“Bringing Forward Discovery”

TENANT CREEK BLUEBUSH ‘Iron Oxide Copper Gold Exploration in Covered Terrain’
(EL 24966)

THE FINAL REPORT

Tennant Creek SE5314 1:250,000
Kelly 5658 1:100,000
Geodetic Datum of Australia 94, Zone 53

4 May 2010
Trevor Page
Ph: 08 8947 0944
Email: info@territoryuranium.com.au
EXECUTIVE SUMMARY

Territory Uranium Company (TUC) conducted a drill program exploring for possible Tennant Creek style high grade Iron Oxide Copper-Gold (IOCG) style mineralisation at its Bluebush project. The program was undertaken with joint venture partner Panoramic Resources, and in collaboration with the Northern Territory Government’s “Bringing Forward Discovery” initiative, as one of the 2009/10 Geophysics and Drilling Collaboration projects.

Drilling was performed in November-December 2009, during the third year of tenure on the exploration licence 24966, which covers an area mapped as Palaeoproterozoic granites and sediments under Quaternary and Cretaceous cover. The drilling consisted of 3 diamond holes for 1,761.8m (with 387m of RC pre-collars) and 538 samples. Drilling targeted 3 selected geophysical models between the Tennant Creek and Rover Fields in an attempt to discover Tennant Creek Style high grade IOCG deposits occurring in association with ironstones. The first model targeted was a gravity anomaly interpreted to be within an S-Shaped Shear. The second model was a magnetic anomaly in a regional setting analogous to the Rover Field. The third model was the main Bluebush regional bouger and residual gravity anomaly with similarities to Olympic Dam.

Despite economic mineralisation not being detected TUC believes that the drilling program has tested and challenged the geophysical and geological models originally proposed and has led to a re-think of the exploration model for the Bluebush region.

Results from the drill program have shown the Cretaceous cover to be much shallower than previously believed. The main rock sequence intersected in the first hole is interpreted to be part of the Flynn Subgroup. However the presence of high magnesian basalts may indicate older rocks (Archaean) than originally thought to exist in the Tennant Creek and Rover Fields. A major S-Shaped Shear was confirmed by drilling and may have brought lower sequences of basement rocks closer to the surface. The alteration and magnetite stringers detected in the second hole could indicate the proximity of a major alteration and mineralised zone (similar alteration exists below the Juno Deposit in the Tennant Creek field). The cause of the regional bouger and residual gravity anomaly at Bluebush remains uncertain. With these points in mind TUC will continue to explore the Bluebush Region for IOCG and other style deposits under the ongoing joint venture with Panoramic Resources.
TABLE OF CONTENTS

EXECUTIVE SUMMARY ... i

TABLE OF CONTENTS ... ii

1. INTRODUCTION .. 4

2. REGIONAL CONTEXT .. 4
 2.1 Regional Geology Summary ... 4
 2.1.1 Stratigraphy .. 4
 2.1.2 Structure ... 4
 2.2 Known Mineralisation .. 5

3. METHOD ... 5
 3.1 Geological Targeting Criteria ... 5
 3.2 Drill Holes ... 6
 3.3 Sampling, Analysis and Measurement ... 8

4. RESULTS ... 8
 4.1 Bluebush Southeast Residual Gravity Anomaly - TDD01 ... 8
 4.2 Southeast Magnetic Anomaly – TDD02 .. 11
 4.3 Bluebush Main Anomaly – TDD03 ... 13

