ANNUAL AND FINAL GROUP REPORT

AMADEUS PROJECT

03/05/2011 to 05/02/2014

GR 291

<table>
<thead>
<tr>
<th>Title Holder:</th>
<th>NATURAL RESOURCES EXPLORATION PTY. LTD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator:</td>
<td>Natural Resources Exploration Pty. Ltd.</td>
</tr>
<tr>
<td>Tenement Manager:</td>
<td>Emma Dodd, Natural Resources Exploration Pty. Ltd.</td>
</tr>
<tr>
<td>Titles / Tenements:</td>
<td>EL(s): 28303, 28304 & 28305</td>
</tr>
<tr>
<td>Project Names:</td>
<td>Mulga Park, Curtin Springs & Lyndavale</td>
</tr>
<tr>
<td>Report Title:</td>
<td>Year 3 Annual and Final Group Report – Amadeus Project GR291 - 13</td>
</tr>
<tr>
<td>Type of Report:</td>
<td>Annual Group Report</td>
</tr>
<tr>
<td>Author(s):</td>
<td>Emma Dodd</td>
</tr>
<tr>
<td>Company Ref:</td>
<td>NRE_NT2013: AMADEUS GROUP REPORT (Group x 3) – Year 3 Annual and Final Report</td>
</tr>
<tr>
<td>Target Commodity / Commodities:</td>
<td>Gold, Uranium and Potassium</td>
</tr>
<tr>
<td>Date of Report:</td>
<td>18 June 2014</td>
</tr>
</tbody>
</table>

Contact Details:

PO Box 69, Chirn Park, Queensland 4215

Level 8 Corporate Centre, 2 Corporate Ct, Bundall QLD

Tel: (07) 5644 5500 Fax: (07) 5528 4558

Email: info@naturalresources.net.au
Copyright Statement

This document and its content are the copyright of Natural Resources Exploration Pty. Ltd. The document has been written by Natural Resources Exploration Pty. Ltd. for submission to the Northern Territory Department of Mines and Energy as part of the tenement reporting requirements of the Minerals Titles Act.

Any information included in the report that has been originated or sourced from historical open file reports or other sources is listed in the “Exploration Studies - Historic” section within the document.

The Minister has authority to publish the copyrighted information accordingly.
Contents

Copyright Statement ...2
Summary ... 4
1. Introduction .. 6
2. Tenement ... 6
 2.1 Cadastral ... 7
 2.2 Location and Access .. 8
 2.3 Topography and Drainage: .. 9
3. Geology ... 10
 3.1 Regional Geology ..10
 3.2 Permit Geology ...12
4. NRE’s Exploration Activities during the Reporting Period .. 16
 4.1 Exploration Studies ...17
 4.2 Water Bore Cuttings Analysis ...19
5. NRE’s Exploration Activities for next 12 month period ... 20
6. Reports lodged during the reporting period ... 20
7. Conclusions ... 20

Figures

Figure 1. Cadastral Map ...8
Figure 2. Location and Access Map ... 9
Figure 3. Topography and Drainage Map ...10
Figure 4. Regional Geology Map ..12
Figure 5. Permit Geology Map ...15
Figure 6. Historic tenements over the Amadeus Project ...19

Tables

Table 1. Tenement Details ... 7
Table 2. Stratigraphy based on the Ayers Rock 250K map sheets .. 16
Table 3. Historic Tenements and Previous Companies’ Exploration Reports 18
Table 4. Water Bores Tested using the portable XRF Device ..20
Summary

Section 94 of the Mineral Titles Act requires the submission of an Annual Report prepared by the titleholder for each exploration licence. Natural Resources Exploration three exploration licences (EL’s) 28303, 28304 and 28305 have been approved for Annual Group Technical Reporting GR291-13.

This Annual Group Technical Report relates to all three (3) exploration licences and provides a summary of the activities carried out over the permits in the past 12 months, including results produced by those activities. The licences will be referred to as the ‘Amadeus Project’, unless specific attributes of each individual licence are discussed then in such a case the individual tenure name and number will be identified.

