td>96,968 ounces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.1% Cu</td>
<td>93,300 tonnes</td>
</tr>
<tr>
<td>White Devil</td>
<td>1987-1999</td>
<td>1,600,000</td>
<td>14.7 g/t Au</td>
<td>756,197 ounces</td>
</tr>
<tr>
<td>Orlando</td>
<td>1961-1975</td>
<td>322,060</td>
<td>11.5 g/t Au</td>
<td>119,078 ounces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1% Bi</td>
<td>320 tonnes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.8% Cu</td>
<td>4,852 tonnes</td>
</tr>
<tr>
<td>Orlando East</td>
<td>1994-1997</td>
<td>411,300</td>
<td>4.8 g/t Au</td>
<td>63,474 ounces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5% Cu</td>
<td>6,170 tonnes</td>
</tr>
<tr>
<td>Ivanhoe</td>
<td>1965-1972</td>
<td>316,000</td>
<td>3.0% Cu</td>
<td>8,950 tonnes</td>
</tr>
</tbody>
</table>

Magnetite ironstone pods formed during the D3 deformational event (major north-south compression) and preceded the main mineralising event (D4, east-west
shearing). The most prospective exploration targets would be areas affected by both D3 and D4; ie: intersecting north-south and east-west structures (Nguyen, 2008).

As known (Fe)-Au-Cu-Bi mineralisation at the Tennant Creek requires the coincidence of iron-oxide rich areas with structures bearing mineralised fluids; there is not exclusive correlation between mineralisation and iron-oxide bodies. However, the testing of magnetic anomalies has been a major part of the exploration philosophy at Tennant Creek for many years.

Economic gold-copper-bismuth mineralisation occurs in cross cutting fractures within the ironstone lenses and/or as breccia stringer zones along their margins. While it is generally accepted that the mineralisation postdates the formation of the

Figure 4. Schematic of Vertical Sections of TCK Deposits

ironstone lenses they could be syn-mineralisation (Rutherford Mineral Resource Consultants, 2010).

Common ore minerals are chalcopyrite, native gold and bismuthinite with lesser amounts of bornite, galena, sphalerite, cobaltite, uraninite and scheelite.

The mineralisation typically exhibits a crude vertical zonation, with a gold and bismuth core enveloped by a broader copper halo or a gold core successively enveloped by bismuth and copper halos.

The TCMF is well known for its high gold grades. Hronsky speculates that the high grades at TCK may relate to a favourable confluence of various factors, such as:

- Bismuth association, where Bi has been linked to the magmatic scavenging of gold in the magma;
- Strongly oxidised and alkaline magmatic + hydrothermal fluids combined with high CO₂ levels enhance gold solubility (super-saturation of gold in fluid);
- Mixing of strongly oxidised magmatic-hydrothermal and large volumes of acidic and reduced fluids lead to highly efficient precipitation of gold along a sharp REDOX (oxidation-reduction) boundary (chemical gradient);
- Association with radiogenic granites to provide extraordinary heat source to enhance magnitude and life of mineralising system; and
- Focus within metamorphic fluid rich Warramunga Formation, where dewatering related to the Orogeny was concentrated.

5 EXPLORATION HISTORY

Tennant Creek has produced over 5.5 million ounces of gold and close to 470,000 tonnes of copper since the discovery of the TCMF in the 1930’s. The TCMF covers a broad area of some hundreds of square kilometres. The extent, size, consistent and high grade nature of mineralisation throughout the TCMF suggests a largely similar mechanism of gold deposition. The use of magnetics as the main exploration tool at Tennant Creek has been justified by the successful discoveries since the 1950’s.
Increasingly refined magnetic surveys followed up by systematic testing of magnetic anomalies provided continuing exploration success to the 1970’s, and which peaked during the 1970’s, which was then sustained by mine based exploration (MINEX) during the 1980’s and 1990’s (presented in the graphic below).

Figure 5. Historic Exploration Phases at Tennant Creek

The vast majority of the historical gold and copper production has come from small, structurally-controlled high-grade deposits, closely associated with magnetic (magnetite-rich) ironstone bodies. Utilising magnetic surveys to detect the host magnetite-related iron stones was very successful and validated this discovery strategy, despite most of the magnetic iron stone deposits not being mineralised.