5. COST OF PROGRAM .. 14

6. CONCLUSIONS/RECOMMENDATIONS ... 15

7. REFERENCES ... 16

8. APPENDIX A – CORE PHOTOGRAPHY ... 16

9. APPENDIX B – MICROSOFT ACCESS DATABASE ... 16

10. APPENDIX C – DOWN HOLE MAGNETIC SURVEY PARAMETERS 16

11. APPENDIX D – CROSS SECTION – TDD01 ... 17

12. APPENDIX E – CROSS SECTION – TDD02 ... 17

13. APPENDIX F – CROSS SECTION – TDD03 ... 17
List of Figures

Figure 1 Geology Map ..4
Figure 2 Regional mineralisation displayed on airborne magnetic imagery5
Figure 3 Plan map showing the new Drill Holes and the Gravity and Magnetic models,
previous drilling is also shown. ..7
Figure 4 Drill log of TDD01, note how the hole intersected the high magnesian basalt at
the same depth as the Lindeman Gravity Model. Insert: Design of TDD01,
showing the hole intersecting the Lindeman Geophysics Gravity Model (light
blue), and the Newexco Gravity (dark blue) and Magnetic (pink) Models.10
Figure 5 Magnetic Image of the Bluebush/Tennant Creek/Rover area showing how the
Southeast Magnetic Anomaly is intersected by a structure similar to Rover1.11
Figure 6 The log of TDD02 showing how the hole intersected a magnetic basalt dyke at a
similar depth to the Lindeman Magnetic Model. Insert: The design of TDD02,
showing it intersecting a Lindeman Geophysics Magnetic Model, the other
Magnetic Model to the south is yet to be drilled. ..12
Figure 7 The Juno Deposit model superimposed on Pinnacles North Cross Section by
Emerson Resources (Russell, 2009) ..13
Figure 8 The log of TDD03, showing the extensive granodiorite, and the small
intersections of diorite and dolerite. After nothing of interest was noticeable in the
Newexco Gravity Model the hole was cut short at 735.4m, shallow of the
Lindeman Geophysics Gravity Model. Insert: The planned TDD03 extending to
900m and intersecting both the Newexco Gravity Model (560m) and Lindeman
Geophysics Gravity Model (850m). ...14

List of Tables

Table 1 Drill Hole Details ...6
Table 2 Drilling Sampling and Measurement Protocol ..8
Table 3 Diamond Drill Program Costs ...14
1. INTRODUCTION

Territory Uranium Company (TUC) conducted a drill program looking for possible Tennant Creek style high grade Iron Oxide Copper-Gold (IOCG) style mineralisation at its Bluebush project. The drilling was performed in November-December 2009, during the third year of tenure on the exploration licence 24966. The drilling consisted of 3 diamond drill holes for 1,761.8m targeting selected geophysical anomalies. The program was undertaken with joint venture partner Panoramic Resources, and in collaboration with the Northern Territory Government’s “Bringing Forward Discovery” initiative, as one of the 2009/10 Geophysics and Drilling Collaboration projects.

2. REGIONAL CONTEXT

2.1 Regional Geology Summary

2.1.1 Stratigraphy

Interpreted to the south east is the Junalki Formation, a lithic / volcanoclastic arenite with interbedded laminated siltstone, and some argillaceous banded iron formation and rhyodacitic lava. Johnstone (2001) noted that the Junalki Formation had age dating similar to the Warramunga Formation which hosts the majority of mineralisation at the Tennant Creek Goldfield. This unit could be a sub basinal analogy to the Warramunga Formation and therefore is thought by TUC to improve the prospectivity of the tenement.

![Geology Map](image)

Figure 1 Geology Map

2.1.2 Structure

TUC’s Bluebush project sits at the intersection of two major NNW/WNW trending lineaments likely to be associated with the trend of regional thrusts discussed by (Large 1991). Numerous structures (Figure 1) cut the project between these two lineaments identifiable from magnetic disruptions in aeromagnetic data. These major lineaments match the orientation of those characteristic of the Tennant Creek Gold Field to the northeast of Bluebush and the Rover field to the southwest.
A strong S shaped shear (see Figure 3) on the south eastern side of the tenement appears to contain slices of a magnetic/sedimentary unit possibly sourced from immediately to the south of the tenement in the Junalki Formation.