To delineate prospective areas for gold, uranium or potassium mineralisation and define the next phase of exploration, NRE has carried out a detailed geological assessment of its Amadeus Project during the second term. The detailed geological assessment of the Amadeus Prospect included a review of all data from previous exploration as documented in open file reports retrieved from the Northern Territory Government, including:

- Surface geological sampling;
- Geochemical anomalis mapping;
- Geological mapping;
- Detailed geophysical survey data;
- Geophysical anomalis mapping;
- Previous historical drilling results;
- Local and regional geological assessments;
- Conclusions derived from exploration programs;

- Geological maps provided by the Queensland Government.
- Aeromagnetics, aero-radiometrics and gravity surveys provided by the Queensland Government; and
- ASTER imagery and Google Earth imagery available in respect to the areas covered by the Amadeus Project area.
NRE also engaged consultants to conduct a geological evaluation of the Amadeus Project in order to better delineate targets within the area. As a result of NRE’s desktop studies, it was determined that given the style of mineralisation expected within this tenement, further field geological reconnaissance, field mapping, soil sampling, drainage sampling and rock chip sampling would assist in delineating future drill targets.

NRE’s activities during the second year of grant have allowed for the delineation of targets for further exploration activities to be conducted during the third term of the Amadeus Project. However due to the location of the tenements it has been decided to surrender the tenements.
1. Introduction

Natural Resources Exploration (‘NRE’) has conducted extensive office-based studies during the second year of the Exploration Licences forming part of its Amadeus Project. The Amadeus Project consists of three (3) tenements (EL) 28303, 28304 and 28305 known to NRE as Mulga Park, Curtin Springs and Lyndavale respectively.

ELs 28303, 28304 and 28305 were granted to NRE on 3 May 2011, consisting of a total of 1173 sub-blocks. The tenements contain Neoproterozoic-age (1200-820 Ma) gneiss, schist and granite of the Musgrave Province. The remainder contain sedimentary rocks of the Amadeus Basin that range in age from Neoproterozoic (<820 Ma) to Devonian (approximately 400 Ma). Sand dunes cover a large proportion of the Amadeus Project tenements.

During the reporting period, NRE’s exploration rationale and objectives for its Amadeus Project considered the evaluation of potential gold, uranium and potassium mineralisation. In order to define the next phase of exploration, extensive office based studies were undertaken. Investigations were intended to locate any outcropping of mineralisation and any indicators of any sub-surface mineralisation within the tenement based on desktop reviews.

Due to the location of the tenements it has been decided that NRE surrender these tenements.

2. Tenement

NRE’s exploration licences (EL’s) 28303 ‘Mulga Park’, 28304 ‘Curtin Springs’ and 28305 ‘Lyndavale’, are more commonly known by NRE as its ‘Amadeus Project’. Each exploration licence of the Amadeus Project was granted to NRE on 3 May 2011, each for a term of 6 years. The Amadeus Prospect covers 1681.18 square kilometres of land across the Musgrave Province made up of 557 sub-blocks.

Table 1 lists the pertinent tenement details.
Table 1. Tenement Details

<table>
<thead>
<tr>
<th>Name</th>
<th>EL</th>
<th>Sub blocks</th>
<th>Sq. Km</th>
<th>Status</th>
<th>Grant Date</th>
<th>Term</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulga Park</td>
<td>28303</td>
<td>250</td>
<td>758.59</td>
<td>Granted</td>
<td>3-May-11</td>
<td>6</td>
<td>2-May-17</td>
</tr>
<tr>
<td>Curtin Springs</td>
<td>28304</td>
<td>177</td>
<td>519.46</td>
<td>Granted</td>
<td>3-May-11</td>
<td>6</td>
<td>2-May-17</td>
</tr>
<tr>
<td>Lyndavale</td>
<td>28305</td>
<td>130</td>
<td>403.13</td>
<td>Granted</td>
<td>3-May-11</td>
<td>6</td>
<td>2-May-17</td>
</tr>
</tbody>
</table>

Native Title

There are currently no Native Title Claims over the Amadeus Project area.

Recorded Sites

There a number of recorded sacred sites and registered sacred sites within the Amadeus Project area. These are situated in EL28304 and EL28305 on the eastern and western sides respectively.

