FINNISS RANGE PROJECT, NT

EL 24774

ANNUAL REPORT

FOR THE PERIOD

22nd August 2009 to 21st August 2010

Tenement : EL 24774
Owner : Altura Exploration Pty Ltd
Operator : Altura Exploration Pty Ltd
Prepared by : B G Bourke
Date : October 2010
Distribution : Altura Exploration Pty Ltd
Department of Resources, NT (“DoR”) (1)
TABLE OF CONTENTS

1. SUMMARY ......................................................................................................................... 3
2. INTRODUCTION ............................................................................................................... 3
3. LOCATION AND ACCESS ................................................................................................. 3
4. TENEMENT STATUS ......................................................................................................... 3
5. LOCAL GEOLOGY .............................................................................................................. 5
6. PREVIOUS EXPLORATION .............................................................................................. 7
7. WORK CARRIED OUT – 22ND AUGUST 2009 TO 21ST AUGUST 2010 ....................... 8
8. CONCLUSIONS AND RECOMMENDATIONS ................................................................. 8
9. PROPOSED WORK ........................................................................................................... 8
10. REFERENCES .................................................................................................................. 8

FIGURES

Figure 1: Finniss Range Project Location and tenement Plan
Figure 2: Finniss Range Project – Tenements and Regional Geology

TABLE

Table 1. EL24774 Tenement details

APPENDIX

Appendix 1: 2009-2010 Expenditure
1. SUMMARY

In the 2009 – 2010 reporting period no field activities were undertaken. In 2008 Altura Exploration moved its exploration focus from the search from tantalum to assess the Finniss Range project area for lithium. Further desk top studies were undertaken looking at the historical data.

In the later part of 2009 and early 2010 Altura Exploration underwent management and staff changes and the field work outlined for the current reporting period could not be effectively undertaken. Resources were allocated to other areas within the Finniss Range project area as well as on the Shoobridge project area to meet with commitments.

2. INTRODUCTION

This report covers exploration work carried out by Altura Exploration Pty Ltd Pty Ltd (formerly Australian Tantalum Pty Ltd), a subsidiary of Altura Mining Limited (formerly Haddington Resources Limited), during the reporting period 22nd August 2009 to 21st August 2010.

3. LOCATION AND ACCESS

The Finniss Range Project is located approximately 50 km south of Darwin; roughly 20 km southwest of Berry Springs/Tumbling Waters. Access is via the all-weather Litchfield National Park and Fog Bay Roads, and various dirt tracks.

The Licence lies on the Darwin 1:250,000 (SD52-4), and Bynoe (5072) 1:100,000 scale topographical and geology sheets.

4. TENEMENT STATUS

EL 24774 was granted to Altura Exploration Pty Ltd Pty Ltd on 22nd August 2006 for a period of six (6) years.

The tenement is part of a project which also includes EL’s 24773, 25521, 25603, 25604, 26399, 26467, 26469 and 26932 (Figure 1).

<table>
<thead>
<tr>
<th>Tenement</th>
<th>Holder</th>
<th>Grant Date</th>
<th>Expiry</th>
<th>Area</th>
<th>Rent $</th>
<th>Commitment $</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL 24774</td>
<td>Altura Exploration Pty Ltd</td>
<td>22.08.2006</td>
<td>21.08.2012</td>
<td>8 blocks</td>
<td>$176</td>
<td>$19,000</td>
</tr>
</tbody>
</table>

Table 1. EL 24774 – Tenement Details.
Figure 1: Finniss Range Project - Tenement Location Plan
5. LOCAL GEOLOGY

The project area consists primarily of the Early Proterozoic Burrell Creek Formation (Figure 2), an interbedded sequence of lutite, arenite and rudite. The sediments form undulating hills, low ridges and prominent strike ridges (where more resistant arenite predominates in outcrop). Sandstone units (often metamorphosed to quartzite) typically form blocky beds between 0.2-2.0m thick, are strongly jointed and fractured, and often quartz veined. Much of the area is covered by ferricrete, which varies between massive and pisolitic.

The formation conformably overlies the Mount Bonnie Formation, the contact being defined by the top of the uppermost unit of argillite, tuff, banded iron formation, or shale containing chert bands, lenses or nodules.

To the west, the Burrell Creek Formation is intruded and contact metamorphosed by the Two Sisters Granite. Metamorphic grade increases westward from sub-greenschist facies siltstone and sandstone in the east, to upper greenschist facies gneiss and schist in the west.

The Two Sisters Granite forms a discordant irregular batholith, and consists of moderately to non-foliated granite, adamellite, granodiorite and minor porphyritic granite.

