Table of Contents

SUMMARY .. 3
INTRODUCTION ... 3
BACKGROUND .. 3
LOCATION AND ACCESS .. 3
CLIMATE ... 5
TOPOGRAPHY AND VEGETATION .. 5
TENURE .. 5
MINING/MINERAL RIGHTS .. 5
LAND TENURE .. 5
NATIVE TITLE ... 7
ABORIGINAL SACRED SITES ... 7
GEOLOGY .. 7
REGIONAL GEOLOGY .. 7
LOCAL GEOLOGY ... 7
EXPLORATION BY PREVIOUS COMPANIES .. 9
 CRA Exploration Pty Ltd A-P, 2710, 1971, 1972 ... 9
 Kewanee Australia Pty Ltd EL 805, 1973 .. 9
 White Range Gold NL EL6693, 1990 ... 9
 Stockdale Prospecting Ltd CR19930086, EL7570, 1993 .. 10
 Roebuck Resources NL EL8126, 1995 ... 10
 NTDME Geophysical Surveys. 1997 ... 10
 Rio Tinto Exploration Pty Ltd. ELs 9565, 9566, 8126, 8988, 1997 ... 10
 BHP Billiton Minerals Pty Ltd-Mithril Resources Ltd ELs 22631, 22632, 2002 11
 Norquest Mines Pty Ltd EL 23144, 2004 ... 12
EXPLORATION BY WESTERN DESERT RESOURCES & NUPOWER RESOURCES 13
 2006 .. 13
 2007 .. 13
 2008 .. 13
 2009 .. 13
 2010 .. 13
EXPENDITURE .. 15
PROPOSED WORK PROGRAM FOR 2012 – YEAR 6 .. 15
REFERENCES .. 16
APPENDICES ... 17
APPENDIX 1 – EXPENDITURE REPORT ... 18

Table of Figures

Figure 1 - Location EL25338, Burt Plain ... 4
Figure 2 - EL 25338 – Land Tenure Map Showing Pastoral Leases and Aboriginal Land Claims 6
Figure 3 - EL 25338 On Regional Geology Interpretation ... 8
Figure 4 - EL 25338 Burt Plain, Reconnaissance ... 14
SUMMARY

The tenement is located about 40km north of Alice Springs in the southern part of the Northern Territory.

EL 25338 was granted to A W Mackie on 8th January 2007. The licence was purchased by WDR Base Metals Pty Ltd, a wholly owned subsidiary of Western Desert Resources Ltd, on May 2nd 2007.

Western Desert Resources Ltd entered into a joint venture agreement with NuPower Resources Ltd for energy minerals over this tenement in February 2008. This was re-negotiated to include all metals on February 1st 2011.

The tenement is located within the Arunta Block of Palaeoproterozoic to Mesoproterozoic age.

The project area is underlain by high-grade metamorphic rocks of the Strangways Metamorphic Complex, which forms part of the Central Province of the Arunta Block.

Previous exploration by Western Desert Resources, and NuPower Resources, has included gravity surveys, an IP survey, a five hole diamond drilling programme, petrological investigation of the drill core from previous drilling programme, assay of the samples for platinoids, bore water and stream sediment sampling. Several other geophysical surveys including airborne EM and ground magnetics were also completed.

No on-ground exploration work has been carried out over the Burt Plain tenement during the current year. Some desktop evaluation of magnetic anomalies was done.

INTRODUCTION

BACKGROUND

The Exploration Licence was held by A W Mackie until it was acquired by Western Desert Resources Ltd in May 2007. The tenement covers the prospective combined magnetic/gravity anomalies at the Capricorn Prospect. NuPower Resources Ltd are farming in to the tenement.

LOCATION AND ACCESS

The tenement is located about 40km north of Alice Springs in the southern part of the Northern Territory (Figure 1).

Access is by the sealed Stuart Highway from Alice Springs, and thence by station tracks.
Figure 1 - Location EL25338, Burt Plain
CLIMATE

The climate is arid, sub-tropical with cold winters and hot summers. The average annual rainfall is 280mm with most falls in summer months.

