

REPORT - APPENDICES

Public Environmental Report for Merlin Diamond Project

Prepared for Ashton Mining Limited

DAMES & MOORE
Ref.: SEB: 23720-009-073/Rep054.Rev0/DOC/DRW
Report No.: 54
20-June-1997

1st Floor Arkaba House The Esplanade DARWIN NT 0801 Tel 08-8981-2195 Fax 08-89413920

BRARY

N.T. DEPT. OF MINES & ENERGY

LIST OF APPENDICES - VOLUME 2

Guidelines for the Preparation of a Public Environmental Report for the APPENDIX A Merlin Diamond Project APPENDIX B Geochemical Laboratory Test Results and Interpretation APPENDIX C Access Road Preliminary Design APPENDIX D Ashton Mining Limited Occupational Health and Safety Policy APPENDIX E Camp Bore Water Quality Analysis Results APPENDIX F Vegetation Record Sheet for Main Mine Area APPENDIX G Flora Species List - Merlin Project APPENDIX H Terrestrial Fauna of the Mine Area APPENDIX I Terrestrial Fauna of the Access Corridor APPENDIX J **AAPA Authority Certificates** APPENDIX K Heritage Commission and National Trust Clearance

Proposed Preliminary Rehabilitation Species List

APPENDIX L

APPENDIX A

MERLIN PROJECT

GUIDELINES FOR THE PREPARATION OF A PUBLIC ENVIRONMENTAL REPORT

Executive Summary

The executive summary should provide an overview of the project including the size and regional importance of the mine, a broad indication of the anticipated production, value of the project to the economy, a summary of the key environmental and socio-economic issues and how they will be managed to keep the level of impacts acceptable to the community.

1. General Description and Summary of Environmental Issues

Brief Introduction of the Proponent and the Proposal:

- Name and Address of the proponent, including contact officers.
- Outline of the proposal.
- Tenement status for the project area, including a suitable map showing existing and proposed tenements held by the proponent.
- Summary of key environmental issues.
- Summarise scope, purpose and structure of the PER.

2. Description of the Proposed Development

This section should describe the project in sufficient detail to allow an understanding of all stages of the proposal, and assist in determining potential environmental impacts. For clarity, the proposal should be discussed under the following headings which reflect the specific nature of this operation. Where appropriate indicate any potential alternatives:

- Location and layout, including land requirements, transport and access corridors.
- Timetable for operations, including development of associated infrastructure, land clearing, construction, extraction operations and haulage.
- Temporary construction requirements including material, sources, transportation, storage and uses.
- Permanent construction requirements including material, sources, transportation, storage and uses.

Mining Development and Operations

- A description of the regional and local geology.
- A description of the pits` mineralisation.
- Outline the proposed design and dimensions of pit(s). Indicate location on suitable site map(s), plan(s) and geological cross-sections.
- Describe mining methods, quantity, scale of operations and extraction schedule(s).
- Detail drilling and blasting requirements (including frequency).
- Outline the scope for any possible future extension of the project.
- Indicate extent of area to be cleared of vegetation and erosion control measures.
- Describe borrow material requirements, identify suitable availability and suitability of material, extraction and uses.

Process and Products

- Describe source of ore, average grades of ore, and quantities of ore to be mined.
- Characterise the ore (including sampling methodology, mineralogy, neutralising capacity, sulphide content
 as percentage of sulphur, and net acid production potential).
- Describe plant infrastructure and processes that may be required at the processing site.
- Identify all inputs and outputs (products) of the operation and treatment processes.

Waste Rock Dumps and Stockpiles

- Describe volumes, dimensions and shape of dumps or stockpiles.
- Indicate proposed locations, discuss alternatives and reasons for choices. Describe water eatchments, contingency acid rock drainage interception arrangements, surface water treatment and final landform of dumps and stockpiles.
- Outline sampling criteria and test methods for waste rock characterisation, identify possible chemical
 constituents in drainage.
- Describe in detail the methods for waste rock disposal and dump construction, including selection
 methodology and on-going characterisation of different waste rock types for disposal, selective handling
 of different waste types, and cross sections or the design of the waste rock dumps.
- Characterise the waste rock (including sampling methodology, mineralogy, base metal content, acid neutralising capacity, sulphide content as percentage of sulphur, net acid generation (NAG), net acid production potential (NAPP)).

Tailings

- Describe the construction details of all tailings containment structures including materials, sources and transportation.
- Describe the means of disposal and control of any potential acid mine drainage.
- Describe the physical and chemical characteristics of the tailings and supernatant waters.

Water Management

- Outline water requirements and indicate proposed sources and methods of supply.
- Describe requirements and techniques for pit de-watering and waste rock water catchment strategies, including expected quality and quantities before and after decommissioning and outline strategies for dealing with flood or storm drainage.
- Prepare a water balance for the site.
- Identify on-site catchments and drainage patterns.

Infrastructure

- Outline administration, staff amenity and workshop buildings.
- Describe explosive storage and transport.
- Describe hazardous substances (types, storage, use, transport and disposal).
- Describe fuel, oil and lubricants (types, storage, transport and disposal).
- Describe alternatives for power supply (eg transmitted power), infrastructure, servicing easements and indicate preferred options.
- Describe sewerage and refuse disposal requirements.
- Describe communication and security arrangements.

Road Access

Indicate any requirements for construction and/or upgrading of existing road services. Include the
design of stream crossings and erosion control measures. Outline on maps.

Workforce

- Provide estimates of number required during construction, operation and rehabilitation, and outline
 employment opportunities from the local community.
- Outline health, safety and emergency procedures.
- Outline programmes to educate employees in relation to their environmental, heritage and sacred site
 protection obligations.
- Describe accommodation, office and transportation requirements for staff.

3. Description of the Existing Environment

This section should describe those elements of the existing environment that may or have the potential to be affected by this proposal.

Biophysical Environment

- Climate including summary data of rainfall, evaporation rates and temperatures (monthly averages).
- Description of topography, geology and soils at all project sites (including maps). Information should include land unit characteristics.

Hydrology

- Describe surface water hydrology and local catchment areas.
- Outline surface water quality and sediment load characteristics.
- Describe and characterise local and regional groundwater occurrences, quality, interaction with surface processes, seasonal variations and any present uses.

Flora and Fauna

- Describe flora and fauna communities for immediate area and surrounds (including communities
 downstream of the site which may be impacted by variations in water quality and siltation); include maps
 and an outline of methodology used to gather information, survey and sampling techniques.
- Identify any unique, rare, endangered or vulnerable native species or communities at and in the vicinity
 of project area, access roads and infrastructure in relation to overall status, distribution and condition, and
 in particular include species listed under the Territory Parks and Wildlife Conservation Act and the
 Endangered Species Act (Commonwealth).
- Describe the feral animal and weed species populations in the area.
- Provide baseline data on mosquito and other biting insect habitats and populations (nature of breeding site(s) and species eg. exotic and endemic) and potential for disease transmission.
- Evaluate normal ambient noise levels adjacent to the proposed mineral leases area.
- Describe the fire regime.

Socio-economic Environment

- Describe current land tenure and land use in and adjacent to the project area including Aboriginal land
 use; indicate any past land degradation or alteration that may have occurred.
- Describe nearby communities (eg Borroloola) and any other physical infrastructure (ie. roads) that could be affected by construction and operation activities.
- Provide results from a survey to determine sites of heritage significance within the project area and access road(s) pursuant to the Heritage Conservation Act:
 - -include details of survey methodology and sampling techniques;
 - -include site descriptions, diagrams and maps; and
 - -include an assessment of significance in a regional context.

Provide evidence of an Authority Certificate under the Northern Territory Aboriginal Sacred Sites Act. The results of an inspection of the Register of Sacred Sites maintained by the Aboriginal Areas Protection Authority, as well as details of an application lodged with the Aboriginal Areas Protection Authority for an Authority Certificate within the meaning of Part 3. Division 1 of the Northern Territory Aboriginal Sacred Sites Act. Also, if practicable, include a copy of the Certificate issued by the Authority as a result of that application containing conditions (if any) relating to the protection of sacred sites on, or in the vicinity, of the project area.

4. Environmental Impacts and Proposed Safeguards

This section should describe actual and potential environmental impacts of the project, along with the environmental management practices or safeguards proposed to avoid, minimise or ameliorate impacts for all stages of the project.

Management practices or safeguards should be expressed as a series of commitments. These commitments and any associated discussion of impacts should be arranged in appropriate sections and subsections. Each commitment should be numbered consecutively and highlighted to stand out from the surrounding text.

Impacts and Safeguards

Impacts may be direct, indirect, short or long term, temporary or irreversible. They may occur during all stages of the project, including construction, operation, decommissioning and rehabilitation. All potential impacts should be identified and characterised in this manner. Information on the risk, scale and significance of each impact should also be included.

Measures proposed to mitigate the adverse impacts associated with the proposal and, where appropriate, alternatives should be included.

A description of environmental impacts and safeguards should address the following:

(The level of detail presented in this section should reflect the degree of significance of potential impacts.)

- Soil erosion, landform and land clearing.
- Impacts of any changes in surface water quality and quantity, both at the mine site and downstream, on:
 - flora and fauna including toxicity, bio-accumulation and any impacts on food chains; -
 - existing water supplies; and
 - runoff, erosion and surface drainage system effects including sediment load.
- Impact on ground water quality and quantity and the impact of any changes that may occur at the mine site and off-site, including effects on beneficial users.
- Impact on flora and fauna through:
 - loss of habitat;
 - earthworks, crosion;
 - alteration to drainage and groundwater regimes;
 - creation or exacerbation of weed and feral animal population (including biting insects and refer to the NT Weeds Management Strategy 1996-2005); and
 - changes in frequency of bush fire regime during operation and post mining.
- Impacts on heritage, archaeological sites and sacred sites.

- Impact on any local communities and adjacent land use (including other mining, pastoral land use, Aboriginal communities, transport corridors, recreation and tourism).
- Impact on human health through:
 - potable water and food sources;
 - mosquitoes and other biting insects;
 - sewage and refuse disposal;
 - air quality (dust and atmospheric emissions); and
 - noise levels (blasting and extraction operations).
- Visual aesthetics.

Site Rehabilitation

In describing environmental management practices and safeguards, particular attention should be given to site rehabilitation. The following matters should be addressed:

- Objectives of site rehabilitation and expected future land use. Discuss the possible final landforms. A time scale for decommissioning and rehabilitation should be outlined. Rehabilitation should be conducted progressively throughout the project operation where ever practicable.
- Describe progressive and/or final rehabilitation plan, including maintenance of water quality.
- Design of all rehabilitated land forms to minimise crosion and acid drainage.
- Natural and constructed drainage system design to ensure runoff discharge does not erode or add to downstream siltation.
- Covering of waste rock dumps including details of quality, depths and quality of cover material.
- Topsoil management/use.
- Actions to prevent the development of mosquito and other biting insect breeding habitats.
- Establishment of vegetation, including selection of plant species (eg. for runoff and erosion control and prevention of leaching), seeding, fertiliser use (if needed) and rehabilitation trials.
- Continued water monitoring and discharge requirements following decommissioning.

Summary Table

Provide a summary table listing in point form those environmental impacts identified for the projects and the corresponding management commitments to deal with them. Responsibilities for monitoring and response mechanisms should be outlined.

5. Environmental Monitoring

Environmental monitoring should be compatible with baseline studies, however, they should be identified separately.

Environmental monitoring should be directed to and address each key environmental issue and management activity and include the following objectives:

- (a) Detect long and short term trends.
- (b) Recognise environmental changes and enable analysis of their causes.
- (c) Measure impacts.

It is required that details of proposed monitoring programs and objectives under the following headings be provided:

- Monitoring objectives.
- Program of sampling (eg. include water, waste rock, revegetation, flora and fauna (aquatic and terrestrial)).
- Location and description of sampling sites (include map).
- Sampling and reporting frequency and methodologies, including proposed detection limits.
- A table providing details of the original and on-going baseline studies and monitoring programs is recommended.
- Review of monitoring programs and objectives.

6. References and Appendices

Include a list of references where referred to in the text.

Appendices should include reports of all studies undertaken for preparation of the report or other information sources.

7. Administrative Requirements

- Once the PER is ready for comment, 30 copies should be submitted to the Department of Mines & Energy for distribution to NT Government advisory bodies.
- Two copies of a "preliminary" PER should be lodged with the Department of Lands, Planning and Environment and the Department of Mines and Energy for perusal prior to release for the public review period.
- Arrangements for the public display and review, including locations and number of copies will be made
 at the time when the preliminary copy of the draft EIS is reviewed. It is the responsibility of the proponent
 to advertise the public availability of the PER for public comment.
- Please arrange lodgment of a computer disc copy of the PER with the Department of Lands, Planning and Environment.
- The Department of Lands. Planning and Environment action officer for this project is Mr Helge Pedersen. Phone (08) 8924 4138, Fax (08) 8924 4053.
- The Department of Mines and Energy action officer for this project is Mr Mark Nolen, Phone (08) 8999
 5343, Fax (08) 8999 5191.

APPENDIX B

Our Reference: 6850/318

ATTENTION: Michael Bohm

COMPANY: Ashton Mining - Merlin Project

FROM : Stuart Miller

SUBJECT: Geochemical Characterisation of Waste Rock and Ore

DATE : 23 June 1997

PAGES (including this page) : 9

Michael,

This technical memorandum presents our interpretation of the waste rock and ore geochemical data provided to Environmental Geochemistry International Pty Ltd (EGi) by Ashton Mining. The data provided form a geochemical assessment of waste and ore material from the Merlin Project, Northern Territory. The samples have been assayed for their acid forming characteristics and multi-element content and the results are appended to this memorandum. All the test work in this instance had been carried out, under the direction of Ashton Mining, by Genalysis Laboratory Services Pty. Ltd, Perth.

Acid Forming Characteristics

The results of the acid forming characteristics are presented on Table 1 along with a description of the samples. Below is a summary and our interpretation of these results.

• The samples were analysed for - total sulphur (S-tot), sulphate sulphur (S-SO₄), and sulphide sulphur (sulphides) concentrations. All results are reported as %S. The total S and S-SO₄ were analytical determinations with the sulphide sulphur values determined by the calculated difference between the total S and the sulphate sulphur concentration for each sample. The calculated sulphide sulphur provides a better assessment of the acid potential of a sample since sulphate sulphur is non-acid generating. The results show that all samples had calculated sulphide values at or less than the detection limit (0.01 % S). The maximum potential acidity (MPA) from this sulphur content is very low (less than 0.3 kg H₂SO₄/t).

- The acid neutralising capacity (ANC) of the waste samples were very low with values less than 2.5 kg H₂SO₄/t and a median value of 0.5 kg H₂SO₄/t. Three of the ore samples had high ANC's with values of 515, 265 and 221 kg H₂SO₄/t for PK4, EK3, and SK2 respectively with the remaining samples having low to moderate ANC values (3.4 to 14.7 kg H₂SO₄/t).
- Based on the ANC and sulphide values the net acid producing potential (NAPP) was calculated for all samples. The NAPP value represents the balance between a samples capacities to generate acid and to neutralise acid. A positive NAPP indicates that the acid potential exceeds the neutralising capacity and a negative NAPP indicates that there is an excess of neutralising capacity over acid potential. The results on Table 1 show that for waste rock samples the NAPP values were zero or slightly negative while the ore samples were strongly negative indicating that all samples are likely to be non-acid forming.
- The waste samples had final NAGpH values between 4.9 and 6.0 and the ore samples
 had higher NAGpH values between 5.8 and 9.1. A NAGpH greater than or equal to
 4.0 classifies a sample as non acid forming. The results of the NAG test are
 consistent with the NAPP results and confirm that material represented by the
 samples tested are classified as non-acid forming (NAF).

The waste samples analysed in this test work had concentrations of total S less than the detection limit and ANC values of less than 2.5 kg H₂SO₄/t. This inherent lack of S and ANC indicates that material represented by these samples are essentially barren in terms of their acid producing potential, i.e. no ability to neutralise or generate acid. Based on these results, the waste rock samples are classified as non acid forming-barren.

The ore samples had little or no reactive sulphides, negative or zero NAPP values and ANC's between 3.5 to 525 kg H₂SO₄/t. Based on these results material represented by the ore samples were classified as non acid forming (NAF) with some samples also classified as acid consuming (AC).

Elemental Composition and Enrichment

Multi-element scans were conducted on all waste and ore samples. The assay results for each sample are presented on Table 2. The elements listed on Table 2 are presented in two groups - 'Environmental Indicators', and 'Rare Earths and Other Metals' to assist with data interpretation. Table 3 presents the Geochemical Abundance Indices (GAI) for each element. Multi-element scans provide information on environmentally significant elements which may be enriched beyond normal background concentrations and the GAI index identifies these elements. The multi-element scans provided covered all our normal range of environmental indicators with the exception of B, F and Hg. It is recommended that these elements are included in any additional multi-element analyses. Generally a GAI value ≥ 3 is considered significant.

