ANNUAL REPORT

8 September 2011 - 7 September 2012

EL 28367

NORTHERN TERRITORY, AUSTRALIA

By

Anita Lee
AMETS

1:100,000 – Delny (5852)
1:250,000 – Alcoota SF 53-10
WORK SUMMARY

The company is in the process of putting a JV agreement together for their leases and thus focus has been more on financial and administrative duties than on-ground investigations. A compilation of previous data has all but been assembled however a thorough analysis has not been undertaken at this stage.
INTRODUCTION

Location and access

EL 28367 is located approximately 153km due east of Aileron and 150km north of Alice Springs, in the central-southern part of the Northern Territory. Access is via the Stuart Highway to the Plenty Highway, to the Mount Swan Homestead Road. Mount Swan Homestead is located approximately 4 km from the eastern boundary of the tenement.

Climate, Topography & Vegetation

The climate of the region is characterised by long hot summers and short mild winters. Temperatures regularly exceed 40°C in summer with rare frosts in winter. The average rainfall is about 260 mm, most of which falls between November and March in wet season storms.

The tenement lies over very flat terrain, barely varying in elevation across the whole tenement. The Fraser Creek flows in a north easterly direction through the central region of the tenement. Due to the flat terrain, there is minimal creek systems within the area and the area is very prone to flash flooding.
The tenement is covered with spinifex grasslands and sparse open woodland Eucalypt species.

Tenure

EL 28367 is wholly held by Wilkinson Resources. Application for the 62 sub-blocks was granted on 8 September 2011 for a period of 6 years ending on 7 September 2017. See Figure Three below for the sub-block makeup.

The tenement is located on the Alcoota (SF 53-10) 1:250,000 map sheet, and Delny (5852) 1:100,000 map sheets.
Regional Geology

The tenement area lies within the Arunta region of the Northern Territory and area covers the Palaeoproterozoic Aileron Province (including the Strangways Metamorphic Complex) and the Neoproterozoic to Palaeozoic Irindina Province of the Arunta Region, and marginal sections of the Georgina and Ngalia basins. The Arunta Region is predominantly composed of metamorphic rocks and has been further separated into geological regions; the Aileron, Warumpi and Irindina Provinces. The Arunta Region is unconformably overlain by sediments of the Neoproterozoic to mid-Palaeozoic Ngalia, Georgina, Amadeus and Wiso Basins.

The Aileron Province predominantly consists of Palaeoproterozoic sedimentary and igneous rocks that have undergone greenschist to granulite facies metamorphism. Most of the exposed Aileron Province was metamorphosed to greenschist or lower amphibolite facies conditions during the 1740-1690 Ma Strangways Orogeny, with an apparent localised abundance of 1810-1700 Ma igneous activity and deformation in parts. The central-southern parts of the Aileron Province preserves an east-west zone of granulite facies metamorphic rocks associated with the Strangways Orogeny. Regions of the Aileron Province have also been subject to younger (1640-1500 Ma) periods of magmatism and localised metamorphism. These granites and orthogneisses are notably highly-radiogenic within the Reynolds Range, hosting numerous veins and pegmatites with anomalous uranium and thorium.
Uranium mineralisation is known in the region and is restricted (thus far) to the Proterozoic Aileron Province and Carboniferous Ngalia Basin. Uranium at Nolans Bore (Arafura Resources), to the west, occurs in phosphatic and REE-enriched metasomatitic pods and veins within the high- metamorphic-grade Lander Rock beds. This deposit is subject of ongoing feasibility studies. Uranium is also present in high grades at Bigrlyi (Energy Metals-Paladin JV) to the west, within carbonaceous sandstones of the Mt Eclipse Sandstone. (Rawlings, 2009).

NuPower, who also hold extensive tenements in the region suggest the hypothesis that this region presents as an analogue to the Frome Embayment region in South Australia. Just as uranium in the Flinders Ranges eroded and mobilised into sediments that today display as the Beverley and Beverley Four Mile uranium deposits, so too has uranium eroded and remobilised into the adjacent sedimentary basins. Exploration drilling and regional bore water sampling programs to date have supported this hypothesis.

Local Geology

The geology of the area consists of basement gneisses, schists and granulite of the Strangeways Metamorphic Complex; these have been interpreted as metasediments and metavolcanics, but have undergone extreme metamorphism. Intruding into the basement are the Proterozoic Mount Swan and Ida granites, which have locally developed a gneissic texture. These are variably overlain by Cainozoic soils, alluvium and sands, with variable calcrete. Areas of the granitic intrusions and exposed basement are extremely weathered and have a well developed laterite profile, making their origin difficult to determine; these areas are clay rich and occasionally pisolitic, with variable amounts of silcrete.

Figure Three shows the regional geology of the area and Figure Four depicts where known mineralisation occurs in proximity to the tenement boundaries.
Prepared by AMETS

Figure Four: Regional Geology Map

Figure Five: Locations of known mineralisation in the region
PREVIOUS INVESTIGATIONS

The following table details the companies that have previously explored over the current EL 28367 tenement. These reports are still being dissected for pertinent information that can be of assistance to the current exploration efforts. All but a few of the reports have been sourced, with requests having been submitted for the remaining reports.

<table>
<thead>
<tr>
<th>Ten #</th>
<th>Company</th>
<th>Commod</th>
<th>Granted</th>
<th>Ceased</th>
<th>Company Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL 32</td>
<td>Neptide Mineral Exploration Pty Ltd</td>
<td>Base metals</td>
<td>21/03/1972</td>
<td>20/03/1973</td>
<td>CR1973-0208</td>
</tr>
<tr>
<td>EL 5902</td>
<td>Track Minerals?</td>
<td>Gold / Base Metals</td>
<td>20/06/1988</td>
<td>02/06/1989</td>
<td>CR1989-0705</td>
</tr>
<tr>
<td>EL 8088</td>
<td>Roebuck Resources NL</td>
<td>Gold / Base Metals</td>
<td>15/12/1993</td>
<td>19/01/1996</td>
<td>CR1995-0010</td>
</tr>
</tbody>
</table>

Table 1: Summary of Prior Exploration.

Helix Resources undertook a soil and stream sediment sampling program in 1998, and also gathered some rock chips for both assay and whole rock analysis with a focus on gold mineralisation. No assays were made for uranium during their program, and no anomalous gold results were found that warranted further work.

No NTGS recorded drilling has occurred over the tenement area. Locations where rock chip samples have been taken and drill collars existing outside the tenement boundaries are marked on Figure Six below.
WILKINSON RESOURCES WORK IN 2011 - 2012

No on-ground investigations have been undertaken over the past reporting period. Work on the lease was confined to an office environment focussing on a JV arrangement. This is hoped to be finalised in the near future where a concerted effort can be made in target generation from the data that has been collated over the tenement.

PLANNED WORK 2012 - 2013

Over the coming reporting period, the Company has elected to invest in ground radiometrics across the tenement to enhance the NTGS data of the area. Target generation from ASTER data acquisition and interpretation, including assessment of the previous company investigations should focus the planned surface mapping and sampling to be conducted on the tenement.
Sources