TOPOGRAPHY AND VEGETATION

The Burt Plain project is located in flat feature-less country. Intermittent creeks cross the area. The soils are poorly developed on sand dunes. Vegetation is sparse.

TENURE

MINING/MINERAL RIGHTS

EL 25338 was granted to A W Mackie on 8th January 2007. The licence was purchased by WDR Base Metals Pty Ltd, a wholly owned subsidiary of Western Desert Resources Ltd, on May 2nd 2007.

Western Desert Resources Ltd entered into a joint venture agreement with NuPower Resources Ltd for energy minerals over this tenement in February 2008, that was re-negotiated on February 1st 2011 to include all metals.

LAND TENURE

The tenement is located within the boundaries of Perpetual Pastoral Leases 960 (Bond Springs), 1145 (Hamilton Downs) and 904 (Yamba), as shown on Figure 2.
Figure 2 - EL 25338 – Land Tenure Map Showing Pastoral Leases and Aboriginal Land Claims
NATIVE TITLE

The Burt Plain project does not currently fall within the area of a registered Native Title Claim. A Native Title agreement was signed between Western Desert Resources Ltd and the Central Land Council on 20th September 2007.

ABORIGINAL SACRED SITES

There are no known sacred sites within the project area.

GEOLOGY

REGIONAL GEOLOGY

The tenement is located within the Arunta Block of Palaeoproterozoic to Mesoproterozoic age. The block consists of meta-igneous and meta-sedimentary rocks which have been strongly deformed and metamorphosed up to granulite facies.

LOCAL GEOLOGY

The project area is underlain by high-grade metamorphic rocks of the Strangways Metamorphic Complex, which forms part of the Central Province of the Arunta Block (Figure 3). These rocks are exposed in the north eastern part of the area and crop out intermittently in the western portion of the licence. Much of the tenement is covered by up to 120m of Recent to Tertiary sediments.
Figure 3 - EL 25338 On Regional Geology Interpretation
EXPLORATION BY PREVIOUS COMPANIES

Previous exploration in the Burt Plain region has focussed on the potential of the basement rocks to host layered mafic-ultramafic intrusions with Ni-Cu-Co and platinoid (Pt-Pd) mineralisation, exposed in the Chapple and Hay Massifs, concealed beneath Burt Basin cover and first identified in airborne magnetic surveys by the BMR and NTGS. Several companies have also recognised the potential of the Cainozoic sedimentary sequences for secondary uranium deposits derived by the erosion of the surrounding uraniferous basement rocks.

CRA Exploration Pty Ltd A-P, 2710, 1971, 1972
CRA acquired the A-P2716, immediately south of the Burt Plain West license, EL25338, to explore for Ni in ultramafic rocks on the basis of a BMR magnetic anomaly. They carried out a helicopter stream sediment sampling program, collected a small number of rock chip samples and assayed bore waters in the region for uranium. They also drilled a number of shallow holes targeting uranium in the Tertiary sediments. Elevated Ni, Cu, Co, Cr results from the Mt Hay area were attributed to higher background values from basic granulite. The bore waters were not anomalous in uranium.

A-P2710, that straddled the Stuart Highway and covered part of the eastern end of Burt Plain License, was acquired for similar reasons. Reconnaissance mapping and stream sediment sampling in the exposed eastern part of the area showed that magnetic anomalies here were derived from magnetic granulites and quartzites and there was no anomalous geochemistry. A ground magnetic survey was used to locate the better magnetic anomalies to the west under cover and three were tested by shallow drilling. After passing through Tertiary sediments most of the holes were terminated in pyroxene-magnetite granulite. No ultramafic rocks were found and the Ni potential was discounted.

Kewanee Australia Pty Ltd EL 805, 1973
Kewanee explored this area, immediately east that partly overlapped with the Burt Plain tenement, for Cu, Pb, Zn and any other economic mineralisation. They carried out a program of stream sediment sampling, undertook close-spaced geological traverse mapping and scintillometry and drilled a series of auger holes along the Stuart Highway from Burt Creek to Ambalindum Station turnoff. The results were not significant and the company relinquished the area considering that this type of exploration was not economic.