There were no environmentally significant elements enriched in the waste rock however, the following elements were significantly enriched in more than one of the ore samples:

Ba, Cr, and Ni.

ANZECC¹ have published guidelines for the assessment and management of contaminated sites. This includes environmental soil quality guidelines for the identification of elements that may require further investigation. Table 3 compares the concentration ranges of the enriched elements in the ore samples with the ANZECC Guidelines for environmental investigation.

Table 3: Element Concentration in ore samples compared to the ANZECC guidelines.

Element	Concentration	ANZECC Guidelines
	(mg/kg)	Environmental Investigation
		(mg/kg)
Ва	540-6400	no guidelines
Cr	255-1600	50
Ni	430-1900	60

Table 3 shows that the concentration of Cr and Ni in some ore samples significantly exceed the ANZECC guidelines. The enrichment of Cr and Ni are common in Kimberlite intrusions and it is understood that concentrations of around 1,000 mg/kg for Cr and 1,200 mg/kg for Ni are typical in this type of rock². The environmental significance of Cr and Ni will depend on their solubility and leaching characteristics.

Conclusions

The results of this initial testing program indicate that material represented by the waste samples provided would be classified as barren with essentially no potential to generate or neutralise acid. The waste rock samples also contain only low concentrations of environmentally important elements. These results indicate that there are no geochemical concerns for waste rock management for material represented by the samples provided.

The ore samples tested are classified as non-acid forming with some samples having sufficient excess acid neutralising capacity to be considered acid consuming. Some ore samples contained elevated concentrations of Ba, Cr and Ni and it is recommended that the solubility of these elements be investigated to assess their environmental significance.

¹ Australian and New Zealand Environment and Conservation Council & National Health and medical Research Council (1992). Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites.

² Best M. G., (1982) Igneous and Metamorphic Petrology, W.H. Freeman & Company, New York.

Boron, fluoride and mercury were not included in the multi-element suite provided. It is recommended that these elements are included in any additional multi-element analysis to confirm their expected low concentrations.

A hard copy of this memorandum and the results will be provided by post. Should you have any questions in regard to this technical memorandum, please call on 02-9810 8100 or fax on 02-9810 5542.

Yours sincerely

Stuart Miller

Managing Director

Table 1: Acid Base Account for samples from the Proposed Merlin Project, Western Australia

Pipe	Sample No.	Description	Location	S-Tot	S-SO4	Sulphides	ANC°	NAPP#	NAG value to pH 4.5*	NAGpH	Geochemical Classification
				(% S)	(% S)	(% S)	(kg H2SO4/t)	(kg H2SO4/t)	(kg H2SO4/t)		
Excalibur	EK3	Ore	BH 546 (32.9m to 33.05 & 47.86m to 48.02m)	0.045	0.04	<0.01	265	-265	0	9.1	NAF-AC
	EK10		Bulk sub sample (1996 program)	<0.005	0.02	<0.01	14.7	<u>-</u> 15	0	8.6	NAF
	EW8	Waste	BH 546 (28.65m to 28.81m)	<0.005	<0.01	<0.01	1.0	-1	0	5.7	NAF-Barren
	EW16		BH 113 (9m)	<0.005	<0.01	<0.01	0.5	00	0	5.2	NAF-Barren
Launfai	LK1	Ore	BH 545 (19.9m to 20.2m & 30.10 m to 30.25m & 49.67m to 49.85m)	<0.005	<0.01	<0.01	5.9	-6	0	6.9	NAF
	LK11		Bulk sub sample (1996 program)	<0.005	<0.01	<0.01	3.4	-3	0	5.8	NAF
	LW7	Waste	BH 545 (5.89m to 6.04m)	<0.005	<0.01	<0.01	1.0	-1	0	5.0	NAF-Barren
	LW13		Grab sample	<0.005	<0.01	<0.01	<0.5	0	o	5.1	NAF-Barren
	LW14		Grab sample	<0.005	<0.01	<0.01	<0.5	0	0	5.4	NAF-Barren
Palomides	PK4	Ore	BH 541 (21.0m to 21.2m & 22.74m to 22.90m)	<0.005	<0.01	<0.01	5 15	-515	0	8.6	NAF-AC
	PK9	***************************************	Bulk sub sample (1996 program)	0.070	0.06	0.01	13.7	-13	0	8.8	NAF
	PW5	Waste	BH 541 (4.7m to 5.2m)	<0.005	<0.01	<0.01	2.5	-2	0	5.2	NAF-Barren
	PW15		Grab Sample	<0.005	<0.01	<0.01	<0.5	0	0	4.9	NAF-Barren
Sacramore	SK2	Ore	BH 543 (24.90m to 25,09m & 49,90m to 50,02m)	<0.005	0.01	<0.01	221	-221	0	8.8	NAF-AC
	SW6	Waste	BH 543 (6.27m to 6.40m)	<0.005	<0.01	<0.01	2.5	-2	0	5.7	NAF-Barren
	SW12		Grab Sample	<0.005	<0.01	<0.01	0.5	0	0	5.5	NAF-Barren

Results have been supplied by Genalysis Laboratory Services Pty Ltd.
*Note: Genalysis represented the NAG values as ≤ 2 kg H2SO4/t. However, by definition, if the NAGpH ≥ 4, the NAG value is zero.

[°]ANC calculated in units kg H2SO4/t.

#NAPP calculated by EGI as follows: (Sulphide value x 30.625) -(ANC). Sulphide values <0.01 were assumed to contain 0.005 % S.

NAF: Non-acid forming, AC: Acid consuming

Table 2: Multi-element Composition of Ore and Waste Rock samples from the Merlin Project, Western Australia

				Excalib	our Pipe			l	aunfal Pi	De	
Elements	Units	Detection		re	Wa	ste		re		Waste	
Major Elements		Limit	EK3	EK10	EW8	EW16 ay results	LK1	LK11	LW7	LW13	LW14
major Crattanta			CHAN ON THE		 		111 1119/119	0,,,,,,,,,			
Ai	%	0.002%	2.65%	3.60%	1,08%	2.80%	5.00%	6.40%	1.95%	1.70%	1.40%
Ca	%	0.002%	8.80%	2.55%	0.072%	0.014%	0.120%	0.036%	0.023%	0.011%	0.012%
Fe	%	0.01%	4.30%	15.50%	0.96%	0.98%	6.40%	15.00%	1.04%	0.43%	0.40%
ĸ	%	0.002%	1.80%	0.88%	0.50%	2.90%	2.50%	0.20%	0.22%	1.06%	1.00%
Mg	%	0.002%	5.80%	1.50%	0.12%	0.05%	0.88%	0.80%	0.15%	0.03%	0.03%
Na	%	0.002%	0.072%	0.044%	0.026%	0.094%	0.07%	0.13%	0.03%	0.04%	0.04%
S	%	0.001%	0.06%	0.001%	0.0003%	0.0002%	0.004%	0.007%	0.003%	0.003%	0.002%
Minor Elements											
Ag	mg/kg	0.5	<	<	<	<	<	<	<	<	<
As Ba	mg/kg mg/kg	2	< 2050	8 2550	370	< 490	4 5200	< 6400	< 245	450	< 370
Be	mg/kg	0.1	2.0	7.2	1.8	0.4	6.0	16.0	0.8	0.3	0.3
Bi	mg/kg	0.1	<	/.Z	1.6 <	V. -	0.0 <	<	<	V.3 <	V.3 <
Cq .	mg/kg	0.5	~	1.0	\ \	\ <	<	<i>'</i>	\ \	`	~
Ce	mg/kg	0.1	460	540	43	19.5	250	780	72	23.5	25
co	mg/kg	1	82	175	10	2	56	74	<	<	<
Cr	mg/kg	2	740	860	112	82	490	1600	100	110	116
Cu	mg/kg	1	78	125	6	5	64	130	5	5	6
Mn	mg/kg	1	860	5000	47	35	1900	1500	21	17	24
Мо	mg/kg	0.5	2.5	2.5	2.0	2.0	5.0	1.0	2.0	2.0	3.0
Ni	mg/kg	1	1100	1550	29	11	960	980	18	8	7
P	mg/kg	20	5200	1.35%	1080	120	3800	4900	360	320	220
Pb ~	mg/kg	2	84	100	4	12	22	94	6	12	16
So	mg/kg	0.2	0.4	8.0	<	0.4	1.8	1.2	<	0.4	0.4
Se Sn	mg/kg mg/kg	10 1	< 1	< 2	۲ 1	< 1	< 2	< 2	<	<	<
Sr	mg/kg	0.1	280	275	120	49	350	720	68	110	< 60
n	mg/kg	0.1	0.2	0.8	, 20 <	0.6	0.4	<	<	<	<
Ÿ	mg/kg	2	68	92	18	8	225	175	24	12	10
w	mg/kg	1	2	4	<	2	5	8	<	2	<
Zn	mg/kg	1	84	1000	37	22	340	560	18	8	10
		Rare Earti	ns and Oti	rer Metals	- Assay	results in	mg/kg uni	ess other	vise speci	fied	
Au	mg/kg	0.5	<	<	<	<	<	<	<	<	<
Cs	mg/kg	0.2	4.0	5.2	1.2	2.4	4.0	3	1.0	1.4	1.4
Dy	mg/kg	0.1	4.0	5.6	3.0	0.6	33	14	2.2	2.5	3.2
Er C	mg/kg	0.1	1.8	2.7	1.4	0.4	26	6.4	0.7	1.1	1.2
Eu	mg/kg	0.1	2.5	3.1	0.7	×	3.7	4.8	1.3	0.5	0.4
Ga Gd	mg/kg mg/ka	1 0.1	7 7.8	11	3 3.7	5 0.6	15 15.5	14 15	4 5.2	3 2.9	3 2.0
Ge	mg/kg	0.1	1.5	2.5	1.0	1.5	1.5	1.5	1.5	1.0	1.0
Hſ	mg/kg	0.5	3.0	4.0	1.0	3.5	3.0	4.0	1.5	2.0;	2.5
Ho	mg/kg	0.1	0.6	0.9	0.5	<	8.0	2.5	0.3	0.4	0.4
ln	mg/kg	0.1	<	<	<	<	<	<	<	<	<
La	mg/kg	0.1	340	390	19.5	11.4	160	620	32	10.8	11,4
li	mg/kg	0.5	50.0	10.5	7.0	1.5	12.5	6.5	5.0	2.5	2.5
Lu	mg/kg	0.1	0.2	0.3	0.2	<	3.9	0.7	<	0.2	0.2
Nb	mg/kg	0.5	420	470	2.5	2.5	170	580	3.5	2.5	2.5
Nd	mg/kg	0.1	104	125	18.5	5.4	84	180	32	9.4	9.4
Pd	mg/kg	1	<	<	<	<	<	<	<	<	<
Pr	mg/kg	0.1	38	45	4.8	1.9	25	64	8.4	2.5	2.7
Pt Ch	mg/kg	0.5	<	<	<	< 440	< 70	<	< 40.5	\ <	<
Flb En	mg/kg	0.2	200	84	25.5	112	76	18	13.5	42	40
Pe Pu	mg/kg mg/kg	0.2 0.5	< <	<	<	<	<	<	<	<	<
Sc	mg/kg mg/kg	2	14	< 18	< <	٧ ٧	< 22	< 28	< 4	< <	< <
Sm	mg/kg	0.1	11.0	14.0	3.7	0.7	14.5	20.5	5.8	2.1	1.7
Ta	mg/kg	0.2	15.5	20	<	< <	8.6	28	<	<	· · · · · · · · · · · · · · · · · ·
Tb	mg/kg	0.1	0.9	1.2	0.5	<	3.5	2.4	0.6	0.4	0.3
Te	mg/kg	0.5	<	<	<	<	<	<	<	<	<
Th	mg/kg	0.1	88	96	4.3	4.4	39	114	5.6	5.4	6
Ti	mg/kg	5	3400	4100	500	390	660 0	5800	640	360	420
Tm	mg/kg	0.1	0.2	0.3	0.2	<	4.0	0.8	<	0.2	0.2
U	mg/kg	0.1	5.4	6.8	1.9	1,1	11.4	13.5	0.7	1.3	1.5
Y	mg/kg	0.1	16.5	27	17	3.1	280	80	6.8	11	10.8
Yb Zr	mg/kg	0.1	1.1 98	1.9	1.1	0.7	25.0	4.3	0.7	1.0	1.2
Zr Footnates	mg/kg	1	20	150	31	108	104	145	45	64	84
<u>connities element :</u>											

< signifies element at or below detection limit in sample

Table 2 cont'd: Multi-element Composition of Ore and Waste Rock samples from the Merlin Project, Western Australia