2.2 Known Mineralisation

The Bluebush project is situated between the Tennant Creek Gold Field to the northeast and the Rover Field to the southwest (Figure 2).

Mineralisation in the Tennant Creek (25km northeast) and the Rover Field (40km southwest) primarily occurs in “Tennant Creek Style” high grade IOCG deposits hosted within Palaeoproterozoic sediments (Warramunga Formation at Tennant Creek), with the Rover Field beneath Cambrian sedimentary cover. The mineralisation occurs in association with ironstones precipitated by connate brines at locations such as EW fold hinges, axial planar shears and porphyry intrusions.

3. METHOD

3.1 Geological Targeting Criteria

Drilling at Bluebush targeted selected geophysical models between the Tennant Creek and Rover Fields in an attempt to discover Tennant Creek Style high grade IOCG deposits occurring in association with ironstones. Geophysical ground gravity survey data (collected by TUC in 2008) was combined with regional airborne magnetic survey data to reveal numerous coincident gravity/magnetic anomalies. These anomalies were modelled by two independent geophysists (Lindeman Geophysics and Newexco) and are presented in Figure 3. It was hypothesised the magnetic/gravity anomalies could be ironstones with associated mineralisation. The drilling was designed to test a selection of these targets.

Figure 3 shows the important structural and geological targeting elements, including a major fault which has been interpreted from airborne magnetic data. The fault is analogous to
structural features noted at the Tennant Creek and Rover Fields which have a similar orientation. A magnetic model near this fault was tested by TDD02. Another important structural feature is the magnetically interpreted S-Shaped Shear which was thought to contain slices of a magnetic/sedimentary unit possibly the Junalki Formation (sub-basinal analogy to the Warramunga Formation).

The main Bluebush anomaly is defined by the residual bouger gravity anomaly represented on Figure 3 as gradient lines located in the western region of the tenement.

3.2 Drill Holes

In November/December 2009 TUC drilled three diamond holes with RC pre collars in the Bluebush project area. The details of the holes can be found in Table 1.

<table>
<thead>
<tr>
<th>Hole ID</th>
<th>Easting</th>
<th>Northing</th>
<th>Elevation</th>
<th>Dip/Azimuth</th>
<th>RC Depth</th>
<th>Total Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD01</td>
<td>393750</td>
<td>7809700</td>
<td>330m</td>
<td>-60/000</td>
<td>133m</td>
<td>701.7m</td>
</tr>
<tr>
<td>TDD02</td>
<td>394900</td>
<td>7809750</td>
<td>330m</td>
<td>-60/000</td>
<td>145m</td>
<td>324.7m</td>
</tr>
<tr>
<td>TDD03</td>
<td>381600</td>
<td>7810200</td>
<td>330m</td>
<td>-90/000</td>
<td>109m</td>
<td>735.4m</td>
</tr>
</tbody>
</table>

Table 1 Drill Hole Details
Figure 3 Plan map showing the new Drill Holes and the Gravity and Magnetic models, previous drilling is also shown.
3.3 Sampling, Analysis and Measurement

Table 2 details the drilling, sampling, analysis and measurement protocols for the proposed drill program.