White Range applied for this area, that straddled the Stuart Highway and overlapped with the western part of the Burt Plain tenement, to explore a series of magnetic anomalies (the most intense with an amplitude of 4000nT), identified by the BMR 1965 and 1967 aeromagnetic surveys, for carbonatites similar to the Mt Weld carbonatite in Western Australia and the Mud tank carbonatite nearby in the Strangways Ranges. The anomalies were thought to be compatible with a carbonatite source or sources and comparisons were drawn with some Canadian carbonatites and the Palabora Complex in South Africa. Outcrop is limited to granite, mafic granulite and garnet gneiss at Boen Hill while the rest of the area is underlain by Cainozoic sediments. The most intense anomaly, crossing the Stuart Highway was ground located with ground magnetics and tested with 5 shallow drill holes. These penetrated 70-80m of Cainozoic sediments before intersecting magnetite bearing granulite (up to 15% in the two southern most holes) with accessory
apatite and zircon. Rare earth levels were elevated and the magnetite content was sufficient to explain the anomaly.

Stockdale Prospecting Ltd CR19930086, EL7570, 1993
EL7570 lay NW of the Burt Plain West tenement covering just the north eastern most part. Following assay of 960 samples from a regional stream sediment sampling program of the Alice Springs 1:250k sheet they identified 13 -80# stream sediment anomalies up to 47ppb Au, 4 of which fell within EL25338, with assays of 10-18ppb Au. This was followed up with an infill program of BLEG, and -36# stream sediment sampling; the -36# samples were subsequently sieved at the laboratory into -80# and +80# fractions for assay. Sit orientation sites including two of the original highest stream sediment sites of 19 and 19ppb Au were selected for initial assay, results of which were disappointing in that the stream sediments assayed close to the detection limit 1ppb Au) as did the BLEGs (0-2ppb Au). The remaining BLEG samples were then assayed, 5 of which returned >0.2ppb Au, one of which fell within EL25338. Assay of the 6 orientation steam sediment samples and a further 16 surrounding stream sediments for base metals gave no significant results except for several low isolated Pb-Zn values.

The gold anomalies were thought by Stockdale to be due to sporadic and isolated occurrences in the Oolbra Orthogness from which they were derived and that the Alice Springs and Mobin Deformed Zones that intersect within the area do not appear to control gold mineralisation. The area was relinquished.

Roebuck Resources NL EL8126, 1995
Roebuck acquired this area, located west of the Stuart Highway that overlapped with the southeastern part of the Burt Plain license, to explore a cluster of high amplitude magnetic anomalies identified by the BMR 1965 survey. This was virtually the same ground explored by White Range NL in 1990. The area is largely underlain by Cainozoic sediments with minor isolated basement outcrops. The anomalies are coincident with a regional gravity high and it was thought that the causative bodies could be mafic granulites, mafic-ultramafic intrusives (with potential for Ni, Cu, Co, Cr and platinoid mineralisation), or magnetite-haematite rich gneiss or schist.

Aerial photograph interpretation identified a series of circular structures interpreted as possible carbonatite or kimberlite pipes on the margins of the magnetic anomaly cluster. Carbonatites are known from the Mud tank area and analogies were drawn with the magnetic anomaly associated with the Mordor Complex to the east (a differentiated potassic igneous intrusive complex) and the Palabora Carbonatite Complex in South Africa. It was therefore thought that the cluster of magnetic anomalies could represent a group of potassic intrusives similar to the Mordor structure.

CRAE farmed into the tenement as manager and flew a close-spaced magnetic-radiometric survey of the BMR anomalies.

NTDME Geophysical Surveys. 1997
Detailed aeromagnetic and radiometric surveys were completed in 1997 that included all of the Napperby 1:250,000 Sheet area as well as the northern half of the adjacent Hermannsburg 1:250,000 Sheet to the south. The survey was flown at a line spacing of 400 metres and a mean terrain clearance of 60 metres. All primary data and gridded data as well as some plotted products from this survey are available freely from the Department.