Western Australia										
Elements	Units	Detection	0	Palo re	mides Wa	ste	Ore	Sacramore Wa	ste	
		Limit	PK4	PK9	PW5	PW15	SK2	SW6	SW12	
Aajor Elements		Environ	mental Ind	icators- As	say results	in mg/kg	uniess othe	erwise spec	ified	
Ai	%	0.002%	1 250	6 60W	4 400	1.35%	1.80%	1.70%	1.25%	
Ca	% %	0.002%	1.35% 16.00%	6.60% 0.56%	1.40% 0.066%	0.01%	3.70%	0.048%	0.023%	
Fe	%	0.01%	2.55%	13.50%	16.50%	0.34%	3.20%	2.20%	0.40%	
ĸ	%	0.002%	0.35%	0.14%	0.23%	0.37%	0.82%	0.23%	0.36%	
Mg	%	0.002%	7.20%	1.45%	0.22%	0.01%	9.20%	0.26%	0.05%	
Na	%	0.002%	0.08%	0.18%	0.08%	0.02%	0.08%	0.09%	0.02%	
s	%	0.001%	<	0.007%	0.005%	0.002%	0.02%	0.005%	0.01%	
Minor Elements										
Ag	mg/kg	0.5	<	<	<	<	<	<	<	
As	mg/kg	2	<	4	<	<	2	<	<	
Ba	mg/kg	1	980	5200	580	295	540	740	760	
Be Di	mg/kg	0.1	0.8	11.4	0.9	0.2	12.5	2.4	0.4	
Bi Cd	mg/kg mg/kg	0.5 0.5	<	*	<	<	*	< <	«	
Ce	mg/kg	0.5	< 155	₹ 470	< 54	< 18.5	155	46	50	
Co	mg/kg	1	31	125	3	<	38	2	<	
Cr	mg/kg	2	255	1160	160	120	265	130	135	
Cu	mg/kg	1	22	135	7	4	31	37	4	
Mn	mg/kg	1 1	780	2000	96	35	660	50	37	
Мо	mg/kg	0.5	1.0	5.0	7.0	4.5	3.5	8.0	5.5	
Ni	mg/kg	1	430	1200	29	5	1900	22	8	
P	mg/kg	20	1080	3000	520	200	1300	1060	640	
Pb	mg/kg	2	18	14	6	68	34	6	10	
Sb	mg/kg	0.2	0.4	0.8	<	<	0.4	0.6	<	
Se	mg/kg	10	<	<	<	<	<	<	<	
Sn	mg/kg	1	<	2	<	«	<	<	<	
Sr	mg/kg	0.1	490	480	130	26	180	185	285	
TI V	mg/kg mg/kg	0.2 2	< 28	400	< 28	4	< 38	< 54	10	
			20	130	20	-	30	34	10	
-		1		10	9	2	A		2	
W	mg/kg	1	6 34	19 520	2 31	2 5	6 520	< 48	, 2 10	
-	mg/kg mg/kg	1 1	34	520	31	5	520	48	10	
W	mg/kg mg/kg Rare E	1 1		520		5	520	48	10	
W Zn	mg/kg mg/kg	1 1 arths and	34 Other Meta	520 is - Asse j	31 results in	5 mg/kg unk	520 ess otherwi	48 se specifie	'10 ≴	
W Zn Au	mg/kg mg/kg Rare E mg/kg	1 1 arths and 0.5	34 Other Meta <	520 ls - Asse j <	31 results in <	5 mg/kg unk <	520 ess otherwi	48 se specifie	10 4 <	
W Zn Au Os	mg/kg mg/kg Rare E mg/kg mg/kg mg/kg mg/kg	1 1 arths and 0.5 0.2	34 Other Metr < 2.0	520 ls - Asse < 4.6	31 results in < 0.8	5 mg/kg unk < 0.4	520 ess otherwi	48 se specified < 1.0 13.5 6.0	10 4 0.6 5.4 2.9	
W Zn Au Os Dy Er Eu	mg/kg mg/kg Rare E mg/kg mg/kg mg/kg	1 1 erths and 0.5 0.2 0.1 /	34 Other Meta < 2.0 1.7	520 Is - Asse < 4.6 16.5	31 results in < 0.8 8.0	5 mg/kg unle < 0.4 2.0 1.2 0.2	520 ss otherwi < 2.6 2.5 1.3 1.1	48 se specifie < 1.0 13.5 6.0 3.8	10 < 0.6 5.4 2.9 0.9	
W Zn Au Os Dy Er Eu Ga	mg/kg mg/kg Rare E mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 0.5 0.2 0.1 / 0.1 0.1	34 Other Mete < 2.0 1.7 0.9 0.9 4	520 Is - Assey < 4.6 16.5 9.2 3.6 14	31 results in < 0.8 8.0 3.9 4.0 3	5 mg/kg unle < 0.4 2.0 1.2 0.2	520 ss otherwi < 2.6 2.5 1.3 1.1 5	48 se specifie < 1.0 13.5 6.0 3.8 5	10 4 0.6 5.4 2.9 0.9	
W Zn Au Os Dy Er Eu Ga Gd	mg/kg mg/kg Rare E mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 0.5 0.2 0.1 / 0.1 0.1 1 0.1	34 Other Meta < 2.0 1.7 0.9 0.9 4 3.0	520 Is - Assey 4.6 16.5 9.2 3.6 14 13.0	31 results in < 0.8 8.0 3.9 4.0 3 14.5	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8	48 se specified < 1.0 13.5 6.0 3.8 5	10 4 0.6 5.4 2.9 0.9 2 5.6	
W Zn Au Os Dy Er Eu Ga Gd Ge	mg/kg mg/kg Rare E mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 0.5 0.2 0.1 / 0.1 0.1 1 0.1 0.5	34 Other Mets < 2.0 1.7 0.9 0.9 4 3.0 1.0	520 Is - Assay	31 y results in < 0.8 8.0 3.9 4.0 3 14.5	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0	48 se specified < 1.0 13.5 6.0 3.8 5 19	10 0.6 5.4 2.9 0.9 2 5.6 1.0	
W Zn Au Os Dy Er Eu Ga Gd Ge Hf	mg/kg	1 1 0.5 0.2 0.1 / 0.1 0.1 1 0.1 0.5 0.5	34 Other Mets < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5	520 Is - Assay	31 y results in < 0.8 8.0 3.9 4.0 3 14.5 1.0	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0	520 c otherwi 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0	48 se specified < 1.0 13.5 6.0 3.8 5 19 1.0 1.5	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5	
W Zn Au Os Dy Er Eu Ga Gd Ge Hf Ho	mg/kg	1 1 0.5 0.2 0.1 0.1 0.1 1 0.1 0.5 0.5 0.5	34 Other Meta < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3	520 Is - Assey < 4.6 16.5 9.2 3.6 14 13.0 1.5 4.0 3.2	31 y results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.0	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4	48 se specifie < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5	
W Zn Au Os Dy Er Eu Ga Gd Ge Hf Ho In	mg/kg	1 1 0.5 0.2 0.1 0.1 0.1 1 0.1 0.5 0.5 0.1	34 Other Meta < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 <	520 Is - Assey < 4.6 16.5 9.2 3.6 14 13.0 1.5 4.0 3.2 <	31 y results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 <	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 <	48 se specifie < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 <	10 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1	
W Zn Au Os Dy Er Eu Ga Gd Ge Hí Ho In La	mg/kg	1 1 0.5 0.2 0.1 0.1 0.1 1 0.1 0.5 0.5 0.1 0.1	34 Other Meta < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114	520 ls - Assay < 4.6 16.5 9.2 3.6 14 13.0 1.5 4.0 3.2 < 350	31 y results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110	48 se specifie < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1	
W Zn Os Dy Er Eu Ga Ge Hf Ho In La Li	mg/kg	1 1 0.5 0.2 0.1 0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.1	34 Other Meta < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0	520 ls - Assay < 4.6 16.5 9.2 3.6 14 13.0 1.5 4.0 3.2 < 350 15.5	31 results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5 5.0	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118	48 se specifie < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 < 21.5 5.5	
W Zn Os Dy Er Eu Ga Gd Ge Hf La Lu Lu	mg/kg	1 1 0.5 0.2 0.1 0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1	34 Other Meta < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0 0.2	520 ls - Assay	31 y results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.0 24.5 5.0 0.5	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2	48 se specified < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 < 21.5 5.5 0.4	
W Zn Os Dy Er Eu Ga Ge Hf Ho In La Li	mg/kg	1 1 0.5 0.2 0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.5 0.1 0.1	34 Other Meta < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0 0.2 125	520 ls - Assay	31 y results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.0 1.4 < 24.5 5.0 0.5 9.5	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2 125	48 se specified < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0	10 3 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 < 21.5 5.5 0.4 1.5	
W Zh Os Dy Erii Ga Ga Hi Ho La Lu No	mg/kg	1 1 0.5 0.2 0.1 0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1	34 Other Meta < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0 0.2	520 ls - Assay	31 y results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.0 24.5 5.0 0.5	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2	48 se specified < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 < 21.5 5.5 0.4	
W Zn AUS Cry Eric God Gerff Hone La Li Lu No Not Por Pr	mg/kg	1 1 0.5 0.2 0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.5 0.1 0.1 0.5 0.1	34 Other Meta < 2.0 1.7 0.9 0.9 4 3.0 1.5 0.3 < 114 88.0 0.2 125 37	520 ls - Assay < 4.6 16.5 9.2 3.6 14 13.0 1.5 4.0 3.2 < 350 15.5 1.2 480 110	31 y results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5 5.0 0.5 9.5 35	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0 6.4	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2 125 38	48 se specified < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 < 21.5 5.5 0.4 1.5 22.5	
W Zh Au Cs Dy Erida Gal Gal He La Lu No No Po No Po No Po No No No No No No No No No No No No No	mg/kg	1 1 0.5 0.2 0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.5 0.1 0.1 0.5 0.1	34 Other Meta < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0 0.2 125 37 <	520 Is - Assay < 4.6 16.5 9.2 3.6 14 13.0 1.5 4.0 3.2 < 350 15.5 1.2 480 110 < <	31 / results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5 5.0 0.5 9.5 35 <	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0 6.4 <	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2 125 38 < <	48 se specified < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 <	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 < 21.5 5.5 0.4 1.5 22.5	
W Zn Au Cs Cy End Galler Hole La Li Lu No No Po Po Po Po Po Po	mg/kg	1 1 0.5 0.2 0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.5 0.1 0.5 0.1 0.5 0.1	34 Other Meta < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0 0.2 125 37 < 13.0	520 Is - Assay < 4.6 16.5 9.2 3.6 14 13.0 1.5 4.0 3.2 < 350 15.5 1.2 480 110 < 39.0	31 / results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5 5.0 0.5 9.5 35 < 6.8	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0 6.4 < 1.8	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2 125 38 < 13.5	48 se specifie < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 < 6.0	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 < 21.5 5.5 0.4 1.5 22.5 < 5.6	
W Zn AUS Cycle La Cad Ge Hi Ho ke La Li Lu Sc Sci Pr Pr Fb Fe	mg/kg	1 1 0.5 0.2 0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.5 0.1 0.5 0.1 0.5 0.1	34 Other Meta < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0 0.2 125 37 < 13.0 <	520 Is - Assay < 4.6 16.5 9.2 3.6 14 13.0 1.5 4.0 3.2 < 350 15.5 1.2 480 110 < 39.0 < <	31 / results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5 5.0 0.5 9.5 35 < 6.8 <	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0 6.4 < 1.8 <	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2 125 38 < 13.5 <	48 se specified < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 < 6.0 <	10 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 < 21.5 5.5 0.4 1.5 22.5 < 5.6	
W Zn AUS Cycle Line Cod Coe Hi Ho ke Line Lin	mg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34 Other Meta < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0 0.2 125 37 < 13.0 < 41 < <	520 Is - Assay < 4.6 16.5 9.2 3.6 14 13.0 1.5 4.0 3.2 < 350 15.5 1.2 480 110 < 39.0 < 17.5 < <	31 / results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5 5.0 0.5 9.5 35 < 6.8 < 13.5 < <	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0 6.4 < 1.8 < 16.5	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2 125 38 < 13.5 < 70 < <	48 se specified < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 < 6.0 < 14 < <	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 21.5 5.5 0.4 1.5 22.5 4 5.6 4 1.5	
¥ X។ A S S Y មេ មេ G G G H H A L ធ រ រ រ N N N N N N N N N N N N N N N N	mg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34 Other Mete < 2.0 1.7 0.9 0.9 4 3.0 1.5 0.3 < 114 88.0 0.2 125 37 < 13.0 < 41 < 6	520 Is - Assay < 4.6 16.5 9.2 3.6 14 13.0 1.5 4.0 3.2 < 350 15.5 1.2 480 110 < 39.0 < 17.5 < 26	31 / results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5 5.0 0.5 9.5 35 < 6.8 < 13.5 < <	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0 6.4 < 1.8 < 16.5 < < <	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2 125 38 < 13.5 < 70 < 8	48 se specified < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 < 6.0 < 14 < 4	10 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 21.5 5.5 0.4 1.5 22.5 4 5.6 4 1.5 4 5.6 4 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	
¥ ភ ៩៩៩២៨៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩	mg/kg	1 1 0.5 0.2 0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1	34 Other Mete < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0 0.2 125 37 < 13.0 < 41 < 6 4.3	520 ls - Asse;	31 / results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5 5.0 0.5 9.5 35 < 6.8 < 13.5 < < 14.5	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0 6.4 < 1.8 < 16.5 < < 1.3	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2 125 38 < 13.5 < 70 < 8 4.7	48 se specified 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 < 6.0 < 14 < 4 14	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 4 21.5 5.5 0.4 1.5 22.5 4 5.6 4 5.6 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	
¥ 25 ዲያ ያው ተመ መ መ መ መ መ መ መ መ መ መ መ መ መ መ መ መ መ መ	mg/kg	1 1 1 2 arths and 0.5 0.2 0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	34 Other Mete < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0 0.2 125 37 < 13.0 < 41 < 6 4.3 5.4	520 s - Assay	31 results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5 5.0 0.5 9.5 35 < 6.8 < 13.5 < 14.5 0.6	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0 6.4 < 1.8 < 16.5 < < 1.3 < < 1.3	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2 125 38 < 13.5 < 70 < 8 4.7 6.2	48 se specified < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 < 6.0 < 14 < 4 14 < 4	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 21.5 5.5 0.4 1.5 22.5 4 5.6 4 5.6 4 5.6 7 7 8 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	
¥ 25 ዲያ ያው ተመ ተመ መ መ መ መ መ መ መ መ መ መ መ መ መ መ መ መ	mg/kg	1 1 2 arths and 0.5 0.2 0.1 0.1 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1	34 Other Mete < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0 0.2 125 37 < 13.0 < 41 < 6 4.3 5.4 0.4	520 s - Assay	31 / results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5 5.0 0.5 9.5 35 < 6.8 < 13.5 < < 14.5 0.6 1.5	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0 6.4 < 1.8 < 16.5 < < 1.3 < 0.3	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2 125 38 < 13.5 < 70 < 8 4.7 6.2 0.5	48 se specified 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 < 6.0 < 14 < 4 14 < 2.6	10 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 5.5 0.4 1.5 22.5 < 5.6 < 0.8	
W A OS DY ET EL GA GA GA HT HA IN LA LI LI NO NO POP POP POP POP POP POP POP POP P	mg/kg	1 1 2 arths and 0.5 0.2 0.1 0.1 0.1 0.5 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	34 Other Mete < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0 0.2 125 37 < 13.0 < 41 < 6 4.3 5.4 0.4 <	520 s - Asse	31 results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5 5.0 0.5 9.5 35 < 6.8 < 13.5 < 14.5 0.6 1.5 <	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0 6.4 < 1.8 < 16.5 < < 1.3 < 0.3 < 0.3	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2 125 38 < 13.5 < 70 < 8 4.7 6.2 0.5 < 10 0.5	48 se specified 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 < 6.0 < 14 < 4 14 < 2.6 <	10 0.6 5.4 2.9 0.9 2 5.6 1.5 1.1 21.5 5.5 0.4 1.5 22.5 4 5 < 0.8 4 0.8	
W Zs AUSDY ETELORIS GREAT HOME LA III LUND NO PUP IN IN ENERS STATE THE	mg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34 Other Mete < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0 0.2 125 37 < 13.0 < 41 < 6 4.3 5.4 0.4 < 27	520 s - Asse	31 results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5 5.0 0.5 9.5 35 < 6.8 < 13.5 < < 14.5 0.6 1.5 < 5.4	5 mg/kg unk	520 ss otherwi < 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2 125 38 < 13.5 < 70 < 8 4.7 6.2 0.5 < 28	48 se specifies < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 < 6.0 < 14 < 4 14 < 2.6 < 4.7	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 21.5 5.5 0.4 1.5 22.5 4 6 4 7 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8	
W A A O D En El Ga Ga Ga Ha Ha An La Li Li Ma No Pa Pa Pa Pa Pa S S Ta	mg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34 Other Mete < 2.0 1.7 0.9 0.9 4 3.0 1.0 1.5 0.3 < 114 88.0 0.2 125 37 < 13.0 < 41 < 6 4.3 5.4 0.4 < 27 1500	520 Is - Assay	31 results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.4 < 24.5 5.0 0.5 9.5 35 < 6.8 < 13.5 < < 14.5 0.6 1.5 < 5.4 660	5 mg/kg unk	520 2.6 2.5 1.3 1.1 5 3.8 1.0 2.0 0.4 < 110 118 0.2 125 38 < 13.5 < 70 < 8 4.7 6.2 0.5 < 28 1700	48 se specifies < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 < 6.0 < 14 < 4 14 < 2.6 < 4.7 1000	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 21.5 5.5 0.4 1.5 22.5 4.6 4.2 265	
¥ភ ៩០០ម្ចាស់ស្នាទី។ មានជាបាលស្នាក់ក្រុង	mg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34 Other Mets < 2.0 1.7 0.9 0.9 4 3.0 1.5 0.3 < 114 88.0 0.2 125 37 < 13.0 < 41 < 6 4.3 5.4 0.4 < 27 1500 < <	520 Is - Assay	31 / results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.0 1.4 < 24.5 5.0 0.5 9.5 35 < 6.8 < 13.5 < < 14.5 0.6 1.5 < 5.4 660 0.5	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0 6.4 < 1.8 < 16.5 < 1.3 < 2.0 4.2 2.85 0.2	520 se otherwi	48 se specifie < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 < 6.0 < 14 < 4 14 < 2.6 < 4.7 1000 0.8	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 4 21.5 5.5 0.4 1.5 4 2.5 4 4.2 265 0.4	
¥ភ ៩០០ម្ចាប់ មានមានក្រុងក្រុងក្រុងក្រុងក្រុងក្រុងក្រុងក្រុង	mg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34 Other Mets < 2.0 1.7 0.9 0.9 4 3.0 1.5 0.3 < 114 88.0 0.2 125 37 < 13.0 < 41 < 6 4.3 5.4 0.4 < 27 1500 < 1.8	520 Is - Assay 4.6 16.5 9.2 3.6 14 13.0 1.5 4.0 3.2 < 350 15.5 1.2 480 110 < 39.0 < 17.5 < 26 15.0 24.0 2.4 < 96 5800 1.2 7.6	31 / results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.0 1.4 < 24.5 5.0 0.5 9.5 35 < 6.8 < 13.5 < < 14.5 0.6 1.5 < < 5.4 660 0.5 1.2	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0 6.4 < 1.8 < 16.5 < 1.3 < 2.3 < 4.2 2.85 0.2 1.3	520 se otherwi	48 se specifie < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 < 6.0 < 14 < 4 14 < 2.6 < 4.7 1000 0.8 3.8	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 21.5 5.5 0.4 1.5 2.5 4.2 265 0.4 1.6	
¥ភ ៩០០ម្ចាស់ស្នាទី។ មានជាបាលស្នាក់ក្រុង	mg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34 Other Mets < 2.0 1.7 0.9 0.9 4 3.0 1.5 0.3 < 114 88.0 0.2 125 37 < 13.0 < 41 < 6 4.3 5.4 0.4 < 27 1500 < <	520 Is - Assay	31 / results in < 0.8 8.0 3.9 4.0 3 14.5 1.0 1.0 1.4 < 24.5 5.0 0.5 9.5 35 < 6.8 < 13.5 < < 14.5 0.6 1.5 < 5.4 660 0.5	5 mg/kg unle < 0.4 2.0 1.2 0.2 2 1.6 1.0 1.5 0.4 < 9.6 4.5 0.2 2.0 6.4 < 1.8 < 16.5 < 1.3 < 2.0 4.2 2.85 0.2	520 se otherwi	48 se specifie < 1.0 13.5 6.0 3.8 5 19 1.0 1.5 2.3 < 20 6.5 0.8 3.0 34 < 6.0 < 14 < 4 14 < 2.6 < 4.7 1000 0.8	10 4 0.6 5.4 2.9 0.9 2 5.6 1.0 1.5 1.1 21.5 5.5 0.4 1.5 22.5 4.2 265 0.4	

Footnotes
< signifies element at or below detection limit in sample

Table 3: Geochemical Abundance Indices of Ore and Waste Rock samples from the Merlin Project, Western Australia