<table>
<thead>
<tr>
<th>Drilling Method</th>
<th>Drilling was undertaken with conventional NQ wireline coring tools and RC drilling used to pre collar holes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Orientation</td>
<td>Core was orientated on every run with an in core barrel ezi mark tool.</td>
</tr>
<tr>
<td>Down Hole Orientation</td>
<td>Down hole survey information was taken at the collar to ensure correct hole set up and at regular intervals down the hole. An electronic multi shot tool was used.</td>
</tr>
<tr>
<td>Survey</td>
<td></td>
</tr>
<tr>
<td>Core Mark Up</td>
<td>All core was marked at 1m intervals and orientation and sample lines added where possible.</td>
</tr>
<tr>
<td>Core Photography</td>
<td>All core was photographed prior to sampling using a high quality Canon EOS digital camera. All photos are located in Appendix A</td>
</tr>
<tr>
<td>Sample Quality</td>
<td>Diamond core, normal quality measures applied.</td>
</tr>
<tr>
<td>Logging</td>
<td>Core and RC chips were logged digitally (Tables include Lithology, Weathering and Regolith, Water Intersections, Structure, Veining, Alteration, Mineralisation, Geotechnical including ROD data, Specific Gravity and Magnetic Susceptibility) in a Microsoft Access Database which is located in Appendix B.</td>
</tr>
<tr>
<td>Sampling Procedure</td>
<td>RC samples were taken generally at 4m composites from 1m piles plus 1m splits using a riffle splitter. Some samples have been preserved for resample where necessary. Sampling of core commenced once all core photography, logging and geophysical analysis was completed. Samples of ½ core were taken to geological intervals generally at 1m intervals (maximum 1.4m, minimum 0.3m). Core was sampled in areas of geological interest, to geological boundaries or to provide a multi element geochemical signature of specific units.</td>
</tr>
<tr>
<td>Sampling QAQC</td>
<td>For the RC samples every 25th sample was a duplicate of the previous metre to ensure quality control of the assays.</td>
</tr>
<tr>
<td>Geophysical and Petrophysical Analysis of Core</td>
<td>The core was weighed in and out of water to calculate specific gravity roughly every 10m. Magnetic Susceptibility was also recorded every metre along the core.</td>
</tr>
<tr>
<td>Sample Dispatch</td>
<td>Samples were dispatched from the TUC Darwin office to Amdel in Adelaide via Amdel’s courier service based at the Bureau Veritas office in Berrimah.</td>
</tr>
<tr>
<td>Analysis</td>
<td>Samples were sent to Amdel Laboratory in Adelaide for the following analysis: Fire Assay - Au (1ppb), Pt (1ppb), Pd (1ppm) Multi-Acid Digest ICPMS Analysis - Ag (0.1ppm), As (0.5ppm), Ba (5ppm), Bi (0.01ppm), Co (0.2ppm), Cr (2ppm), Cu (2ppm), Fe (100ppm), Mo (0.1), Ni (2ppm), Pb (5ppm), Th (0.1ppm), U (0.1ppm), and Zn (0.5ppm). In addition to this 10 samples were selected for IC4 whole rock analysis.</td>
</tr>
<tr>
<td>Analysis QAQC</td>
<td>Laboratory QAQC procedures including blanks, duplicate analysis and standard analysis were employed. Amdel Laboratory complies with to AS9001 Quality Systems standards and partakes in round robin check analysis with other laboratories.</td>
</tr>
<tr>
<td>Down Hole Geophysical Survey</td>
<td>Down Hole Magnetic Survey was completed by Direct Systems Limited, results are located in the Microsoft Access Database (Appendix B). The parameters used for the survey are located in Appendix C.</td>
</tr>
<tr>
<td>Petrography</td>
<td>Selected samples were taken for petrographic analysis by Panoramic Resources.</td>
</tr>
</tbody>
</table>

Table 2 Drilling Sampling and Measurement Protocol

4. RESULTS

4.1 Bluebush Southeast Residual Gravity Anomaly - TDD01

TDD01 was designed to target a residual gravity anomaly and test for ironstone associated mineralisation in palaeoproterozoic sediments caught within an S-Shaped Shear formation (see Figure 3). The hole was designed to test two overlapping geophysical models designed by our consultants (see Figure 4).

The hole was drilled to 133m using an RC drill rig with fresh rock being intersected at 127m. Diamond drilling then extended the hole to a total depth of 701.7m. Basalt was drilled down to a depth of 151.4m, however evidence of basalt flow top was noticeable at 62m separating the basalt into two separate units.
Recent low angle faulting at 151.4m separates the basalt from an interbedded sandstone/siltstone unit which continues through to a near vertical graphitic shear between 238.2-240.7m. The location and orientation of the graphitic shear aligns with the S-Shaped Shear formation which has been interpreted from airborne magnetic data. After the shear zone volcanoclastic sediments where drilled till a depth of 342.5m. Although some questions remain TUC interpreted these sediments to be from the Flynn Subgroup.