2.1 Cadastral

NRE’s Amadeus Project overlies the following three (3) Pastoral Leases, namely ‘Mulga Park’ NT Portion 325, Perpetual Pastoral Lease 1079, ‘Curtin Springs’ NT Portion 326 Perpetual Pastoral Lease 1092 and ‘Lyndavale’ NT Portion 3350 Perpetual Pastoral Lease 1088. Figure 1 shows this lease in relation to the Amadeus Project area.
2.2 Location and Access

The Amadeus group of ELs (EL28303 Mulga Park, EL28304 Curtin Springs, EL28305 Lyndavale) are located approximately 300 kilometres to the south west of Alice Springs, adjacent to the border with South Australia. The Amadeus Project sits within the northern Musgrave Province, a province that hosts minor base metal and gold occurrences.

Access to the project area is via the Stuart Highway, followed by the Lasseter Highway and then via Amadeus road and station tracks. The location and access to the project area is identified in Figure 2.
2.3 Topography and Drainage:

The topography over the area of the Amadeus Project is mainly a series of aeolian sand plains and dunes. The Kelly hills and Mt Robert are found in the west of EL28303. Mt Frazier is located in the southern central area of EL28303. These hills and Mountains have small unnamed creeks and streams that run off them.

Situated in the south east and running south west is Jones (Ulaipanya) Creek. Situated in the south west and running north east is Nulcharra (Karukuranya) Creek of EL28303. On the eastern boundary of the EL28304 tenure is Mount Connor, however, there is no significant drainage within this tenure. EL28305 consists of several small (<1km²) Playa lakes. There are also several small nameless creek and streams near the western boundary of the tenure.

Figure 3 shows the topography and drainage of Amadeus Project.
3. Geology

3.1 Regional Geology

There are two major geological provinces recognised in the area:

1. A Mesoproterozoic basement complex in the south that represents the northern margin of the Musgrave Block; and

2. Carboniferous to Neoproterozoic sediments of the Amadeus Basin that are exposed mainly in the north.
Musgrave Block:

The Musgrave Block is a Mesoproterozoic age sedimentary basin. It is composed of felsic and mafic gneiss, granite, charnockite, minor metasedimentary gneiss, localised rift sediments and bimodal volcanics. Mineralisation is not known to occur within the same type of rocks elsewhere in the Musgrave Block, although exploration efforts have generally ignored the granites.

Studies of granites in the Musgrave Province by Geoscience Australia indicate some prospectivity for gold and copper deposits. This is based on geochemical similarities with granites associated with gold mineralisation in Pine Creek and gold + copper mineralisation in Tennant Creek. This style of gold mineralisation rarely occurs within the granites themselves, but is hosted by surrounding metasedimentary rocks.

Amadeus Basin: The Amadeus Basin is a Carboniferous to Neoproterozoic intracratonic sedimentary basin that was initiated as part of the Central Australian Superbasin and was substantially effected by intraplate tectonics. It is composed of dolostone, limestone, shale, sandstone, siltstone, quartzite, evaporite, diamicite and conglomerate.

The Amadeus Basin is considered prospective for calcrete type uranium, diamonds, epithermal (Au,U and base metals) oil and phosphate.

In the Amadeus Project area the central area is Mount Conner, this consists of the Winnall and Inindia sandstone beds along with Cambrian and Ordovician sedimentary rocks and small outcrops of the Bitter Springs Formation (equivalent to the Pinyinna beds). To the east of Mount Conner are several outcrops of Inindia sandstone beds. In the north and north eastern parts of the area are several large outcrops of Quaternary calcrete. Uranium deposits may occur within Amadeus Basin sedimentary rocks within the area.

The Regional Geology is depicted in **Figure 4** below.
3.2 Permit Geology

The permit / local geology within the Amadeus Project consists of units identified in the 1:250K surface geological sheets (Northern Territory Geological Survey).

Unconsolidated Sediments

This unit is Quaternary in age and is comprised of skeletal residual soil, sand, clay, minor pebbly material, Aeolian sand plains and sand dune deposits, red sand, mud and gravel; sheet wash deposits found in inter-dune depressions and on gentle slopes flanking hills. In some areas it is also composed of alluvium; sand, gravel and mud deposits in stream channels and flood-out plains or talus and scree; unconsolidated pebble to boulder sized phenoclasts within a sandy, clayey matrix. In the north (EL28305) it can contain playa lakes;
mud silt, halite, gypsum and other evaporite minerals, calcrete; vadose and phreatic. Finally, it can also comprise talus and colluvium; coarse sand and gravel deposits found at the flanks of major hills. This unit is the predominant unit covering the Amadeus Project and outcropping rock units are rare.