	Average			ur Pipe				Launfal Pip		
Elements	Crustal		ye EV10		asie		re LK11	LW7	Waste LW13	LW14
Major Elements	Abundance*	EK3	EK10 Enviror	EW8	EW16	LK1 leochemical			LW13	LW14
•	1		1							
Ai	8.20%	0	0	0	0	0	0	0	0	o
Ca	4.10%	1	1 0	0	0	0	0	o	0	0
Fe	4.10%	Ó	1 1	0	0	0	1	o	0	0
K	2.10%	ō	0	0	0	0	0	0	0	0
Mg	2.30%	ŏ	0	o	0	o	0	ŏ	0	o
Na	2.30%	ō	0	o	0	0	o	ŏ	ō	o
S	0.03%	0	0	0	0	o	o	o	0	o
Vilnor Elements	0.05%	v	"	"	ľ	ľ	U		Ŭ	U
Ag	0.1	0	0	0	0	2	0	o	0	0
As	1.5	0	2	0	0	1	Ö	ŏ	0	0
Ba	500	1	2	0	0	3	3	ŏ	o	0
Be	2.6	Ö	1	0	o	1	2	o	0	0
Bi Bi	1 1	_			1	[1		
	0.17	1	0	0	0	1	0	0	0	0
Cd	0.2	0	2	0	0	0	0 3	0	0	0
Ce	68	2	2	0	0	1	1	0	0	0
Co	25	1	2	0	0	1	1	0	0	0
Cr	100	2	3	0	0	2	3	0	0	0
Cu	50	0	1	0	0	0	1	0	0	0
Mn	950	0	2	0	0	0	0	0	0	0
Мо	1.5	0	0	0	0	1	0	0	0	0
Ni	80	3	4	0	0	3	3	0	0	0
P	1000	2	0	0	0	1	2	0	0	0
Pb	14	2	2	0	0	0	2	0	0	0
Sb	0.2	0	1	0	0	3	2	0	0	0
Se	0.05	0	0	0	0	0	0	0	0	0
Sn	2.2	0	0	0	0	0	0	0	0	0
Sr	370	0	0	0	0	0	o	0	0	0
TI	0.6	0	0	٥	0	0	0	o	0	0
V	160	0	0	o	٥	0	0	o	0	o
w	1 1	Ö	1	o	Õ	2	2	o :	Ö	ō
Zn	75	0	3	ō	0	. 2	2	Ö	ō	o
	1 1	-				emical Abu		ices#		
Au	0.001	0	0	0	0	0	0	0	0	0
Os	3.0	Ō	o	ō	ō	o	Ö	Ö	0	o
Dy	6.0	o'	o	ŏ	ŏ	2	1	ŏ	0	ő
Er	3.8	0	o	ő	0	2	ò	o	o	ő
Eu	2.1	Ö	0	٥	ő	0	f -	0	0	o
Ga	18	0	0	0	0	0	1 0	0	0	0
Gd	7.7	^		"	_				0	
		0		0	0	0	0	0	0	0
Ge	1.8	0	0	0	0	0	0	0	0	0
Hf	5.3	0	0	0	0	0	0	0	0	0
Ho	1.4	0	. 0	0	0	2	0	0	0	0
In .	0.049	0	0	0	0	0	0	0	0	0
La	32	3	3	0	0	2	4	0	0	0
u	20.0	1	0	0	0	0	0	0	0	0
Lu	0.5	0	0	0	0	2	0	0	0	0
Nb	20.0	4	4	0	0	3	4	0	0	0
Nd	38	1	1	0	0	1	2	0	0	0
Pd	0.0006	0	0	0	0	0	0	0	0	0
Pr	9.5	1	2	0	0	1	2	0	0	0
Pt	0.001	0	0	0	0	0	0	0	0	0
Flb	90	1	0	0	0	0	0	0	0	0
Re	0.0004	0	0	0	0	0	0	0	0	o
Ru	0.001	ō	0	ō	ō	o	o	o	o	o
Sc	16	0	0	0	o	ő	ō	Ö	0	ŏ
Sm	7.9	Ö	o	Ö	o	Ö	1	o	0	0
Ta	2.0	2	3	0	ő	2	3	0	0	ő
Tb	1.1	0	0	Ö	0	1	1	0		0
Te	0.005	0	0	0	0	Ö	Ö	Ö	0	0
			1	l	1	i !	i	i	0	l
	12	2	2	0	0	1	3	0	0	0
Th		0	0	0	0	0	0	0	0	0
Th Ti	5600			_						
Th Ti Tm	0.5	0	0	0	0	2	0	0	0	0
Th Ti Tm U	0.5 2.4	0 1	0 1	0	0	2	2	0	0	0
Th Ti Tm U Y	0.5 2.4 30.0	0 1 0	0	1	ł	2 3	l .			•
Th Ti Tm U	0.5 2.4	0 1	0 1	0	0	2	2	0	0	0

Ecotnotes
refer to text for explaination of GAI (0 = not enriched > 6 = highly enriched)
*Bowen H.J.M. (1979) Environmental Chemistry of the Elements and Berkman D.A. & Ryall W.R. (1976) Field Geologists Manual

Table 3 cont'd: Geochemical Abundance Indices of Ore and Waste Rock samples from the Merlin Project, Western Australia

	Average		Palo	mides			Sacramore	
Elements	Crustal		re		iste	Ore		ste
Aajor Elements	Abundance*	PK4 Environm	PK9 entel India	PW5	PW15 eochemica	SK2 I Abundan	SW6	SW12
•	1							
Al	8.20%	0	0	0	0	0	0	0
Ca	4.10%	1	0	0	0	0	0	0
Fe	4.10%	0	1	0	0	0	0	0
K	2.10%	0	0	0	0	0	0	0
Mg	2.30%	1	0	0	0	1	0	0
Na	2.30%	0	0	0	0	0	0	0
\$	0.03%	0	0	0	0	0	0	0
Minor Elements			_	•		_	_	_
Ag As	0.1 1.5	0	0	0	0	0	0	0
As Ba	500	ő	3	o	0	0	0	0
Be	2.6	0	2	0	ő	2	o	0
Bi	0.17	o	0	o	o	ō	Ö	0
Cq	0.2	o	0	o	o	1	0	o
Ce	68	1	2	ō	0	1	0	0
Co	25	0	2	0	0	0	0	0
Cr	100	1	3	0	0	1	0	0
Cu	50	0	1	0	0	0	0	0
Mn	950	0	0	0	0	0	0	0
Мо	1.5	0	1	2	1	1	2	1
Ni	80	2	3	0	0	4	0	0
P	1000	0	1	0	0	0	0	0
Pb ~	14	0	0	0	2	1	0	0
Sb	0:2	0	1	0	0	0	1	0
Se Sn	0.05 2.2	0	0	0	0	0	0	0
Sr	370	0	0 .	0	0	0	0	0
TI	0.6	0	0	0	0	0	0	0
Ÿ	160	0	0	o	Ö	o	o	ŏ
w	1	2	4	ō	ō	Ö	ō	ō
	• • •							
Zn	75	0	2	0	0	0	0	0
Zn	1 " 1		2 ther Metal	-	o emical Abu		-	0
Au	Rare Ear 0.001	ths and O	ther Metal	s - Geach O		indance in 0	dices#	0
Au Cs	Rare Ear 0.001 3.0	ths and O 0 0	ther Metal 0 0	s - Geoche 0 0	emical Abu 0 0	indance in 0 0	dices# 0 0	0
Au Os Dy	Rare Ear 0.001 3.0 6.0	ths and O O O ŏ	ther Metal 0 0 1	s - Geoche 0 0 0	omical Abu 0 0 0	indance in 0 0 0	dices# 0 0 1	0 0 0
Au Os Dy Er	Rare Ear 0.001 3.0 6.0 3.8	ths and O O O O O	ther Metal 0 0 1 1	s - Geoche 0 0 0 0	emical Abu 0 0 0 0	indance in 0 0 0 0	dices# 0 0 1 0	0 0 0
Au Os Dy Er Eu	Rare Ear 0.001 3.0 6.0 3.8 2.1	ths and O O O O O O O	ther Metal 0 0 1 1	8 - Geoche 0 0 0 0	emical Abu 0 0 0 0 0	indance in 0 0 0 0 0	0 0 1 0	0 0 0 0
Au Os Dy Er Eu Ga	Rare Ear 0.001 3.0 6.0 3.8 2.1 18	ths and O 0 0 0 0 0 0	ther Metal 0 0 1 1	s - Geoche 0 0 0 0	omical Abu 0 0 0 0 0 0	indance in 0 0 0 0	dices# 0 0 1 0	0 0 0 0
Au Cs Dy Er Eu Ga Gd	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7	ths and O 0 0 0 0 0 0 0 0 0 0	ther Metal 0 0 1 1 0 0	s - Geoche 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0	0 0 0 1 0 0 0	0 0 0 0 0
Au Cs Dy Er Eu Ga Gd Ge	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7	ths and O 0 0 0 0 0 0 0 0 0 0 0 0	ther Metal 0 0 1 1 0 0 0	s - Geoche 0 0 0 0 0 0 0	emical Abu	indance in 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 1 0 0	0 0 0 0 0 0
Au Cs Dy Er Eu Ga Gd Ge Hf	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3	ths and O 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ther Metal 0 0 1 1 0 0 0 0	8 - Geochi 0 0 0 0 0 0 0 0	emical Abu	indance in 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 1 0 0 0 0	0 0 0 0 0 0 0
Au Os Dy Er Eu Ga Gd Ge Hf	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4	ths and O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ther Metal 0 0 1 1 0 0 0 0 0	8 - Geochi 0 0 0 0 0 0 0 0 0	emical Abu	indance in 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0
Au Cs Dy Er Eu Ga Gd Ge Hf Ho In	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049	ths and O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0	emical Abu	indance in 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 1 0 0 0 0	0 0 0 0 0 0 0
Au Cs Dy Er Eu Ga Gd Ge Hf	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4	ths and O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ther Metal 0 0 1 1 0 0 0 0 0	8 - Geochi 0 0 0 0 0 0 0 0 0	emical Abu	indance in 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0
Au Cs Dy Er Eu Ga Gd Ge Hf Ho In La Li Lu	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32	ths and O 0 0 0 0 0 0 0 0 0 0 0 0 1	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0	emical Abu	indance in 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Au Os Dy Er Eu Ga Gd Ge Hí Ho Ia Lu Nb	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0	ths and O 0 0 0 0 0 0 0 0 0 1 2 0 2	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0	emical Abu	indance in 0 0 0 0 0 0 0 0 0 0 1 2	dices# 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Au Os Dy Er Eu Ga Ga Ga Hí Ho Ia Lu Nib Nid	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38	ths and O 0 0 0 0 0 0 0 0 0 1 2 0 2	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0	emical Abu	indance in 0 0 0 0 0 0 0 0 0 0 1 2 0 2	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Au Os Dy Er Eu Ga Ga Ga Hí Ho Ia Lu No No Pd	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006	ths and O 0 0 0 0 0 0 0 0 0 1 2 0 2 0 0	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Au Cs Dy Er Eu Ga Gd Ge Hf Ho Ia Lu No No Pd Pr	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5	ths and O 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Au Os Dy Er Eu Ga Ga Hí Ho Ia Lu No No Pr Pr Pr	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001	ths and O	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Au Os Dy Er Eu Ga Ga Ho Ia Lu No No Po Pr Pt Po Pt	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001 90	ths and O	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Au Os Dy Er Eu Ga Ga Ho Ia Lu No No Po Po Po Po Po Po Po Po Po Po Po Po Po	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001 90 0.0004	ths and O	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Au Os Dy Er Eu Ga Ga Ho Ia Lu No No Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001 90 0.0004 0.001	ths and O	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Au Cs Dy Er Ga Ga Ga Ho Ia Lu No No Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001 90 0.0004 0.001 16	ths and O	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AUS DYELE GAS GENT HOLE LE LE LE LE NOVE PER PER SE SE	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001 90 0.0004 0.001 16 7.9	ths and O	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Au Co Der Eu Ga Ga Ga Ho In Lu No No Po Po Po Po Po Po Po Ro So Ta	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001 90 0.0004 0.001 16 7.9 2.0	ths and O	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AUS DE ELEGIOS GENT HOLE LE LILUND NOTE DE PERE SE SE ELE	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001 90 0.0004 0.001 16 7.9 2.0 1.1	ths and O	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0 0 0 0	emical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1	000000000000000000000000000000000000000
AUS DYE ELISE GAD GENTHONE ALLA LILUNDON POLY PER PER SCENTA IDE	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001 90 0.0004 0.001 16 7.9 2.0 1.1 0.005	ths and O	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
Au Cs Cy Er El Ga Go Hi Ho ka Li Li No No Po Pr Fo Pe Pi So Si Ta To Fe Th	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001 90 0.0004 0.001 16 7.9 2.0 1.1 0.005 12	ths and O O O O O O O O O O O O O O O O O O O	ther Metal	5 - Geochi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
Au Cs Oy Er El Ga Go Hi Ho ka La Li Li No No Po Po Po Po Po Po No Ta To To To To	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001 90 0.0004 0.001 16 7.9 2.0 1.1 0.005 12 5600	ths and O	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
Au Cs Cy Er El Ga Go Hi Ho ka Li Li No No Po Pr Fo Pe Pi So Si Ta To Fe Th	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001 90 0.0004 0.001 16 7.9 2.0 1.1 0.005 12	ths and O O O O O O O O O O O O O O O O O O O	ther Metal	8 - Geochi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
Au Cs Cy Er El Ga Ge Hi Ho ka 보니 나 No No Po Pr El Pe El Sc 등 Ta To Fe To Tr Tr Tr	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001 90 0.0004 0.001 16 7.9 2.0 1.1 0.005 12 5600 0.5	ths and O O O O O O O O O O O O O O O O O O O	ther Metal 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0	5 - Geochi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	emical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
AU So Shi Eu Sa Gal Ge Hi Ho ka La Li Lu No No Po Po Fo	Rare Ear 0.001 3.0 6.0 3.8 2.1 18 7.7 1.8 5.3 1.4 0.049 32 20.0 0.5 20.0 38 0.0006 9.5 0.001 90 0.0004 0.001 16 7.9 2.0 1.1 0.005 12 5600 0.5 2.4	ths and O	ther Metal 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0	5 - Geochi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	omical Abu	indance in 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dices# 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	

Footnotes
refer to text for explaination of GAI (0 = not enriched.>6 = highly enriched)
*Bowen H.J.M. (1979) Environmental Chemistry of the Elements and Berkman D.A. & Ryall W.R. (1976) Field Geologists Manual

SAMPLES SENT FOR ORE/WASTE CHARACTERISATION

SAMPLE	PIPE & TYPE	LOCATION
LK1	Launfal Kimberlite	Core sample # 34 [19.90m - 20.20m] from BH545 Core sample # 36 [30.10m - 30.25m] from BH545 Core sample # 38 [49.67m - 49.85m] from BH545
SK2	Sacramore Kimberlite	Core sample # 21 [24.90m - 25.09m] from BH543 Core sample # 26 [49.90m - 50.02m] from BH543
ЕК3	Excalibur Kimberlite	Core sample # 48 [32.90m - 33.05m] from BH546 Core sample # 54 [47.86m - 48.02m] from BH546
PK4	Palomides Kimberlite	Core sample # 9 [21.00m - 21.20m] from BH541 Core sample # 10 [22.74m - 22.90m] from BH541
PW5	Palomides Waste	Core sample # 2 [4.70m - 5.20m] from BH541
SW6	Sacramore Waste	Core sample # 16 [6.27m - 6.40m] from BH543
LW7	Launfal Waste	Core sample # 29 [5.89m - 6.04m] from BH545
EW8	Excalibur Waste	Core sample # 44 [28.65 - 28.81m] from BH546
РК9	Palomides Kimberlite	Bulk sub sample (1996 Program) - Sample 175-1
EK10	Excalibur Kimberlite	Bulk sub sample (1996 Program) - Sample 151-2
LK11	Launfal Kimberlite	Bulk sub sample (1996 Program) - Sample 175-1
SW12	Sacramore Waste	Grab sample from pit
LW13	Launfal Waste	Grab sample from pit
LW14	Launfal Waste	Grab sample from pit
PW15	Palomides Waste	Gab sample from pit
EW16	Excalibur Waste	Core sample from BH113 ~9m

F:\DOCS\F-NOTE\067-MERL

Genalysis Laboratory Services Pty. Ltd.

ANALYSTS AND CONSULTING CHEMISTS ACN: 008 787 237

ATTENTION C MARISSEN ASHTON MINING LIMITED 21 WYNYARD STREET BELMONT WA 6104 AUSTRALIA

Analytical Report

COMMENTS

ATTENTION: C MARISSEN ..

ROCK....