At 342.5m the rock type changed to high magnesian basalt, which was drilled until the end of the hole at 701.7m. A number of cumulative zones were noted within this high magnesian basalt, the first between 347-349.1m and the second between 368.1-374.3m.

It is interesting to note that the drill hole intersected one of the residual gravity models at 345m, almost precisely where the rock type changed to the high magnesian basalt. TUC believes the higher density of the high magnesian basalt is the cause of the gravity anomaly at this location.

The rocks show weak signs of chlorite, carbonate and haematite alteration which alternates throughout the hole but primarily between 172.3-388m.

Metamorphic textures and the presence of high magnesian basalt with cumulate textures and elevated nickel suggest a much older age for the sequence (possible Archaean). Basalt sequences of this nature are not known in the district and if proven to be Archaean, will have an impact on TUC’s exploration model on this tenement.

Assay results show elevated gold (135ppb) at 293m, and elevated nickel values (1m @ 2,100ppm from 369m and 7m @ 2,185ppm from 476m inc 1m @3,100ppm) within the high magnesian basalt.

As the high magnesian basalt is thought to be the source of the anomaly, and due to the low levels of alteration seen in the drill hole TUC is not planning any further work in this immediate area. However other anomalies in the Bluebush Southeast area, located further to the west, are still to be tested. TUC is planning to drill these anomalies which have a much stronger magnetic and gravity coincidence thus fitting the more traditional IOCG magnetite ironstone exploration model. Drilling is dependent on negotiations with the Traditional Land Owners.

Petrology and whole rock analysis of selected rock types is underway to assist in ascertaining rock classification through mineralogy, texture, alteration and metamorphism. This combined with results from the logging will enable much better determination of the stratigraphic setting.

For full details about TDD01 please look at the drill logs (Appendix B) and cross section (Appendix D).
Figure 4: Drill log of TDD01, note how the hole intersected the high magnesian basalt at the same depth as the Lindeman Gravity Model. Insert: Design of TDD01, showing the hole intersecting the Lindeman Geophysics Gravity Model (light blue), and the Newexco Gravity (dark blue) and Magnetic (pink) Models.

2.4m @ 0.2ppm Ni and 757ppm Cr from 320m
Inc 1m @ 2,100ppm Ni

7m @ 2,185ppm Ni and 714ppm Cr from 44m
Inc 1m @ 2,700ppm Ni
4.2 Southeast Magnetic Anomaly – TDD02

TDD02 was designed to test an airborne magnetic model (see Figure 6) which was situated close to a fault structure interpreted from the airborne magnetic image. The orientation of this fault structure matches similar faults which intersect the Tennant Creek and Rover Fields (see Figure 5).

TDD02 was drilled down to a total depth of 324.7m, with a 145m RC pre-collar. Basalt was logged for the majority of the hole, however a small felsic porphyry intrusive was noticed at 74-76m and a siltstone unit at 88-90m (see Figure 3). Four basalt dykes intersect the main basalt unit between 184-205m.

Between 286.6-305m a zone of strong magnetite alteration (including magnetite stringers) and chlorite alteration was intersected. The zone was logged as a fifth basaltic dyke but it is possible that the observed difference in composition and texture to the surrounding sediments is due to alteration rather than a difference in the original rock type. Petrology and whole rock analysis of the dyke is currently taking place.

The magnetite alteration is interpreted to be the cause of the magnetic anomaly model this is demonstrated by a significant increase in the magnetic susceptibility results between 286-304m. Core sampling of this zone has only been conducted from 297-307.2m and results show elevated copper (750ppm) and nickel (1,000ppm). Sampling of the hole from 285m to 297m is planned.