Allanah Gneiss (Musgrave Block)

This unit is Mesoproterozoic in age and is composed of orthopyroxene and clinopyroxene bearing granite gneiss, minor pelitic gneiss; commonly contains mylonite and pseudotachylite near thrust zones.

Opparinna Metamorphics (Musgrave Block)

This unit is Mesoproterozoic in age and is composed of biotite bearing granitic gneiss with secondary muscovite, grey, medium-grained; commonly migmatitic with veins of partial melt cutting early gneissic fabric.

Basement Quartzite (Musgrave Block)

This unit is Mesoproterozoic and is comprised of strongly deformed medium-grained biotite-hornblende granite and granitic gneiss.

Undivided Granite and Gneiss (Musgrave Block)

This unit is Mesoproterozoic in age and is composed of massive to sheared quartzite, contains muscovite, garnet and biotite in places; probably mainly vein quartz associated with granite magmatism.

Kultpitjate Granite Complex

This unit is Mesoproterozoic in age and is comprised of fine to coarse grained weakly to strongly porphyritic biotite granite, underformed to highly sheared, common secondary muscovite; mylonitic equivalents include gneissic granite to muscovite-biotite schist. Minor biotite-hornblende granite. It is also composed of medium to coarse grained muscovite-biotite granite, weakly to strongly porphyrite, strongly foliated, medium grained porphyrite biotite-hornblende granite, strongly foliated.
Michell Nob Granite

This unit is Mesoproterozoic in age and is composed of coarse grained porphyritic biotite-hornblende granite, strongly foliated.

Nulchara Charnockite

This unit is Mesoproterozoic in age and is composed of medium to coarse grained charnockite, dark grey to green, K-feldspar megacrysts and lesser clinopyroxene and hornblende; forms flat-lying sheets.

Dean Quartzite

This unit is Neoproterozoic and is composed of medium to coarse grained, thick bedded massive white quartzite and quartz sandstone; minor conglomerate and fine grained sheared quartzite.

Inindia Beds

This unit is Neoproterozoic in age and is comprised of planar and trough crossed-bedded, medium to coarse grained, grey-brown sandstone, dark brown siltstone, chert and jasper.

Winnall Beds (Pwi2)

This unit is Neoproterozoic in age and is composed grey medium to coarse-grained sandstone, occasional pebble layers, minor pebble conglomerate and siltstone forms resistant mesa capping on Mt Conner.

The permit geology of the Amadeus Project is shown below in Figure 5 and the simplified stratigraphy of the Amadeus Project is show in Table 2.
Figure 5. Permit Geology Map
4. **NRE’s Exploration Activities during the Reporting Period**

After the commencement of the third term it was decided that due to the location of the tenements that NRE would surrender the tenements. No further exploration work or studies were undertaken.
4.1 Exploration Studies

NRE has conducted an extensive review of historic exploration over its Amadeus Project. A review of all previous exploration within the project area has been completed including:

- Review of previous exploration data from NTGS open file company reports; and
- Review of aeromagnetics, of radiometrics and gravity survey provided by NTGS; and
- Review of satellite imagery, of ASTER imagery, Google Earth Imagery.

Very little previous exploration has been undertaken in the area. This is due to both the poor outcrop and the absence of mineral occurrences known either in the Musgrave Province or the southern part of the Amadeus Basin.

Historic

The exploration that has been completed within the Amadeus Project and its surrounding tenements has primarily been for kimberlite or intrusive related mineralization, nickel sulfide and sedimentary U deposits by 21 companies (several joint ventures) from 1984 to present with Aeromagnetic being a common tool used to define exploration targets which were generally followed up with some combination of surface sampling or drilling. In the case of salts the lakes were sampled and followed up with some combination of drilling, production trials and feasibility studies.

Mithril was entirely focussed on exploration for nickel sulphide mineralisation in mafic rocks of the Musgrave Province. They appear to have adequately tested for this style of mineralisation with regional scale magnetic lag sampling over the most prospective areas. However, their sample analysis did not routinely test for Au and they did not sample areas where outcropping or subcropping felsic intrusives and gneisses occur.