Rio Tinto Exploration Pty Ltd. ELs 9565, 9566, 8126, 8988, 1997
Of this group of licenses, EL’s 9565, 9566, covered the western most part of Burt Plain West EL8126 covered the central part and EL8988 covered the eastern part. This was the most comprehensive exploration here for layered igneous intrusive hosted Ni-Cu-PGE deposits. RTZ carried out geological mapping, a depth to basement compilation from existing borehole data (that identified lignite in two places of concern to deep EM surveys), rock chip geochemical and petrological sampling, airborne magnetic, radiometric and EM surveys, soil geochemistry, ground magnetic and EM surveys, RAB, core and RC drilling, and downhole conductivity and magnetic susceptibility logging.
Preliminary fieldwork of the Mt Hay Massif identified relict igneous textures and primary igneous layering in outcropping anorthosite that together with petrology confirmed the mafic igneous precursor. From this it was inferred that the stratigraphically lower and potentially mineralised parts of the complex lay below Cainozoic cover to the north. Mapping of the Mt Hay Massif found mostly mafic granulites, meta-gabbros and lesser garnet gneisses and anorthosite.

The airborne surveys identified major east-west thrust zones and discontinuities indicative of extensive deformation. Strong magnetic banding (though to represent igneous layering) was evident between the Mt Hay Massif and a cluster of intense magnetic anomalies at Sixteen Mile, originally thought to represent the basal parts of a very large igneous complex. Ground magnetics located two of the more intense anomalies at Sixteen Mile and one of the anomalies was drilled, immediately north of Burt Plain West. Diamond hole DD97MD001 west of the Stuart Highway intersected plagioclase-pyroxene-hornblende-biotite-magnetite gneiss with minor pyrite blebs and trace chalcopyrite on fractures. Petrology suggested a diorite- adamellite igneous precursor. There were no significant assays.

A second hole, RC hole RC97MH001, was drilled east of the highway to test a thin horizontal AEM conduction at 50m depth. Petrology of basement samples identified the rock as plagioclase-quartz-garnet-biotite gneiss of upper amphibolite faces and thought to be a metagranodiorite.

The second magnetic anomaly had been drilled previously by White Range encountering magnetite-rich mafic granulites with no significant assays. The anomalies were explained by the high magnetite content and reinterpreted as isolated igneous intrusions instead of being the basal layers of a layered igneous complex.

RAB drilling of a ground magnetic traverse to better define the magnetic layering and to provide basement geochemistry for mineralisation vectoring intersected thicker sequences of Cainozoic cover than expected and only three holes reached basement. This comprised meta-gabbro and garnet gneiss, with no significant assays.

The airborne EM survey over the layered magnetic sequence located several conductors, two of which were followed up with ground EM near Coles Dam and Little Amburla Dam. They were modelled as thin sub-horizontal conductive sheets at shallow depth (30-50m). Drilling and downhole conductivity logging confirmed these as conductive layers in the Cainozoic cover. Basement here included garnet gneiss and granulite with no significant assays. Palaeochannels were also evident in the EM survey as moderately conductive dendritic responses draining to the north from a basement ridge orientated east-west just north of the Tanami Road. A deep sub basin in the Tertiary cover (with lignite) was also evident as a highly conductive response in the southeast of the area.

Although the work successfully identified a highly deformed and metamorphosed layered igneous complex, no sulphide mineralisation was encountered, no vectors to mineralisation were recognisable and the area was relinquished.