The Archaean Rum Jungle Complex where it is exposed as scattered low pavements and boulder-strewn outcrops protruding through a thin veneer of Cainozoic sand.

Rare element pegmatites that crop out in the area form the Litchfield pegmatite belt. The Litchfield belt is divided into the more prominent Bynoe Pegmatite Field, and the less significant Wingate Mountains pegmatite district.

The Bynoe pegmatite field is 70km in length and 15km in width. All pegmatites are believed to have been derived from the Two Sisters Granite (Ahmad 1995), which is considered to dip to the east under the Burrell Creek Formation, below the exposed pegmatites.

The pegmatites typically occur in clusters, and six pegmatite groups are recognised within the Bynoe field; The Kings Table, Observation Hill, Walkers Creek, Labelle, Leviathan, River Annie Group. The last two groups lie within the Project Area.

The Leviathan and River Annie Group pegmatites occur within the Burrell Creek Formation. The pegmatites are irregularly distributed, concordant with the main metamorphic foliation, and interfinger in places mostly along bedding planes (Frater, 2005).
Figure 2: Finniss Range Project – Tenements and Regional Geology
6. PREVIOUS EXPLORATION

Previous exploration has centred on the Leviathan Group pegmatites (Leviathan Mine), and the area surrounding the Annie Mine.

The Leviathan mineralisation was discovered by C. Clarke in 1886, and a mine and battery were established shortly after. By 1890, three shafts had raised 406t of ore to produce 2.03t of Sn oxide (Frater, 2005). The tin mineralisation proved to be patchy and the leases were abandoned in 1909.

Following this initial discovery, numerous mineralised pegmatites were discovered and worked in the area by Chinese and European prospectors. Mining was short lived and virtually all leases were abandoned by 1910, with no record of location or production.

The Leviathan area was explored by Greenex (a division of Greenbushes Ltd – later Sons of Gwalia) between 1983 and 1990. By 1987, using ground reconnaissance and aerial photographs, Greenex had rediscovered over 20 of the pegmatites that had been worked at the turn of the century.

Leases covering the Leviathan pegmatites passed to Corporate Development and in 2000, Julia Corporation Ltd (Julia) negotiated an option to explore the Leviathan ground. They carried out an RC drilling program, targeting several of the larger Leviathan pegmatites. In total, over thirty pegmatites have been discovered in the Leviathan area.

Greenex mapped the Annie area in 1984, and sampling of the Annie pegmatite showed it to be tin-rich. Outcrop was restricted to prominent quartz ridges and old workings. According to Frater (2005), one 25m section of pegmatite averaged approximately 666g/t Ta₂O₅, the highest individual sample assaying 2360g/t.

Further exploration work including auger drilling and trenching, and pegmatite was intersected over a strike length of 325m and a width of up to 35m. Auger drilling indicated a resource in the order of 0.098Mt at 156g/t SnO₂. Exploration continued until 1988, when Corporate Developments acquired the Annie lease. Softwood Plantations Pty Ltd, acting for Corporate Development, mined the Annie pegmatite in the period 1995 to 1999. 11t of tantalite and 28t of tin were produced between 1995 and 1997, and a further 69t of combined tantalum-tin concentrate was parcelled in 1997-1999.
7. **WORK CARRIED OUT – 22ND AUGUST 2009 TO 21ST AUGUST 2010**

In the 2009 – 2010 reporting period no field activities were undertaken. In 2008 Altura Exploration moved its exploration focus from the search from tantalum to assess the Finniss Range project area for lithium. Further desk top studies were undertaken looking at the historical data.

In the later part of 2009 and early 2010 Altura Exploration underwent management and staff changes and the field work outlined for the current reporting period could not be effectively undertaken. Resources were allocated to other areas within the Finniss Range project area to meet with commitments.

8. **CONCLUSIONS AND RECOMMENDATIONS**

Surface geochemical sampling by Altura Exploration has identified weakly elevated tin and lithium geochemistry to the north of the Mt Finniss Mine. This near surface expression may indicate the presence of a mineralised pegmatite below shallow soil cover.

The rock chip samples anomalous in Sn and Li need to be followed up with further rock chip sampling and outcrop mapping.

9. **PROPOSED WORK**

The work program proposed by Altura Exploration Pty Ltd for Year 5 of EL 24774 will be to complete the follow up rock chip sampling where anomalous geochemistry has been identified and soil sampling over areas that have been determined as being prospective for lithium.

10. **REFERENCES**

Ahmad, M., 1995, Genesis of tin and tantalum mineralisation in pegmatites from the Bynoe area, Pine Creek Geosyncline, Northern Territory. Economic Geology 42, 519-534.


APPENDIX 1

EXPLORATION EXPENDITURE