Mithril focused on a major structure visible on magnetics that trends east-southeast through the northern part of Amadeus Project. The technique samples only magnetic grains in surface sediments and cannot be considered an adequate test for other styles of mineralisation, such as those related to granites.
EL10092 covers almost the entirety of Amadeus Project. EL10092 was explored by Mithril Resources for nickel sulfide deposits between 2003 and 2006. The exploration was reconnaissance field trips and a magnetic lag sampling program targeting magnetic anomalies which found a low level Ni/Cu/Co anomaly and a low level Ni/Co anomaly. The anomalies were on average Ni 66ppm, Cu 90ppm and Co 58ppm. These were followed up with more sampling and resampling for Pt, Pd and Au however the anomalies were determined to be the result of sub cropping lithologies as opposed to buried Ni, Cu sulfide mineralization.

In the wider area there has been exploration for salts / evaporates, diamonds, intrusion related deposits, nickel sulphides and uranium. Only Uranerz and Mithril Resources completed a significant amount of ground sampling work within the tenement and its surrounding tenements.

Previous exploration has been summarised in Table 3 and location of historic tenements is shown in Figure 6.

<table>
<thead>
<tr>
<th>TENEMENT</th>
<th>PERIOD</th>
<th>COMPANY REPORTS</th>
<th>COMPANY</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL 25151</td>
<td>2006-2010</td>
<td>CR2008-0895</td>
<td>Imperial Granite & Minerals Pty Ltd</td>
</tr>
<tr>
<td>EL 22611</td>
<td>2001-2002</td>
<td>CR2002-0205</td>
<td>BHP Bilton Minerals Pty Ltd</td>
</tr>
<tr>
<td>EL 6315</td>
<td>1988-1990</td>
<td>CR1990-0039</td>
<td>Collfred Pty Ltd</td>
</tr>
<tr>
<td>EL 5585</td>
<td>1987-1990</td>
<td>CR1990-0276</td>
<td>Collfred Pty Ltd</td>
</tr>
<tr>
<td>EL 5335</td>
<td>1987-1990</td>
<td>CR1988-0108</td>
<td>Roebuck Resources N.L</td>
</tr>
<tr>
<td>EL 4214</td>
<td>1983-1989</td>
<td>CR1984-0142</td>
<td>BHP Minerals</td>
</tr>
</tbody>
</table>
4.2 Water Bore Cuttings Analysis

NRE engaged Terra Search Pty. Ltd. to attend the Northern Territory’s Alice Springs Core Facility to analyse a number of cuttings available from historically drilled water bores within the tenement.

NRE first delineated all water bores that had been drilled within EL28303, EL 28304 and EL 28305. It also received all relevant information recorded at the time of drilling, including geology intersected and water chemistry.

The Department kindly allowed NRE to set-up in the Alice Springs Core Facility where NRE’s geologists undertook analysis of the water bore cuttings using a hand-held XRF device. Table 4 outlines those water bores tested.
Table 4. Water Bores Tested using the portable XRF Device

<table>
<thead>
<tr>
<th>Hole ID</th>
<th>MGA_Easting</th>
<th>MGA_Northing</th>
<th>Title No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN011789</td>
<td>767667.5</td>
<td>7131796</td>
<td>EL 28303</td>
</tr>
<tr>
<td>RN012854</td>
<td>773926.5</td>
<td>7130813</td>
<td>EL 28303</td>
</tr>
<tr>
<td>RN012857</td>
<td>780288.6</td>
<td>7126040</td>
<td>EL 28303</td>
</tr>
<tr>
<td>RN010807</td>
<td>794595.4</td>
<td>7187539</td>
<td>EL 28305</td>
</tr>
<tr>
<td>RN011791</td>
<td>790858.4</td>
<td>7182107</td>
<td>EL 28304</td>
</tr>
<tr>
<td>RN011865</td>
<td>777189.6</td>
<td>7196951</td>
<td>EL 28304</td>
</tr>
</tbody>
</table>

5. NRE’s Exploration Activities for next 12 month period

Due to the location of the tenements NRE has decided to surrender the tenements during this third term of grant.

6. Reports lodged during the reporting period

NRE believes that no reports were required to be lodged during this reporting period.

7. Conclusions

Due to the location of the tenements NRE has decided to surrender the tenements during this third term of grant.
8. Bibliography