The success of magnetic prospecting had significantly declined until the discovery of non-magnetic hematite deposits (Edna Beryl) and weakly magnetic magnetite + hematite (transitional) deposits (Chariot and Malbec), which were also gravity anomalies. The discovery of Chariot deposit by Normandy in 1998 and then the Malbec West deposit by Giants Reef in 2004 were critical in creating the realization that substantial deposits could be associated with hematite dominant bodies.
The success in using magnetics constrained exploration to a certain class of deposits at Tennant Creek (magnetite + chlorite + copper + bismuth + gold), and biased the view of prospectivity of the TCMF. This realisation occurred late in the history of Tennant Creek which ended with Giants Reef Mining consolidating a significant part of the field before being placed in administration. The assets of Giants Reef were acquired by Emmerson Resources, who have conducted a mineral field wide gravity and magnetic survey as the major basis for drill targeting.

The known magnetite-chlorite deposits at Tennant Creek have a compact nature and do not appear to have extensive peripheral alteration and geochemical zones. Many of these deposits are under cover with the “top” of the deposits being well below 100m in depth. This is in contrast to the majority of drilling in the TCMF which is relatively shallow:

- 70% of drilling is less than 50 metres deep,
- 23% of drilling is between 50 – 150 m deep,
- Only 7% of drilling is below 150 m.

It appears that the majority of generative exploration was focused on comparatively shallow targets and that the majority 30% of deeper drilling was likely focused on known deeper deposits, mines and prospects.

6 WORK COMPLETED

Work completed on the ground and work undertaken by outside consultants (Nguyen, 2008; Rutherford Mineral Resource Consultants, 2010) during the period of the licence tenure on the combined licences has been complied into a series of appendices that constitute the contents of previous annual report and consultant submissions. Each appendix has its own file verification list. The comprehensive consultant reviews took into consideration the possibility for both magnetite and hematite-related gold-copper mineralisation that could exist within the licence area in a number of deposit styles.
Exploration reports and data that cover the following topics related to exploration undertaken are included in the accompanying digital data:

- Gravity Survey Processed Imagery
- Geophysical Modelling of Tennant Creek IOCG Deposits
- Tennant Creek Reprocessed Landsat and Radiometric Images
- Tennant Creek Quick Bird Imagery
- 3D – Induced Polarisation and Moving Loop Electromagnetic Survey
- Iron Oxide Copper, Gold and Bismuth in the Tennant Creek Region: Prospectivity Model and Exploration
- Tennant Creek Project Landsat GIS Report – EarthScan.pdf
- RC and Diamond Drilling – Collar, Survey, Assay and Geology and Downhole Geophysics Data
 - (TC_DRILLHOLE_assays_2008.csv)
 - (TC_DRILLHOLE_collars_2008.csv)
 - (TC_DRILLHOLE_composites_2008.csv)
 - (TC_DRILLHOLE_lithology_2008.csv)
 - (TC_DRILLHOLE_samples_2008.csv)
 - (TC_DRILLHOLE_surveys_2008.csv)
- Down Hole Geophysical Survey Data
 - (Prosperity Tennant Creek Final Reports (1).zip)
 - (Prosperity Tennant Creek Final Reports (2).zip)
 - (Prosperity Tennant Creek Final Reports (3).zip)
 - (Prosperity Tennant Creek Final Reports (4).zip)
 - (Prosperity Tennant Creek Final Reports (5).zip)
- Down Hole Geophysics Data
 - PTRD1, PTCD4, PTCRC1 to PTCRC24.xls
- PTCD4 Core Photography
 - (100_5000.jpg to 100_5070.jpg)
- Geological Field Investigations Report
- Rock Chip Sample Data - (SurfaceGeochem.csv)

7 CONCLUSIONS AND RECOMMENDATIONS

While Prosperity’s licence appeared to have sites that required additional exploration assessment and has made significant effort in conducting research and defining field exploration targets in defining the geological potential no significant outcomes have been achieved within the licence area.

8 REFERENCES