The base of complete oxidation exists at 32m, which corresponds to a potential zone of supergene enrichment (20-36m) which had elevated copper (235ppm), cobalt (495ppm), lead (60ppm), uranium (12ppm) and zinc (255ppm).
A secondary zone of supergene enrichment exists between 68-75m where gold (29ppb) and zinc (325ppm) values were elevated. This zone could be associated with the top of fresh rock which was at 80m. However it should also be noted that the drill hole intersected the felsic porphyry between 74-76m.

TUC is hypothesising the magnetite stringers and alteration could be analogous to the stringers and alteration seen at the Juno Deposit in the Tennant Creek Field. The Juno Deposit is being used as a model for exploration by Emerson Resources in the Tennant Creek field (see Figure 7). Also the presence anomalous gold and copper in the weathering horizon could indicate the presence of mineralisation at depth. TUC is planning further work in the immediate area to test this theory.

For full details about TDD02 please look at the drill logs (Appendix B) and cross section (Appendix E).
4.3 Bluebush Main Anomaly – TDD03

In 2001 GRM drilled a single diamond hole targeting the then center of the gravity bouger anomaly. The hole ended in granodiorite at 606m and failed to intersect the cause of the residual gravity, the bouger gravity or the magnetic anomalies.

The residual data produced from the recent TUC gravity survey (completed Oct 2008) has shown that the hole was drilled more than 500m off centre from the residual high and was 800m from the peak residual response.

TUC targeted the residual gravity high defined by the recent gravity survey. Two gravity models were designed, the first by Newexco modeled the gravity high to be at a depth of 560m, whereas the second gravity high by Lindeman Geophysics modeled the gravity high to be at a depth of 850m. TUC designed TDD03 to drill down to a depth of 900m intersecting both gravity models (see Figure 8).

TDD03 was drilled down to a total depth of 735.4m with a 109m RC pre-collar. The majority of this hole was granodiorite, with 22m of diorite being intersected between 266-289m (separated by felsic dykes) and a 49m thick intrusive dolerite unit being intersected between 470.7-519m.

The granodiorite between 0-266m and 289-470.7m was relatively unaltered, however the granodiorite between 519-735.4m showed haematite, silica and pyrite alteration increasing with depth. The hole was ended at 735.4m, 175m into the Newexco Gravity Model, however 115m shallow of Lindeman Geophysics Gravity Model.
Figure 8 The log of TDD03, showing the extensive granodiorite, and the small intersections of diorite and dolerite. After nothing of interest was noticeable in the Newexco Gravity Model the hole was cut short at 735.4m, shallow of the Lindeman Geophysics Gravity Model. Insert: The planned TDD03 extending to 900m and intersecting both the Newexco Gravity Model (560m) and Lindeman Geophysics Gravity Model (850m).

For full details about TDD03 please look at the drill logs (Appendix B) and cross section (Appendix F).

5. COST OF PROGRAM

The costs involved in this work program are detailed below in Table 3 (inclusive of GST).

The collaborations request is for the maximum amount allowable under the scheme ($100,000).

<table>
<thead>
<tr>
<th>Cost centre</th>
<th>Total Item Cost (A$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC Drilling</td>
<td>$39,625.20</td>
</tr>
<tr>
<td>Diamond Drilling</td>
<td>$251,014.40</td>
</tr>
<tr>
<td>Total Applicable to Collaborations</td>
<td>$290,639.60</td>
</tr>
<tr>
<td>($100,000 from Collaborations)</td>
<td></td>
</tr>
<tr>
<td>Mobilisation/Demobilisation</td>
<td>$7,500</td>
</tr>
<tr>
<td>Assay Cost</td>
<td>$31,069.30</td>
</tr>
<tr>
<td>Down Hole Survey</td>
<td>$2,000</td>
</tr>
<tr>
<td>Track and Pad Clearance & Rehabilitation</td>
<td>$17,398.70</td>
</tr>
<tr>
<td>Food & Accommodation</td>
<td>$3,956.43</td>
</tr>
<tr>
<td>Fuel/Car Hire TUC Vehicle</td>
<td>$9,551.61</td>
</tr>
<tr>
<td>Management, Administration, Wages & Overheads</td>
<td>$64,785.29</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$433,195.20</td>
</tr>
</tbody>
</table>