JOB INFORMATION

JOB CODE :207.1/970973

No. SAMPLES :16 ELEMENTS :71 CLIENT O/N :9713

DATE RECEIVED :17/02/97

DATE COMPLETED: 07 03/97

LEGEND

'X' = LESS THAN DETECTION LIMIT

'N/R' = SAMPLE NOT RECEIVED

'*' = RESULT CHECKED

'()' = RESULT STILL TO COME

'I/S' = INSUFFICIENT SAMPLE FOR ANALYSIS

'E6' = RESULT \times 1,000,000

MAIN OFFICE AND LABORATORY

17 DAVISON ST, MARRINGTON, WA 6109 P.O. BOX 144 GOSNELLS WA 6110

Tel: (09) 459 9011 Fax: (09) 459 5343

KALGOORLIE SAMPLE PREPARATION DIVISION

12 KEOGH WAY, KALGOORLIE WA 6430 P.O. BOX 388 KALGOORLIE WA 6430

Tel: (090) 21 2881 Fax: (090) 21 3476

SAMPLE DETAILS

SAMPLE STATE(S) & SAMPLE PREPARATION(S)

Rock Chip Sample(s)
Crush
Mix & Split,Single Stage Mix & Grind (chrome-steel bowl), Quartz Wash

SAMPLE STORAGE DETAILS

GENERAL CONDITIONS :

SAMPLE STORAGE OF SOLIDS

Bulk Residues and Pulps will be stored for 60 days without charge. After this time all Bulk Residues and Pulps will be stored at a rate of \$1.20/cubic metre/day until your written advice regarding collection or disposal is received. Expenses related to the return or disposal of samples will be charged to you at cost.

SAMPLE STORAGE OF SOLUTIONS

Samples received as liquids ,waters or solutions will be held for 6 weeks free of charge then disposed of , unless written advice for return or collection is received.

NOTES

Please Note in the followong report...

The Acid Neutralising Capacity (ANC:/VOL) is expressed as percent CaCO3.

The Nett Acid Generation (NAG:/VOL) is expressed as kg of H2SO4 per tonne of sample. The pH and EC of this extract is reported as NAGpH & NAGeC.

The Nett Acid Producing Potential (NAPP) reported below is calculated and expressed as kg of H2SO4 per tonne of sample.

Sample	Number	NAPP
EK03 EK10 EW08 EW16 LK01 LK11 LW7 LW13 LW14 PK04 PK09 PW05	Number	-262.5 -14.5 -0.85 -0.35 -5.75 -3.25 -0.85 0.15 0.15 -515 -11.4 -2.35
PW15 SK02		0.15 -220
PW15		0.15
SW06 SW12		-2.35 -0.35

ANALYSIS

ELEM	ENTS	Au	Li	Ве	Na	Mg	Αl	Ρ	S	K	Ca	Sc
UNIT	S	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
DETE	CTION	0.5	0.5	0.1	20	20	20	20	10	- 20	10	2
METH	OD	A/MS	A/MS	A/MS	A/OES	A/OES	A/OES	A/OES	A/OES	A/OES	A/OES	A/OES
SAMP	LE NUMBERS											
1	EK03	0.5	50.0	2.0	720	5.80%	2.65%	5200	620	1.80%	8.80%	14
2	EK10	0.5	10.5	7.2	440	1.50%	3.60%	1.35%	60	8800	2.55%	18
3	EW08	X	7.0	1.8	260	1180	1.08%	1080	30	5000	720	2
4	EW16	X	1.5	0.4	940	540	2.80%	120	20	2.90%	140	2
5	LK01	X	12.5	6.0	660	8800	5.00%	3800	40	2.50%	1200	22
6	LK11	0.5	6.5	16.0	1300	8000	6.40%	4900	70	2000	360	28
7	LW07	X	5.0	0.8	260	1450	1.95%	360	30	2150	230	4
8	LW13	X	2.5	0.3	400	340	1.70%	320	30	1.06%	110	2
9	LW14	X	2.5	0.3	420	340	1.40%	220	20	1.00%	120	2
10	PK04	X	88.0	0.8	840	7.20%	1.35%	1080	X	3500	16.00%*	6
11	РК09	0.5	15.5	11.4	1750	1.45%	6.60%	3000	700	1400	5600	26
12	PW05	X	5.0	0.9	820	2150	1.40%	520	50	2300	660	2
13	PW15	X	4.5	0.2	200	140	1.35%	200	20	3700	100	X
14	SK02	X	118.0	12.5	820	9.20%	1.80%	1300	200	8200	3.70%	8
15	SW06	x	6.5	2.4	900	25 50	1.70%	1060	50	2300	480	4
16	sw12	х	5.5	0.4	160	460	1.25%	640	100	3600	230	2
	Ch.0001(EK03	0.5	50.0	2.0	720	6.00%	2.60%	5200	620	1.85%	8.80%	12
STD:	SY3				2.90%	1.50%	6.00%	2350	520	3.50%	5.80%	12
STD:	SY3 ,		90.0	23.5								
STD:	LECO5											

Part 2 / Page 1

ANALYSIS

ELEMENTS	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge
UNITS	ppm	ppm	ppm	ppm	%	ppm	ppm	SOM	ppm	ppm	ppm
DETECTION	5	2	2	1	0.01	1	1	;	. 1	1	0.5
METHOD	A/OES	A/OES	A/OES	A/OES	A/OES	A/MS	A/OES	A/OES	A/OES	A/MS	A/MS
SAMPLE NUMBERS											
1 EK03	3400	68	740	860	4.30	82	1100	78	84	7	1.5
2 EK10	4100	92	860	5000	* 15.50	175	1550	125	1000	* 11	2.5
3 EW08	500	18	112	47	0.96	10	29	6	37	3	1.0
4 EW16	390	8	82	35	0.98	2	11	5	22	5	1.5
5 LK01	6600	225	490	1900	6.40	56	960	64	340	15	1.5

6 LK11	5800	175	1600	1500	15.00	74	980	130	560	14	1.5
7 LW07	640	24	100	21	1.04	1	18	5	18	4	1.5
8 LW13	360	12	110	17	0.43	1	8	5	8	3	1.0
9 LW14	420	10	116	24	0.40	1	7	6	10	3	1.0
10 PK04	1500	28	255	780	2.55	31	430	22	34	4	1.0
11 PK09	5800	130	1160	2000	13.50	125	1200	135	520	14	1.5
12 PW05	660	28	160	96	1.65	3	29	7	31	3	1.0
13 PW15	285	4	120	35	0.34	1	5	4	5	2	1.0
14 SK02	1700	38	265	660	3.20	38	1900	31	520	5	1.0
15 SW06	1000	54	130	50	2.20	2	22	37	48	5	1.0
16 SW12	265	10	135	37	0.40	1	8	4	10	2	1.0
Ch.0001(EK03)		66	740	880	4.50	86	1080	78	86	8	1.5
STD: SY3	900	54	6	2350	4.40	00	9	20	240	-	
CTD: CV7	,		-			9	•			29	1.0
STD: LECO5						•				-/	1.0
310. 22005											

STD: PD-1

Part 3 / Page 1

ANALYSIS	A	N	Al	LY	[S]	[S
-----------------	---	---	----	----	-----	----

ELEM	ENTS	As	Se	Rb	Sr	Y	Zr	Nb	Mo	Ru	Pd	Ag
UNIT	S	ppm	ppm	ppm	ppm	mag	ppm	ppm	ppm	ppm	ppm	mcc
DETE	CTION	2	10	0.2	0.1	0.1	1	0.5	0.5	. 0.5	1	0.5
METH	OD	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS
SAMP	LE NUMBERS											
1	EK03	2	X	200.0	280.0	16.5	98	420.0	2.5	X	X	X
2	EK10	8	X	84.0	275.0	27.0	150	470.0	2.5	X	X	Х
3	Ew08	2	X	25.5	120.0	17.0	31	2.5	2.0	X	X	X
4	EW16	2	Х	112.0	49.0	3.1	108	2.5	2.0	X	X	X
5	LK01	4	X	76.0	350.0	280.0	104	170.0	5.0	X	X	0.5
6	LK11	2	X	18.0	720.0	80.0	145	580.0	1.0	X	X	χ
7	LW07	X	X	13.5	68.0	6.8	45	3.5	2.0	X	X	X
8	LW13	X	X	42.0	110.0	11.0	64	2.5	2.0	X	х	X
9	LW14	X	X	40.0	60.0	10.8	84	2.5	3.0	X	X	X
10	PK04	x	X	41.0	490.0	7.6	46	125.0	1.0	X	X	X
11	PK09	4	χ	17.5	480.0	104.0	145	480.0	5.0	χ	χ	X
12	PW05	X	X	13.5	130.0	39.0	32	9.5	7.0	X	X	X
13	PW15	X	X	16.5	26.0	11.4	40	2.0	4.5	X	x	X
14	SK02	2	X	70.0	180.0	11.6	70	125.0	3.5	X	X	X
15	SW06	X	X	14.0	185.0	58.0	56	3.0	8.0	X	X	X
16	sw12	Х	χ	15.0	285.0	30.0	41	1.5	5.5	χ	χ	Х
	Ch.0001(EK03) 2	X	205.0	285.0	17.0	100	440.0	3.0	x	X	X
STD:	SY3											
STD:	SY3	, 18	X	210.0	310.0	680.0	320	210.0	1.0			X
STD:	LECO5											

STD: PD-1

Page 7 of 11

Part 4 / Page 1

ANALYSIS

				* *			1 . •	~~					
ELEMEN	NTS		Cd	In	Sn	Sb	Те	Cs	Ва	La	Ce	Pr	Nd
UNITS			ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	mqq	mqc
DETECT	TION		0.5	0.1	1	0.2	0.5	0.2	1	0.1	· C.	0.1	0.1
METHOE)		A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS
SAMPLE	E NUMBERS												
1 E	EK03		X	X	1	0.4	X	4.0	2050	340.0	460.0	38.0	104.0
2 E	EK10		1.0	X	2	8.0	X	5.2	2550	390.0	540.0	45.0	125.0
3 E	EW08		X	X	1	0.2	X	1.2	370	19.5	43.0	4.8	18.5
4 E	EW16		X	X	1	0.4	X	2.4	490	11.4	19.5	1.9	5.4
5 ι	_K01		X	0.1	2	1.8	0.5	4.0	5200	160.0	250.0	25.0	84.0
6 L	_K11		Х	0.1	2	1.2	X	3.0	6400	620.0	780.0	64.0	180.0
7 t	_W07		X	X	1	0.2	X	1.0	245	32.0	72.0	8.4	32.0
8 t	.w13		X	X	1	0.4	X	1.4	450	10.8	23.5	2.5	9.4
9 L	.w14		X	X	1	0.4	X	1.4	370	11.4	25.0	2.7	9.4
10 F	PK04		X	X	1	0.4	X	2.0	980	114.0	155.0	13.0	37.0
11 F	PK09		X	0.1	2	0.8	X	4.6	5200	350.0	470.0	39.0	110.0
12 F	₩ 05		X	X	1	0.2	X	0.8	580	24.5	54.0	6.8	35.0
13 F	₽W15		X	X	X	0.2	X	0.4	295	9.6	18.5	1.8	6.4
14 S	SK02		0.5	X	1	0.4	X	2.6	540	110.0	155.0	13.5	38.0
15 S	5W06		X	X	1	0.6	X	1.0	740	20.0	46.0	6.0	34.0
16 S	5w12		Х	X	1	0.2	х	0.6	760	21.5	50.0	5.6	22.5
C	ch.0001(EK03)	X	x	1	0.4	X	4.0	2100	340.0	460.0	39.0	106.0

, x 6 0.4 0.5 3.0 420 1250.0 2150.0 225.0 720.0

STD: PD-1

STD: SY3

STD: SY3 STD: LECO5

(

Part 5 / Page 1

ANALYSIS

ELEM	ENTS		Sm	Eu	Gd	Tb	Dy	НО	Er	Tm	Yb	Lu	Нf
UNIT	S		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
DETE	CTION		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	. 0.1	0.1	0.5
METH	OD		A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS
SAMP	LE NUMBERS												
1	EK03		11.0	2.5	7.8	0.9	4.0	0.6	1.8	0.2	1.1	0.2	3.0
2	EK10		14.0	3.1	10.0	1.2	5.6	0.9	2.7	0.3	1.9	0.3	4.0
3	EW08		3.7	0.7	3.7	0.5	3.0	0.5	1.4	0.2	1.1	0.2	1.0
4	EW16		0.7	0.1	0.6	0.1	0.6	0.1	0.4	0.1	0.7	0.1	3.5
5	LK01		14.5	3.7	15.5	3.5	33.0	8.0	26.0	4.0	25.0	3.9	3.0
6	LK11	****	20.5	4.8	15.0	2.4	14.0	2.5	6.4	0.8	4.3	0.7	4.0
7	LW07		5.8	1.3	5.2	0.6	2.2	0.3	0.7	0.1	0.7	0.1	1.5
8	LW13		2.1	0.5	2.9	0.4	2.5	0.4	1.1	0.2	1.0	0.2	2.0
9	LW14		1.7	0.4	2.0	0.3	3.2	0.4	1.2	0.2	1.2	0.2	2.5
10	PK04		4.3	0.9	3.0	0.4	1.7	0.3	0.9	0.1	0.7	0.2	1.5
11	PK09		15.0	3.6	13.0	2.4	16.5	3.2	9.2	1.2	6.6	1.2	4.0
12	PW05		14.5	4.0	14.5	1.5	8.0	1.4	3.9	0.5	3.2	0.5	1.0
13	PW15		1.3	0.2	1.6	0.3	2.0	0.4	1.2	0.2	1.1	0.2	1.5
14	SK02		4.7	1.1	3.8	0.5	2.5	0.4	1.3	0.2	1.1	0.2	2.0
15	SW06		14.0	3.8	19.0	2.6	13.5	2.3	6.0	8.0	5.0	0.8	1.5
16	SW12		5.0	0.9	5.6	0.8	5.4	1.1	2.9	0.4	2.4	0.4	1.5
	Ch.0001(EK03)	11.2	2.6	7.8	0.9	4.1	0.6	1.8	0.2	1.4	0.3	3.0
STD:	SY3												
STD:	SY3	1	120.0	19.0	118.0	17.0	135.0	29.5	80.0	11.2	68.0	8.4	9.5
STD:	LECO5												

STD: PD-1

Part 6 / Page 1

٨	NT	Λ	rx	1	C	TC	1
\mathcal{A}	N	\mathcal{A}	, 1	ſ,			•

ELEM	ENTS	Ta	W	Re	Pt	Tl	Pb	Вì	Th	U	ANC	S-Tot
UNIT	S	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%
DETE	CTION	0.2	1	0.2	0.5	0.2	2	0.5	0.1	. 0.1	0.05	0.005
METH	OD	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	A/MS	/ V OL	/LECO
SAMP	LE NUMBERS											
1	EK03	15.5	2	X	X	0.2	84	0.5	88.0	5.4	27.00	0.045
2	EK10	20.0	4	X	0.5	0.8	100	X	96.0	6.8	1.50	X
3	EW08	0.2	1	X	0.5	X	4	X	4.3	1.9	0.10	X
4	EW16	0.2	2	х	0.5	0.6	12	X	4.4	1.1	0.05	X
5	LK01	8.6	5	X	0.5	0.4	22	0.5	39.0	11.4	0.60	X
6	LK11	28.0	8	х	0.5	0,2	94	χ	114.0	13.5	0.35	X
7	LW07	0.2	1	Х	0.5	X	6	X	5.6	0.7	0.10	X
8	LW13	0.2	2	X	0.5	0.2	12	Х	5.4	1.3	X	X
9	LW14	0.2	1	Х	0.5	0.2	16	X	6.0	1.5	X	X
10	PK04	5.4	6	X	0.5	X	18	X	27.0	1.8	52.50	X
11	РК09	24.0	19	* X	0.5	0.2	14	χ	96.0	7.6	1.40	0.070
12	Pw05	0.6	2	X	0.5	X	6	X	5.4	1.2	0.25	X
13	PW15	0.2	2	Х	0.5	X	68	X	4.2	1.3	Х	X
14	SK02	6.2	6	X	0.5	0.2	34	X	28.0	3.2	22.50	X
15	SW06	0.2	1	X	0.5	X	6	X	4.7	3.8	0.25	X
16	sw12	0.2	2	х	0.5	χ	10	х	4.2	1.6	0.05	х
	Ch.0001(EK03)	18.0	3	X	0.5	0.2	84	X	88.0	5.4	25.50	0.040
STD:	SY3											
STD:	SY3	28.0	2		1	1.2	145	0.5	1000.0	660.0		
STD:	LECO5											1.850

STD: PD-1

ANALYSIS

ELEM	ENTS		S~S04	NAG	NAGpH	NAGeC	s-s2-
UNIT	S		%			mS/cm	
	CTION		0.01	2		0.01	
METH						/METR	
			.,, 020	, , , ,	,	, , , ,	
SAMP	LE NUMBERS						
1	EK03		0.04	X	9.1	0.12	X
2	EK10		0.02	X	8.6	0.05	X
3	EW08		X	2	5.7	0.02	X
4	EW16		X	X	5.2	0.02	X
5	LK01		X	X	6.9	0.04	X
6	LK11		X	X	5.8	0.03	X
7	LW07		X	X	5.0	0.02	χ
8	LW13		X	X	5.1	0.02	X
9	LW14		X	X	5.4	0.10	X
10	PK04		X	X	8.6	0.18	X
11	PK09		0.06	X	8.8	0.08	0.01
12	PW05		X	2	5.2	0.03	X
13	PW15		X	X	4.9	0.02	X
14	SK02		0.01	X	8.8	0.10	X
15	SW06		X	X	5.7	0.03	X
	~ * * * * * * * * * * * * * * * * * * *						
16	SW12		X	X	5.5	0.02	X
	Ch.0001(EK03)	0.03	X	9.1	0.10	0.01
STD:	SY3						
STD:	SY3				3		
STD:	LECO5						
STD:	PD-1		4.60				

METHOD CODE DESCRIPTIONS

A/MS

Multi-acid digest including Hydrofluoric, Nitric, Perchloric and Hydrochloric acids.