BHP Billiton Minerals Pty Ltd-Mithril Resources Ltd JV ELs 22631, 22632, 2002

These areas held by BHPB straddled the Stuart Highway and overlapped with the western part of the Burt Plain license. They were targeting polymetallic Ni-Cu-Co magmatic sulphide mineralisation of Voiseys Bay, Norilsk affinities, associated with mafic-ultramafic intrusions under thin Cainozoic cover. Following a review of previous exploration and reprocessing of available geophysical data they identified and drill tested a combined magnetic/EM target that was interpreted to represent a possible feeder dyke to a large body of magnetic granite defined from previous drilling. The shallow GEOTEM feature coincident with the magnetic anomaly was interpreted to be due to conductive Tertiary clays. This was substantiated by drilling. The hole intersected 41m of Tertiary sediments, comprising clay, lateritic material and clayey gravel, overlying basement of coarse biotite–garnet granodiorite. The granodiorite contained primary magnetite and secondary magnetite associated with silica alteration. There was no further work and the area was relinquished.
Norquest Mines Pty Ltd EL 23144, 2004

Norquest acquired this area immediately south of the Burt Plain tenement on the basis of the NTGS aeromagnetic data that showed the likely presence of a major layered mafic igneous intrusion with potential for Ni-Cu-Co and platinoid (Pt-Pd) mineralisation. (All of the layered granulites have previously been interpreted as part of a very large igneous intrusion-the “Capricorn Layered Igneous Intrusion”, recognised by RTZ who held the ground in the mid nineties under ELs 9565, and 8126.). This is better exposed southwest of the license in ground held at that time by BHPB-Mithril and mapped as Mt Hay Granulite (part of the Narwietooma Metamorphic Complex) and Amburla Anorthosite, but largely covered by Cainozoic material in the Norquest ground. Norquest thought from the aeromagnetic signature of the limited outcrop mapped here as Adla Granulite of the Strangways Complex that this was in fact part of the Mt Hay Granulite instead. Norquest also thought from the aeromagnetic patterns that two superimposed mafic layered intrusive complexes were present. Norquest sampled outcrops of the Adla Granulite for petrological study that showed that the mineralogy is consistent with a layered intrusion. They examined the nature of the Cainozoic cover, some of which was interpreted as saprolitic basement instead. There was no further work.
EXPLORATION BY WESTERN DESERT RESOURCES & NUPOWER RESOURCES

2006
Western Desert Resources (WDR) undertook a gravity traverse with a station spacing of 200m over the Capricorn Prospect in 2006. The survey followed the Stuart Highway and delineated a Bouguer anomaly with an amplitude of 11 mgal coincident with the aeromagnetic anomaly.

2007
Work completed by WDR in 2007 has been reported in the previous annual report. Exploration activities included a gravity survey, an IP survey and a five hole diamond drilling programme.

2008
Work completed by WDR and NuPower Resources in 2008 included petrological investigation of the drill core from previous drilling programme, assay of the samples for platinoids, bore water and stream sediment sampling and several geophysical surveys including gravity, airborne EM and ground magnetics. The results have been discussed in previous reports.

2009
No on-ground exploration work was carried out by NuPower over the Burt Plain tenement during Year 3.

An interpretation of the gravity and EM data received in previous year indicated that no anomalies worth following up exist.

2010
NuPower spent one day traversing an area of outcrop as shown on the Alice Springs 1:250,000 geological map west of Coles Dam, to see if a source for bore water geochemical anomalies could be explained.

In one area several small prominent outcrops of weakly foliated coarsely porphyritic granite occur. This is unaltered, shows no sign of any mineralisation and is very similar to granite outcrops in the Aileron area, (Figure 4). Radiometric background ranges from 240 – 400cps.

Southeast of here are some low outcrops of amphibolite and garnet-bearing granulite or gneiss. This again is unaltered and un-mineralized.

The majority of the area is sand-covered, although this may only be a few metres thick.

No indications of what might be causing the bore water anomalies were found.

2011
No fieldwork was done in this reporting period. Some desktop evaluation of magnetic anomalies within the tenement was done. Several previous explorers, and Western Desert Resources, have targeted the magnetic anomalies for Ni-Cu-PGE, carbonatite-hosted mineralization, and IOCG mineralization. No significant results were obtained from this work, but the possibility remains that the anomalies could be associated with an alkalic intrusive complex similar to that at Mordor – some distance to the east.
Figure 4 - EL 25338 Burt Plain, Reconnaissance
EXPENDITURE

The expenditure commitment for the year was $50,000. Actual expenditure was $562.02, the details of which are shown on the expenditure form (Appendix 1). As the commitment was not reached a request to vary covenant has been submitted.