Table 3 Diamond Drill Program Costs
6. CONCLUSIONS/RECOMMENDATIONS

Despite economic mineralisation not being detected TUC believes that the drilling program has tested and challenged the geophysical and geological models originally proposed and has led to a re-think of the exploration model for the Bluebush region. The following points summarise the main conclusions drawn from the program.

- Drilling has shown the Cretaceous cover to be much shallower than previously believed, neither of the holes at Bluebush Southeast intersected granodiorite as logged in previous holes across the area. The shallower than expected cover combined with the deep weathering profile makes exploration methods such as RAB drilling feasible.

- The main rock sequence intersected at Bluebush Southeast is interpreted to be of Palaeoproterozoic age, this is based on the volcanoclastic sedimentary rocks identified in TDD01, which are thought to be part of the Flynn Subgroup. However the presence of the high magnesian basalt may indicate rocks older than originally thought to exist in the Tennant Creek and Rover Fields. If the basalt is Archaean in age, the exploration model for the Bluebush region will need to be reassessed.

- The S-Shaped Shear which has been interpreted from the airborne magnetic data is supported by the intersection of a major graphitic shear zone in TDD01. This zone is interpreted to have brought lower sequences of basement rocks closer to the surface, explaining the presence of the Flynn Subgroup below the graphitic shear. It is possible the graphitic shear has also brought older sequences (equivalent to the Warramunga Formation) closer to the surface within the tenement.

- The intersection of high magnesian basalts coincident with the Bluebush Southeast gravity model indicates that gravity data could be used to track this unit in the Bluebush Southeast areas. Even so, it is still considered possible that other gravity anomalies in the Bluebush Southeast area may represent iron stone bodies or other prospective stratigraphic units displaced along the fault zone.

- The alteration and magnetite stringers detected in TDD02 indicate that the hole could be located near a major alteration and mineralised zone. Similar alteration exists below the Juno Deposit in the Tennant Creek field. This discovery has prompted TUC to consider further exploration in the immediate area to test a Juno Style Deposit model.

- The cause of the regional bouger and residual gravity anomaly at Bluebush remains uncertain. TDD03 was ended 115m shallow of the Lindeman Geophysics Gravity Model and due to the increasing level of haematite, silica and pyrite alteration in the hole TUC is considering continuing the hole down to the designed depth of 900m at a later date.

With these points in mind TUC will continue to explore the Bluebush Region for IOCG and other style deposits under the ongoing joint venture with Panoramic Resources.

Further exploration is to be undertaken at Bluebush Southeast with diamond drilling of the coincident Magnetic and Gravity Models further to the Southwest of TDD01. Other recommended work includes:

- Down hole magnetic survey of TDD02, with possible follow up drilling above the Magnetic Stringers in TDD02.
- Completion of petrology and whole rock analysis for classification of rocks in question.
- Consideration of alternative exploration techniques given possible Archaean rocks, shallow cover and deep weathering horizon.
- Extension of TDD03 down to 900m.
7. REFERENCES