Analysed by Inductively Coupled Plasma Mass Spectrometry.

A/OES

Multi-acid digest including Hydrofluoric, Nitric, Perchloric and Hydrochloric acids.

Analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry.

/VOL

Analysed by Volumetric Technique.

/LECO

LECO Analyser.

X/OES

Client Specified Digestion or Extraction.

Analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry.

/METR

Analysed using an Electronic Meter (eg pH or conductivity meter).

/CALC

Results Determined by calculation from other reported data.

APPENDIX C

Ashton Mining Ltd, Merlin Project

Proposed Access Road

Report on

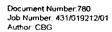
Report on Design Requirements

June 1997

LIBRARY N.I. DEPT. OF MINES & ENERGY.

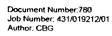
Gutteridge Haskins & Davey Pty Ltd

ACN 008 488 373


38 Mitchell Street Darwin NT 0800 Australia

Telephone: 61 8 8981 5922 Facsimile: 61 8 8981 1075 Email: ghddar@ozemail.com.au

© Gutteridge Haskins & Davey Pty Ltd 1997


This document is and shall remain the property of Gutteridge Haskins & Davey Pty Ltd. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

	Document Status											
Rev Author Reviewer Approved for Issue												
No.			Name	Signature	Date							
0	C. Gillanders	L. Monteith	L. Monteith	Montett	27/4/97							
			V									

1. INT	RODUCTION	1
2. BA	CKGROUND	1
3. DES	SCRIPTION OF THE WORKS	2
•	3.1 General	2
	3.2 River and Creek Crossings	3
	3.3 Carpentaria Highway Intersection	3
4. HY	DROLOGY AND HYDRAULIC ANALYSIS	4
	4.1 Methodology	4
	4.2 Results	4
	4.2.1 McArthur River	
÷	4.2.2 Glyde River4.2.3 Minor Drainage Structures	
:		
5. DES	SIGN CONSIDERATIONS	7
	5.1 Pavement Design	7
	5.2 Earthworks	8
	5.3 River Crossings	8
	5.4 Minor Stream Crossings 5.5 Intersection Design	9
6. REF	FERENCES	9
Append	ix 1 - Typical Drawings 19212-C00 Locality Plan, Site, & Schedule of Drawings 19212-C01 Type Cross Sections and Details	
	19212-C02 Compilation Plan & Survey Data	
	19212-C17 Plan & Longitudinal Section CH21000-22500	
	19212-C34 Plan & Longitudinal Section Ch46500-48000	
	19212-C45 McArthur River Culvert Plan & Details (Option A & C)	
	19212-C46 Glyde River Culvert Plan & Details (Option A & C)	
	19212-C47 Culvert Details	
*	19212-C48 McArthur River & Glyde River Floodways (Option C)	
	19212-C49 Carpentaria Highway Intersection Setout Details	

Proposed Access Road Report on Design Requirements

1. INTRODUCTION

Gutteridge Haskins and Davey Pty Ltd was commissioned by Ashton Mining Ltd to investigate, design, and document the access road as part of the Merlin Project. The access road extends from the Merlin Project site at Boomerang Creek, to the Carpentaria Highway, intersecting it approximately 5km to the west of the McArthur River Mine.

The access road broadly follows the alignment of the existing access track, and contains two major river crossings, at the McArthur River, and the Glyde River.

The aim of this report is to set down the basis for design of the access road, and provide discussion of the alternatives chosen for the various aspects of the work. The contents of the report are understood to be included in the Public Environmental Report for the project.

2. BACKGROUND

Ashton Mining Ltd are undertaking a feasibility study into the establishment and operation of a diamond mine at Boomerang Creek, south-east of McArthur River, in the NT.

An integral component of the mine infrastructure is the access road, which is currently 70km long, and of a poor standard. In order for operations to be effectively maintained, the access road needs to be upgraded to facilitate regular movement of heavy vehicles, in order for supplies to be moved. Because of the large investment represented by the road upgrade, this aspect has a significant impact on the project.

The existing access road had received minor repairs and upgrade during the project investigation stage. It had also been flown to produce stereo aerial photographs, and had been surveyed (including a significant corridor either side) for Aboriginal sites.

1

3. DESCRIPTION OF THE WORKS

3.1 General

The existing access track is currently approximately 70 km long, from the existing Merlin Project camp to the junction with the Carpentaria Highway. The proposed new access road will be approximately 62km in length, following the existing track alignment in most areas. The route crosses the McArthur River approximately 2.2km from the Carpentaria Highway intersection, and the Glyde River some 45km further towards the mine site. In between there are numerous minor watercourse crossings, including Amelia and Lamont Creeks.

The alignment is controlled by several factors:

Glyde River

The Glyde River, along a substantial portion of its length adjacent to the access road, forms a rocky and impenetrable ravine, which could only be crossed using a substantial bridge structure. Construction, financial, and environmental problems associated with a crossing of this nature were considered prohibitive, and in effect, the Glyde formed a bound to the easterly development of the road, prior to the crossing available near Bullock Creek.

Rocky Terrain

Whilst there is enough relief in the terrain to theoretically align the road to ridges and high ground, the steepness and rockyness of the ridges precluded this approach on the basis of constructability and cost. The road alignment selected has needed to balance the need to elevate the road as much as possible, whilst avoiding the sharp ridges and escarpments that occur throughout the locality.

Aboriginal Sacred Sites.

The entire route for the existing access track had already been surveyed by the AAPA, with the AAPA certificate identifying sacred areas. A number of these formed controls to the selection of alignment, the most obvious of which is the hills either side of Lamont Pass. In addition, the presence of the existing cleared corridor provided incentive to maintain an alignment within that cleared corridor, so as to avoid the requirement for further clearances.

3.2 River and Creek Crossings

As noted above, the proposed access road crosses two rivers, several creeks, and numerous drainage channels.

The design methodology for stream crossings has been to provide a level of service commensurate with the design life of the Stage One plant (understood to be in the order of 2 ½ years). To provide uninhibited access at all times would be prohibitive, and so an approach was adopted that accepted:

- that closures at major watercourses of up to 5 days at a time would be acceptable,
- that a reasonable amount of maintenance and repair work would be acceptable, following the wet seasons.

The river crossings have been designed as culverts which will maintain trafficability during low flow events, and maintain stability during major river flows. The road surfaces will be stabilised, and the embankments and approaches afforded some protection, in order to limit deterioration during large flow events.

Alternative crossing designs have been designed and documented, as options to be considered should the cost of the original river crossing designs be prohibitively expensive.

The creeks and other minor drainage channels are designed as bed level crossings, except for where the natural terrain would require substantial earthworks to maintain trafficability. In these instances, pipe culverts have been designed. Bed level crossings are generally cement stabilised, except where the natural terrain is rocky and not prone to deterioration during wet weather.

3.3 Carpentaria Highway Intersection

The intersection of the proposed access road and the Carpentaria Highway is located some 69km south-west of Borroloola Homestead (approximately 5km south-west of McArthur River Mine). This will be the main transport access to the mine site, but will be subject to very low traffic volumes due to the closed (secure) nature of the mine.

There is currently no existing intersection at the site, as the existing access track joins the Carpentaria Highway further to the south.

4. HYDROLOGY AND HYDRAULIC ANALYSIS

4.1 Methodology

Historic flow records were available for both the McArthur and Glyde Rivers, from stream guages maintained by NT Water Resources Branch of Department of Lands, Planning and Environment. These were analysed to give an indication of the design flows to be used at each crossing. The initial target design criteria was that the crossings were not to be rendered impassable for more than 5 consecutive days, on an average of once every five years (ARI5).

The data was examined to determine the maximum flow rate for five consecutive days for each rainfall event. From these flow rates, a frequency analysis was undertaken to provide an estimate of the flows corresponding to Average Recurrence Intervals (ARI) of 2 to 5 years.

The design of the river crossings was undertaken using the HECRAS modelling program.

Minor drainage paths that were assessed as requiring culverts, were designed to prevent overtopping of the road in the 20 year ARI event. In this way, for the small cost of larger pipe sizes, expensive protection works were avoided.

4.2 Results

4.2.1 McArthur River

Some 22 years of daily flow records between 1973 and 1995 were available at a flow gauging station located approximately 7 km from the proposed access road crossing. However much of this data was unreliable as there were very frequent missing records throughout the data, most of which occurred during the wet season. Four years of data between 1980 and 1984 had to be excluded from the analysis because of the large number of missing records throughout this period. The remaining 2 periods were analysed by ignoring the missing records, and hence the results of the analysis should be viewed as being indicative only rather than dependable or exact.

A frequency analysis was undertaken for each period and the results were averaged to yield the following:

A.R.I	$\underline{\text{Flow } (m^3/s)}$
2	300
3	500
4	700
5	850

According to the HECRAS model of the crossing location, a flow of 850m³/s corresponds to a flow depth of approx. 5m. To provide for this depth of flow, a bridge would be required. Budgetary constraints do not allow for a bridge crossing, and a culvert option consisting of 17/3000 x 3000 RCBC + Link Slabs was assessed as being a reasonable compromise, and represents an ARI of approximately 3-4 years under the design criteria. Allowing for 300mm depth of pavement to be constructed directly above the link slabs, the corresponding top of road level would be 35.67m RL. For this arrangement, the following results are obtained:

Flow	Upstream	Depth	Velocity ,	Velocity
	Water Level	Above	Above	Through
		Road	Road	Culvert
(m^3/s)	(m RL)	(m)	(m/s)	(m/s)
500	35.90	0.23	1.4	2.8
700	36.63	0.96	2.2	2.2

For this configuration significant scour protection would be required on the downstream side of the culvert. An alternative culvert option based on the 2 year ARI design event was also designed.

4.2.2 Glyde River

Approximately 12.5 years of flow records were available from a flow gauging station located approx. 20km downstream of the proposed crossing location. The extra catchment area contributing to the gauging station is significant, resulting in the design flows obtained from the analysis being conservative. As with the McArthur River records, there were frequent periods of missing data in the flow records, however many of these were in the dry season. The results from the analysis are therefore reasonably dependable, but they should still be considered approximate due to the relatively limited duration of the flow records.

The results of the frequency analysis are as follows:

A.R.I	$\underline{\text{Flow } (m^3/s)}$
2	100
3	160
4	250
5	300

According to the HECRAS model of the crossing location, a flow of 300m³/s corresponds to a flow depth of approx. 3.75 m. While using 2.7m or 3.0m high culverts would allow the crossing to be used during the 5 year ARI event, it is questionable whether the extra expense of the higher culverts would be warranted if the budget is tight, considering the McArthur River crossing would only be passable during the 3 to 4 year ARI events with the recommended culvert option.

A culvert crossing consisting of 13/3000 x 1800 RCBC + Link Slabs is recommended. Allowing for 300mm depth of pavement to be constructed directly above the link slabs, the corresponding top of road level would be 76.08m RL. For this arrangement, the following results are obtained:

Flow	Upstream	Depth	Velocity	Velocity	
1	Water Level	Above	Above	Through	
		Road	Road	Culvert	
(m³/s)	(m RL)	(m)	(m/s)	(m/s)	
100	75.72	•		1.3	
160	76.46	0.38	1.8	1.3	
250	76.94	0.86	2.0	1.0	
300.	77.15	1.07	2.2	0.9	

An alternative culvert option based on the 2 year ARI design event was also designed.

4.2.3 Minor Drainage Structures

Minor drainage structures were designed on the basis of the limited catchment information available from existing mapping and aerial photography. Without being considered definitive, or precise, the catchment assessments are the best possible under the scope of the commission.

The following culvert sizes were selected:

Chainage	Culvert Size
1951	3/2100mm diam
31245	1/1500mm diam
34814	2/1500mm diam
43650	2/1200mm diam
43956	2/1500mm diam
44286	1/2100mm diam
44739	2/1500mm diam
45038	1/1500mm diam

5. DESIGN CONSIDERATIONS

5.1 Pavement Design

The design of the access road pavement involved assessment of the frequency and nature of traffic, the insitu and available gravel materials and a value assessment of design options given the possible life of the road.

A single pavement design was adopted. The subgrade has been assessed as being relatively sound along the entire length of the road, as confirmed by reports that traffic currently passes at most times of the year. Nevertheless, this will be reviewed as construction proceeds on site. The base course gravels available have reasonable strengths for an unsealed gravel road.

The traffic anticipated will only extend to:

- a single semi-trailer per week, and
- a single passenger vehicle per day.

Given that the Stage One plant is to be run for only 2 ½ years, and that the road may have a life limited to that, this equates to a very low traffic volume.

A uniform 150 thick gravel pavement, cement stabilised in water courses, has been adapted throughout.

5.2 Earthworks

Earthworks for the access road will consist mainly of clearing and cut/fill operations. Clearing is required to remove trees, debris and topsoil, but will only be required where the existing alignment is not being followed. Generally, the road will be required to be raised above the existing natural surface, with table drains and offlets cut. Some sections of the alignment will be constructed to a grade line which will require cut to fill earth movements.

Pavement material will be naturally occurring gravels extracted from gravel pits along the route. A gravel search has been carried out over a portion of the route to identify possible gravel sources.

It is possible that mine waste material could be used, provided it meets the required engineering specifications.

5.3 River Crossings

As discussed earlier, only moderate velocities are expected within the streams at the river crossings. Nevertheless, a moderate amount of protection works is appropriate for stability of the culvert structures, and to minimise the recurrent maintenance requirements.

Depending on availability of protection materials, the extent of batter and culvert protection will be reassessed on site. However, protection works as a minimum will be as per the appended documentation. This will include:

- rubble protection to the stream bed upstream of the culvert,
- reno mattress protection to the stream bed down-stream of the culvert,
- stabilisation of the pavement,
- grouted stone pitching to batters steeper than one in four (V.H) slope.

Additional protection in the form of rubble may be added as the need arises.

5.4 Minor Stream Crossings

Where the stream has a rocky base which is unlikely to deteriorate under wheeled traffic in wet weather, no treatment is proposed. Elsewhere, however, that part of the pavement likely to be saturated by stormwater is to be cement stabilised to prevent erosion and rutting.

Where culverts are provided, grouted stone pitching is to be constructed to protect the pipe surround from the danger of piping failures along the pipes.

5.5 Intersection Design

The intersection of the Carpentaria Highway with the access road will be subject to very little traffic, however it has been designed to minimise long term maintenance requirements. In particular, the requirements of the NT Department of Transport and Works (DTW), have been relied upon for direction.

It should be noted that the plan appended (19212-C49) is subject to imminent revision to reflect some key DTW requirements. In particular, these include:

- bitumising the entire intersection within the road reserve,
- concreting the drainage invert in lieu of cement stabilisation.

as well as other minor changes.

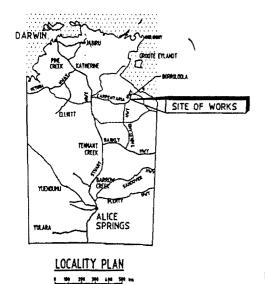
Appropriate traffic control measures will be required during construction, and will comply with AS1742.

6. REFERENCES

- A R & R (Australian Rainfall & Runoff) A Guide to Flood Estimation, 1987, Vol 1.
- US Army Corps of Engineers, "HEC-RAS River Analysis System User Manual and Hydraulic Reference Manual", July 1995.
- 3. NT Water Resources Branch of Department of Lands, Planning and Environment Gauged River Flow Data.
- 4. Austroads, "Intersections at Grade", 1988
- 5. Guidelines for Road Design, DTW.
- 6. Dames and Moore, "Report on Gravel Search, Access Road from 8 Mile Waterhole towards Merlin Project Site, NT", Nov. 1996.

- 7. GHD "Merlin Prospect (Boomerang Creek) Access Road, Detailed Preliminary Estimate", September 1996.
- 8. GHD "Merlin Prospect (Boomerang Creek) Access Road, Assessment of Alternative Route", October 1996.