PROPOSED WORK PROGRAM FOR 2012 – YEAR 6

NuPower is currently evaluating data on this tenement to ascertain whether any further work should be done. This assessment will be complete in the first few months of 2012.
REFERENCES

APPENDIX 1 – EXPENDITURE REPORT
MINERAL EXPLORATION AND MINING EXPENDITURE REPORTING

TITLE DETAILS
<table>
<thead>
<tr>
<th>EL 25338</th>
<th>ELR:</th>
<th>ML:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period reporting from: 07/01/2011
Reporting to: 08/01/2012

- [X] ANNUAL
- [] FINAL

Contact details of person responsible for content of this form (please provide telephone and email):

<table>
<thead>
<tr>
<th>Name:</th>
<th>Krystal Fischer</th>
<th>Company:</th>
<th>NuPower Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telephone:</td>
<td>02 9262 4236</td>
<td>Email:</td>
<td>Krystal.fischer@nupowerresources.com.au</td>
</tr>
</tbody>
</table>

ACTIVITY DETAILS FOR THE REPORTING PERIOD

<table>
<thead>
<tr>
<th>Admissible Expenditure</th>
<th>Specify the work undertaken</th>
<th>$AU Claimed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Geological Activities and Prospecting</td>
<td>Re assay water samples</td>
<td>89.30</td>
</tr>
<tr>
<td>D. Geochemical Activities</td>
<td>Computer modelling</td>
<td>399.42</td>
</tr>
<tr>
<td>C. Geophysical and Remote Sensing Activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Drilling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Bulk Sampling and Earthworks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Rehabilitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Pre-feasibility inc. Metallurgical and Environmental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Office Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Overheads (not to exceed 15% of the sum of A to H above)</td>
<td>Tenement administration</td>
<td>73.30</td>
</tr>
<tr>
<td>J. (Preliminary Exploration – Yr 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Total Expenditure Claimed</td>
<td></td>
<td>562.02</td>
</tr>
<tr>
<td>L. Covenant for this reporting period</td>
<td></td>
<td>50000</td>
</tr>
</tbody>
</table>
LAND ACCESS NEGOTIATION COSTS
Specify costs (these costs are NOT admissible expenditure): $
Details:

PROPOSED ACTIVITIES FOR THE NEXT 12 MONTHS
Provide a general description of exploration activities planned for the next 12 months:
Assessment of water samples taken in 2008 with respect to other exploration data and general
geological information (magnetics and gravity) for the area will be made to identify targets for further site
investigations, including surface, surface sampling (detailed) and or shallow drilling.

ACTIVITY DETAILS FOR THE NEXT REPORTING PERIOD

<table>
<thead>
<tr>
<th>Admissible Expenditure</th>
<th>Specify the work to be undertaken</th>
<th>$AU Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Geological Activities and Prospecting</td>
<td>Site visits & sampling</td>
<td>10000</td>
</tr>
<tr>
<td>B. Geochemical Activities</td>
<td>Detailed surface sampling & water sampling</td>
<td>10000</td>
</tr>
<tr>
<td>C. Geophysical and Remote Sensing Activities</td>
<td>Data assessment geochem</td>
<td>5000</td>
</tr>
<tr>
<td>D. Drilling</td>
<td>Shallow drilling if anomalies are defined</td>
<td>20000</td>
</tr>
<tr>
<td>E. Bulk Sampling and Earthworks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Rehabilitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Pre-feasibility inc. Metallurgical and Environmental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Office Studies</td>
<td>GIS studies of all datasets to generate target/anomalies</td>
<td>5000</td>
</tr>
<tr>
<td>I. Overheads (not to exceed 15% of the sum of A to H above)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Covenant for next reporting period</td>
<td></td>
<td>50000</td>
</tr>
</tbody>
</table>

This application form must be submitted via email to: geoscience.info@nt.gov.au
Further information is available at www.minerals.nt.gov.au or (08) 8999 6443