8. APPENDIX A – CORE PHOTOGRAPHY

9. APPENDIX B – MICROSOFT ACCESS DATABASE

10. APPENDIX C – DOWN HOLE MAGNETIC SURVEY PARAMETERS

<table>
<thead>
<tr>
<th>Depth</th>
<th>Wireline Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc</td>
<td>Inclination</td>
</tr>
<tr>
<td>AzM</td>
<td>Magnetic Azimuth</td>
</tr>
<tr>
<td>AZa</td>
<td>Azimuth is the angle between the horizontal component of the borehole direction at a particular point and the direction of North. The angle should always be expressed in a 0-360 degree system measured clockwise from North. The angle may refer to either Magnetic, True (geographic) or Grid North. Whichever referred to must always be clearly indicated. It is calculated from the measured outputs of each magnetometer plus the accelerometer.</td>
</tr>
<tr>
<td>AZraw</td>
<td>As per Azimuth raw (AZraw) except that the Z-component of the earth's magnetic field is calculated (rather than measured as in AZraw) from the entered Dip and field strength. This azimuth calculation can overcome the effects of Bz magnetic interference. However, the method becomes less accurate at high inclinations and azimuths approaching East/West. It should therefore not be used as True Azimuth without an understanding of the error involved for a particular situation.</td>
</tr>
<tr>
<td>HSg</td>
<td>Toolface High Side. The angle between high-side and toolface. (Also known as gravity toolface).</td>
</tr>
<tr>
<td>MS</td>
<td>MS stands for Magnetic Steering. When the tool gets to +/- 15°Inc the tool HS will switch to MS as the gravity sensors become useless and magnetic sensors are still getting a good magnetic field</td>
</tr>
<tr>
<td>G(t)</td>
<td>Sum Gravity components on the sensor</td>
</tr>
<tr>
<td>B(t)</td>
<td>Magnetic field strength (Btot). Total magnetic field strength calculated from the three individual fluxgates. Btot = (Bx² + By² + Bz²)½</td>
</tr>
<tr>
<td>MagDip</td>
<td>Magnetic field dip angle (Dip). The angle between a tangent to the earth's magnetic field vector at a particular location and the horizontal.</td>
</tr>
<tr>
<td>Gx/Gy/Gz</td>
<td>Gravity Vectors on the orthogonal planes</td>
</tr>
<tr>
<td>Bx/By/Bz</td>
<td>Magnetic Vectors on the orthogonal planes</td>
</tr>
<tr>
<td>Voltage</td>
<td>Voltage being supplied to sensor unit</td>
</tr>
<tr>
<td>TA</td>
<td>Temperature of the Instrument.</td>
</tr>
<tr>
<td>-S/+N</td>
<td>North or South Distance from the point of origin</td>
</tr>
<tr>
<td>-W/+E</td>
<td>West or East distance from point of Origin</td>
</tr>
<tr>
<td>Elev</td>
<td>Elevation from the point of origin</td>
</tr>
<tr>
<td>DL</td>
<td>The rate of total angular change of the borehole direction between two consecutive borehole survey stations, expressed in degrees per 30 m</td>
</tr>
<tr>
<td>VS</td>
<td>Vertical section (VS). The projection of the wellbore into a vertical plane parallel to some specified azimuth (Vertical Section Azimuth) and scaled with vertical depth. It is computed with respect to a specified origin.</td>
</tr>
<tr>
<td>CD</td>
<td>Closure Distance (CD). The horizontal displacement from North. CD = EW/sin (CA)</td>
</tr>
<tr>
<td>Cbrg</td>
<td>Closure bearing from point of Origin</td>
</tr>
<tr>
<td>Raw GX</td>
<td>Raw gravity values</td>
</tr>
<tr>
<td>Raw GY</td>
<td>Raw magnetic values</td>
</tr>
<tr>
<td>Raw Bx</td>
<td>Raw gravity values</td>
</tr>
<tr>
<td>Raw By</td>
<td>Raw magnetic values</td>
</tr>
<tr>
<td>Raw Bz</td>
<td>Raw magnetic values</td>
</tr>
</tbody>
</table>
11. APPENDIX D – CROSS SECTION – TDD01
12. APPENDIX E – CROSS SECTION – TDD02
13. APPENDIX F – CROSS SECTION – TDD03