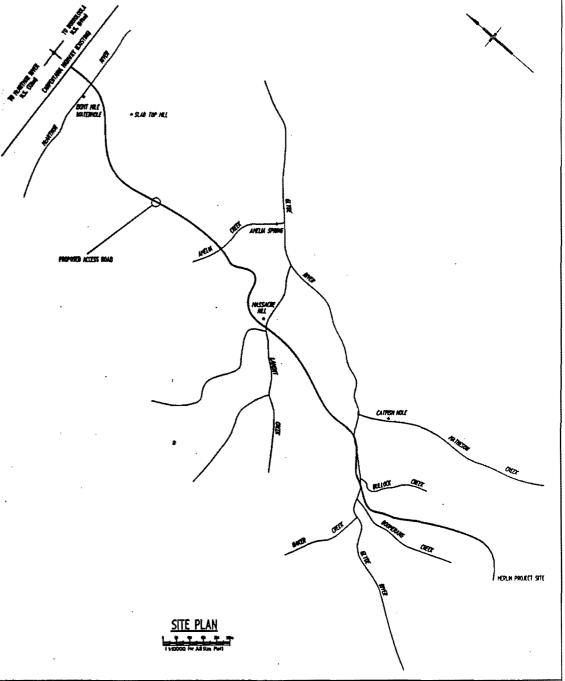
Document Number;780 Job Number; 431/019212/01 Author; CBG

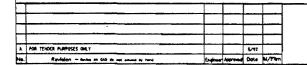

;

Appendix 1

Typical Drawings

GENERAL LEGEND


---- DESIGN CONTROLNE

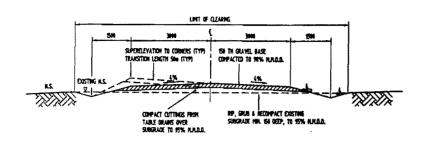

DOSTING CENTRELINE

DRAINAGE LINE KOREIX, MYDR, GALLY, ETC.)
AND DIRECTION OF PLON

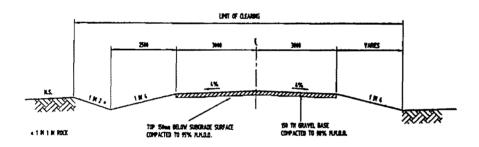
SCHEDULE OF DRAWINGS

SCHEDOLE OF DICKWINGS							
PROJECT DRAWINGS							
DRG. NO.	DESCRIPTION						
	LOCALITY PLAIL SITE PLAN & SCHEDULE OF DRAVINGS						
19212-CB\$	TYPE CROSS SECTIONS AND DETAILS						
19212-C01 19212-C02	COMPLATION PLAN & SURVEY DATA						
17212-(0)	PLAN & LONGTUDNAL SECTION OF 40-540						
19212-COL	PLAN & LONGTUDNAL SECTION OF SM-3000						
17212-C05	PLAN & LONGITUONAL SECTION ON 3008-4506						
19212-586	PLAN & LONGITUDINAL SECTION OF 4500-4000						
19212-007	PLAN & LONGITUDINAL SECTION ON 6000-7500						
19212-C06	PLAN & LONGTUDINAL SECTION OF 7500-9000						
19212-009	PLAN & LONGTUDINAL SECTION OF 9000-19500						
19212-C10	PLAN & LONGTUDNAL SECTION OF 19508-2006						
19212-(11	PLAN & LONGTUDNAL SECTION OF 1900-19500						
19212-C12	PLAN & LONGITUDINAL SECTION ON 19509-15000						
19212-C13	PLAN & LONGTUDINAL SECTION ON SHIP-MISH						
19212-C14	PLAN & LONGTHORNAL SECTION OF 16540-16069						
19212-015	PLAN & LONGTUDINAL SECTION OF 18001-17500						
19212-C%	PLAN & LONGTUDINAL SECTION OF 19500-2000						
19212-(17	PLAN & LONGTOONAL SECTION OF 2006-22500						
19212-CW	PLAN & LONGTUDBIAL SECTION ON 22500-24000 PLAN & LONGTUDBIAL SECTION ON 24000-25500						
19212-C19 19212-C28	PLAN & LONGTHOUGH, SELTION OF 25040-25040 PLAN & LONGTHOUGH, SECTION OF 25540-27644						
19212-C21	PLAN & LONGTOONNE SECTION OF 27008-21504						
17212-022	PLAN & LONGTHOUNAL SECTION OF 26500-36000						
19212-C23	PLAN & LONGTRONAL SECTION OF 3604-3550						
19212-C26	PLAN & LONGTROWAL SECTION OF 31500-33000						
19212-C25	PLAIR & LONGTWORKE SECTION OF 33006-34506						
19212-C26	PLAN & LONGTUDINAL SECTION OF 3KS00-36000						
19212-C27	PLAR & LONGTUDINAL SECTION ON 36008-37500						
19212-C28	PLAN & LONGITUDINAL SECTION ON 37504-39000						
17212-029	PLAN & LONGTROMAL SECTION OF 39000-44500						
19212-C38	PLAN & LONGTRONAL SECTION OF 46500-42000						
19212-C31 19212-C32	PLAN & LONGITUDINAL SECTION OF 42000-43500 PLAN & LONGITUDINAL SECTION OF 43500-45000						
17212-C33	PLAN & LONGTROWAL SECTION OF ASSIST						
19212-C34	PLAN & LONGTUONAL SECTION ON 44500-46000						
17212-035	PLAN & LONGTUDINAL SECTION OF 4000-47500						
19212-C36	PLAN & LONGTUDINAL SECTION OF 49598-51009						
19212-C37	PLAN & LONGTOONAL SECTION OF SWEE-52500						
19212-C38	PLAN & LONGTROWAL SECTION OF S2504-S4600						
19212-C39	PLAN & LONGTRUDINAL SECTION OF SAMM-55500						
19212-C48	PLAN & LONGTOONAL SECTION OF \$5500-57000						
19212-C41	PLAN & LONGTOURNAL SECTION OF \$7900-51500						
19212-CA2 19212-CA3	PLAN & LONGTUDNAL SECTION OF SISSO-60000 PLAN & LONGTUDNAL SECTION OF 6000-61500						
19212-C44	PLAN & CONSTRUCTED SECTION OF ASSISTANCE						
19212-C45	N-ARTHUR RIVER CALVERT ROPTION A & C						
17212-544	GLYDE RIVER CULVERT (OPTION A & C)						
19212-C47	CLEVERT DETALS						
19212-C48	HEARTHOR RIVER & GLYDE RIVER PLOCUMAYS SUPTION BY						
8772-C49	CARPENTARIA NIGHWAY INTERSECTION						
STANDARD	STANDARD DRAWINGS						
DRG. NO.	DESCRIPTION						
(15)1300	REXIBLE GLIDE POSTS						
((5)(36)	STANDARD ROOD QUAGE POSTS						
((5)(304	STOCK FENCE						
(15)1314	STANDARD CATTLE GRD MITHOUT APPROADS SLABS						
(භාහර	STANDARD CATTLE GRD - BETALS						

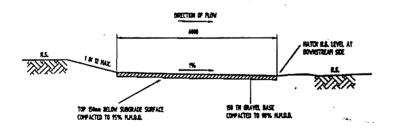
Gutteridge Haskins & Davey Pty Ltd

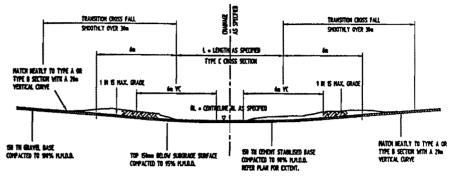

KINS & DAVOY PTY LTG :	
OL MOTER & PLANTE - MARTE MINERS	ATHER SAR CALMORES SAT
	Approval

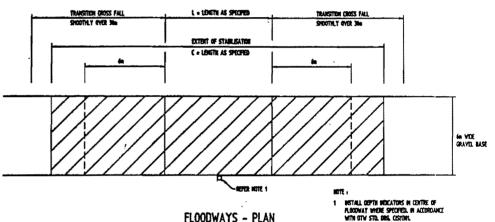
MERLIN PROJECT ACCESS ROAD

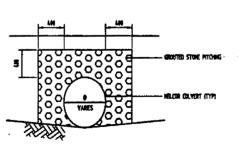

COCALITY PLAN, SITE PLAN AND
SCHEDULE OF DRAWINGS

A1 PA 19212-C00


DO NOT SCALE


TYPE A SECTION


TYPE B SECTION

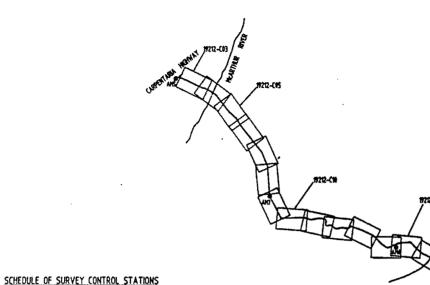

TYPE C SECTION FLOODWAYS

LONGITUDINAL SECTION - FLOODWAYS

FLOODWAYS - PLAN

CULVERT PROTECTION (TYP)

SAEA WATER TO THE SAEA

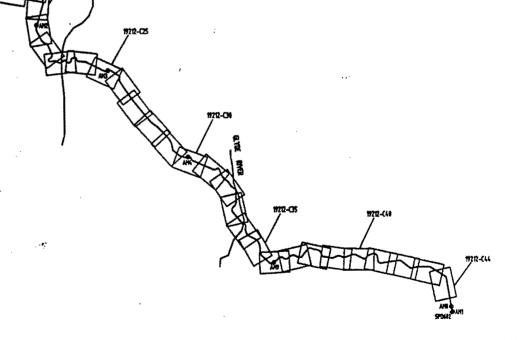


			_			
- To	Gutteridge	Haskins	4	Davey	Pty	Ltd
	Gutterldge			A PARKETS + P		

SE Mindel Street, Sarvis NT 0000 Telephone COS SECURICE: Preside COS SECURITY

1	AR SHOULD SEE COLLEGES VIII				NG LTD. ECT ACCESS SECTIONS AN	
	No broken and out to send to send the	~	1 Dr	3 .	19212-C01	A

A FOR TOUGHE PURPOSES DILY S-77	10.	Revision - Notes on CAO do not amond by hard	Enghan	Approved	Octo	M/Film
	٨	FOR TENDER PURPOSES DIKT			5/17	


STATION	LATTITUDE GDA 94	COA'94	EASTING HORTHING INGA 94 ZONE SII	AL (AHD)
AM1	S 16 50 31.34420	E 136 20 01.62695	642101.567 8137439.868	179,744
AM2	S 16 38 52,30093	E B4 09 33.3B32	423429.933 8559041,284	103.737
AH3	5 16 40 46,77801	E 136 11 22,08889	626831,727 8155584,858	112,053
AH4	\$ 16 43 55.67926	£ 136 13 47.59753	629921,689 81K9679,A79	116,064
AMS	5 16 29 24.50587	E 136 01 44.14000	609819,210 8176566,847	42.433
AM6	5 16 36 83.33699	E 136 47 49 95975	490411 ROL - 8164259 749	174,119

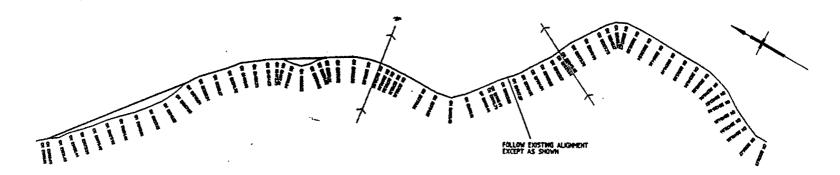
ANS 5 N 29 32-5587 E 80 61 44,140-00 60999-29 87765644 42433 6
ANS 5 N 29 32-5587 E 80 61 44,140-00 60999-29 87765644 42433 6
ANS 5 N 33-32-699 E 34 67 69.5575 609471.804 6164258.249 226.719 6
ANT 5 N 33-33-6494 E 36 63 42,141-0 615278.25 886891.389 53.723 6
ANS 5 N 59 2155404 E 80 62 0 61,2098 642991.33 83774.843 98.779 6
ANS 5 N 47 48,94342 E 36 N 54,77895 433034.384 8142736.53 716,476 6
NT5693 S N 47 48,94342 E 36 N 54,77895 433034.384 8142736.53 716,476 6
NT5693 S N 47 48,94342 E 36 N 54,77895 433034.384 8142736.53 716,476 6
NT5693 S N 47 48,94342 E 36 N 54,77895 433034.384 8142736.53 718,476 6
NT5693 S N 47 48,94342 E 36 N 54,77895 433034.384 8142736.53 718,476 6
NT5693 S N 47 48,94342 E 36 N 54,77895 433034.384 8142736.53 718,476 6
NT5693 S N 47 48,94342 E 36 N 54,77895 433034.384 8142736.53 718,476 6

HOTES: AL DATUM POINT FOR HORIZONTAL DATUM HTS 493.

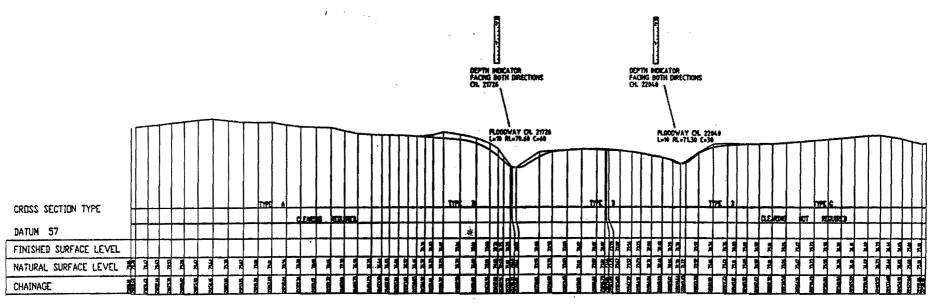
B) DATUM POINT FOR VERTICAL DATUM BIN T22 LOCATED AT THE INTERSECTION OF THE CARPENTARIA AND TABLELANDS HIGHWAYS.

- Q DATUM SOURCE FROMDEPARTHENT OF LANDS, PLANNING & ENVIRONMENT.
- DI SURVEY CONDUCTED BY G.P.S.
- DI GOATA REFERS TO THE GEODETIC DATUM OF AUSTRALIA 1994.
- F) MGA'94 REFERS TO THE MAP GRO OF AUSTRALIA 1994.
- G STATION IS A 8.4m STAR ROW WITH LAW STAR ROW WITHESS AND STATION IDENTIFICATION.
- HE SPIKE IN & OF EXISTING ROAD END AT THE CAMP INTERSECTION WITH INTERNAL ROADS.
- JI CONC. BLOCK WITH BRASS PLAQUE AND SOMM DIAMETER GALY. STEEL WITNESS 14 HIGH.

	A-1/1-2 A	 	A-da	MA
4	FOR TOCK PUPPISES BLY		5/71	
	-			

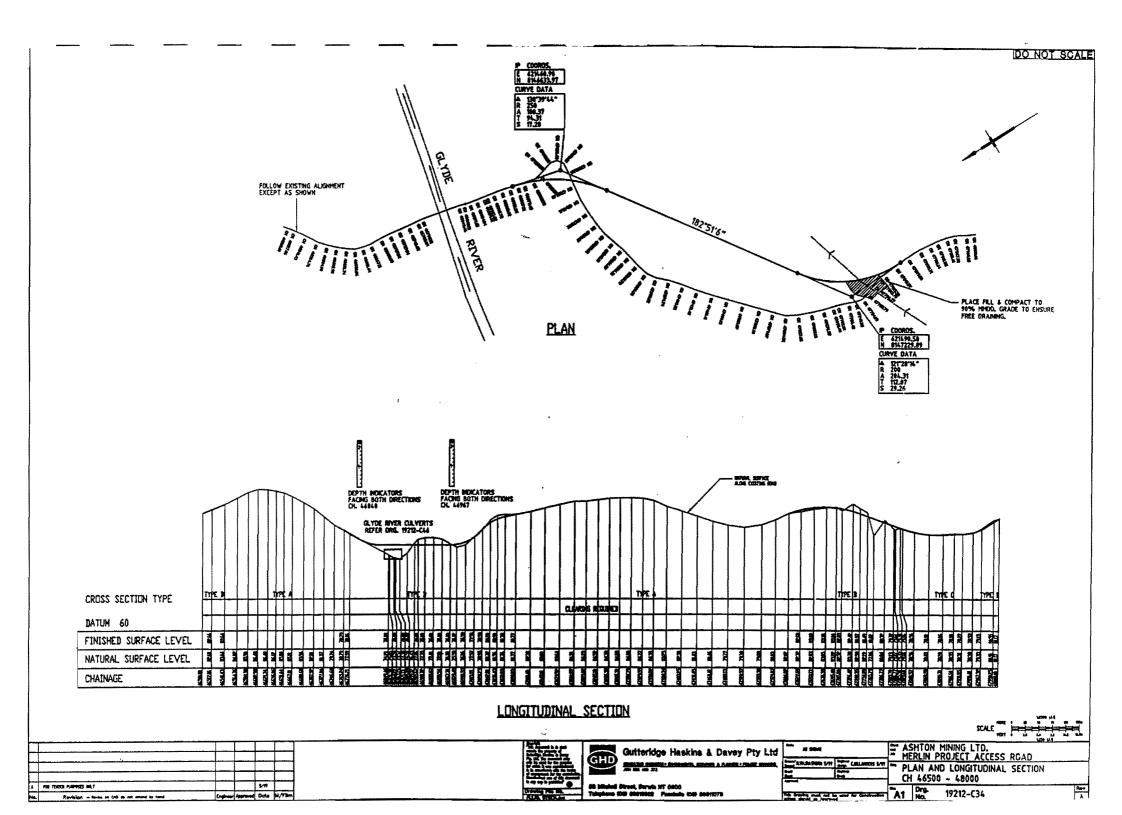


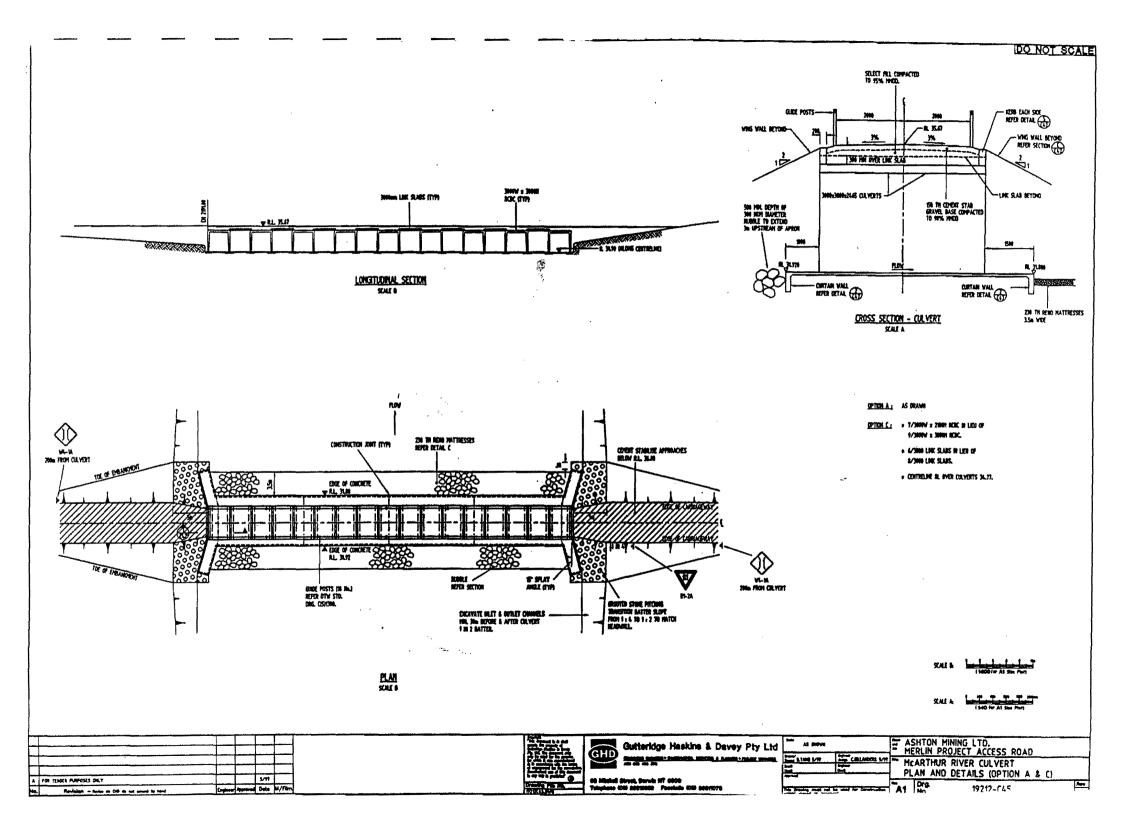
Gutteridge Haskins & Davey Pty Ltd

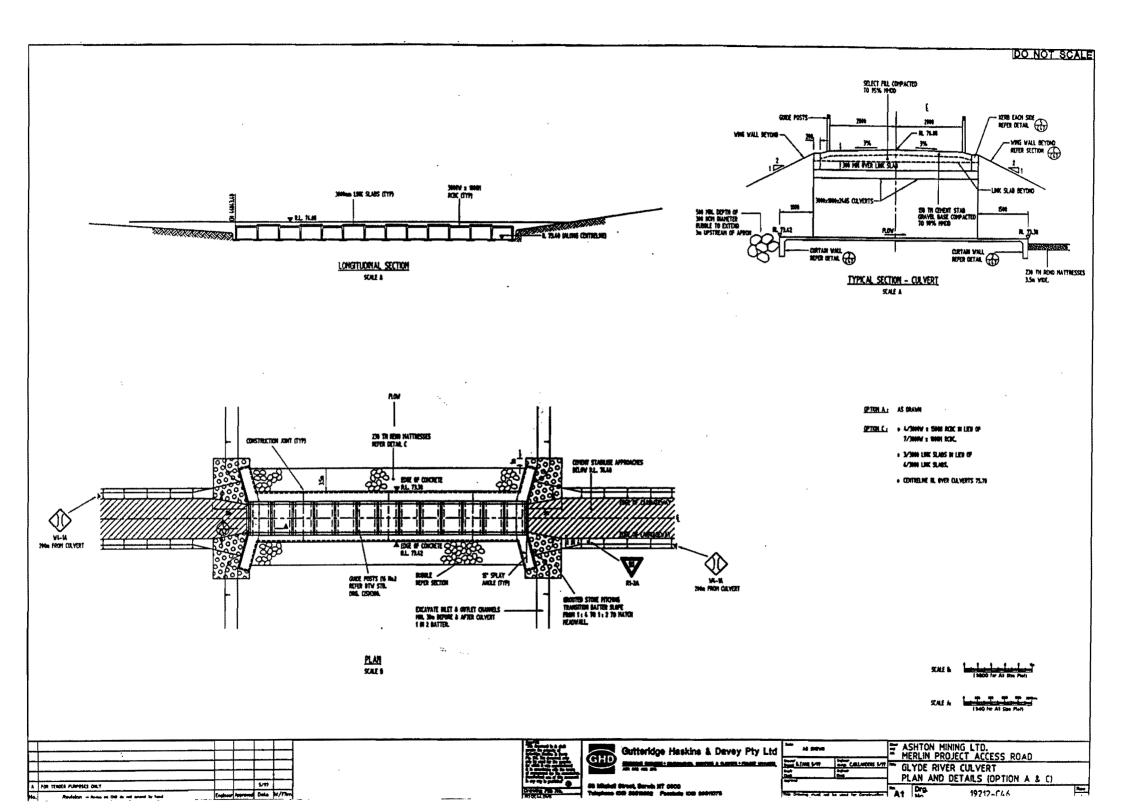

AND DESCRIPTION OF THE PERSON OF THE PERSON

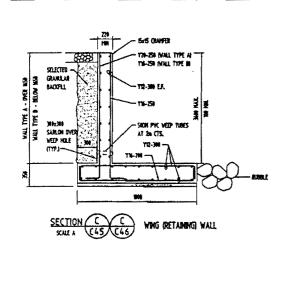
	eren,	Derails	NT GROS		
sisphene E	-	-	Passinde	80011076	

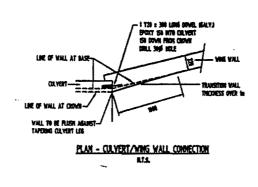
•	· · · · · · · · · · · · · · · · · · ·	1 - 7941 (4.9
** # #	ASHTON MINING LTD. MERLIN PROJECT ACCESS ROAD	
TATALANDER SVIII	COMPILATION PLAN AND SURVEY DATA	
body and only by and to Southeden	A1 No. 19212-C02	Rav A

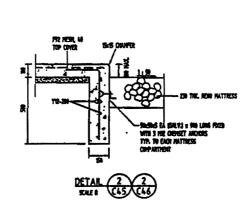


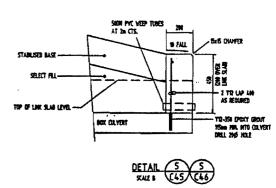

PLAN

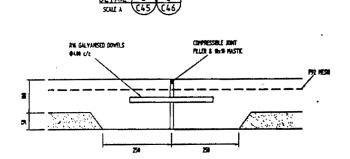



LONGITUDINAL SECTION


H						20 F 20	GH	Gutteridge Haskins & Davey Pty Ltd	M STAR	ASHTON MINING LTD. MERLIN PROJECT ACCESS ROAD
			寸							PLAN AND LONGITUDINAL SECTION CH 21000 - 22500
4	POR TOUCH PARMESS ONLY Revision: — series on Crist do not series to hand	Englesor)oto	M/FRm	Change yes to.		uli Stroet, Dernis N7 0000 n ICAS 0001002 - Possindo ICAS 00011075		A1 No. 19212-C17







Z36 THC RENG HATTRESSES

I M 25 FALL HAY.

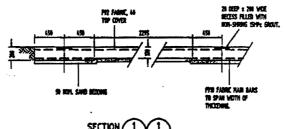
SW IDF.

WAT ITYPJ

HAR BARS THES

HORTAR BED IN

21 DEEP SECESS (TYP.)


44 TOP COYER

FINE HESH HAIN BARS

32 HPM STRENGTH ALL SITE CONCRETE

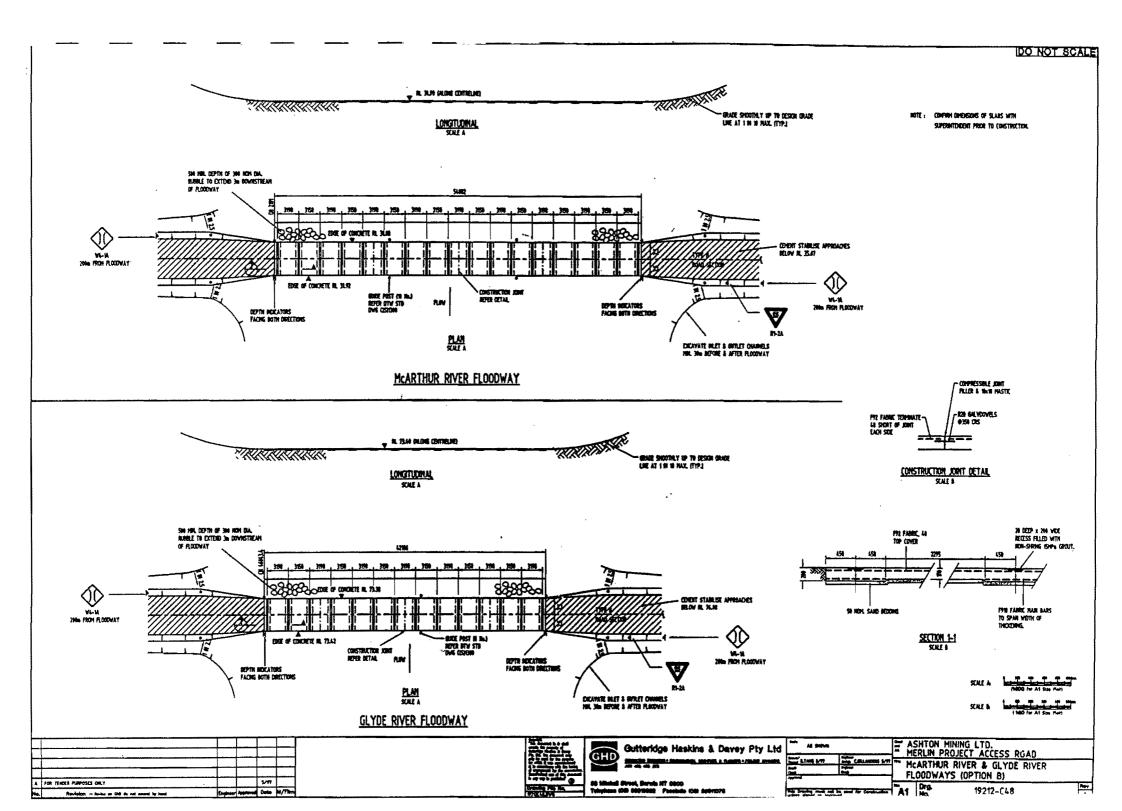
THOODING 44 COYER TIP.

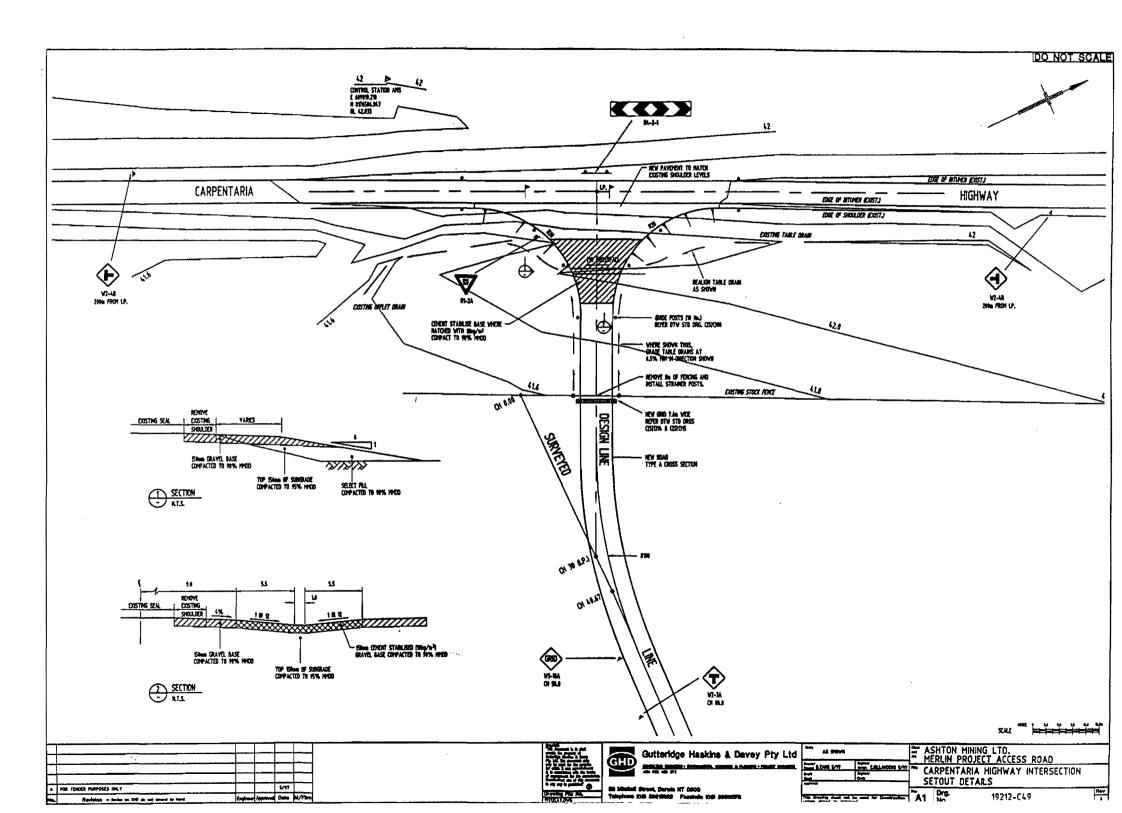
TO SPAIL WIDTH OF

CONSTRUCTION JOINT (TYP.)


A POR TEXER PURPOSES DRLY SV77

No. Revision - Area on CID as not amond to have Chyber Reprinted Data M/Pinn


CULVERT -


SH HOM, SAND BEDONG

5	Al STANK			ASHTON MERLIN	MINING PROJECT	LTD. ACCESS F	ROAD	
	6.7ME 5/97	CALLMONS S/TI	-	CULVER1	DETAIL	S		
	14 Dept. 144 14 E	Carl No Brownson	A	Drg.		19212-047		Pev

APPENDIX D

Ashton Mining Limited

ACN 005 460 964

OCCUPATIONAL HEALTH AND SAFETY POLICY

Ashton is committed to establishing and maintaining the highest possible standards of

occupational health, safety and welfare for its employees. Emphasis is to be given to

the prevention of accidents, injury and occupational disease.

Management and supervisors at all levels should regard health and safety at the

workplace as one of their highest priorities. They have the prime responsibility for

ensuring that employees are given instruction on correct techniques for performing their

job; incorporating instruction on safe working practices and procedures, as well as

ensuring an awareness of all the hazards associated with their work.

Every employee has a responsibility for accident and injury prevention and will be

encouraged to actively participate in improving standards of workplace health and

safety.

Safety committees are to be established at the various workplaces throughout the

Company and management will regularly consult and co-operate with their groups of

employees on matters relating to workplace health and safety.

Our objective is to create a co-operative approach to improving occupational health and

safety. To be effective, it should be seen as a responsibility by all employees of

Ashton.

R. J. Robinson

Chief Executive and Managing Director

APPENDIX E

division of Cryston Holdings Pty Ltd. ACN 009 446-575

CERTIFICATE OF ANALYSIS

QUALITY SYSTEM CERTIFIED TO ISO 9002 WA/SA REGION

REGN. No. 6608

JOB No.: 970435

TESTING FACILITY: PERTH

CLIENT NAME

Ashton Mining Ltd

ADDRESS

PO Box 1068 Cloverdale

WA

6105

ATTENTION:

Michael Bohm - Project Manager - Merlin

FAX NO:

334 6480

ORDER NO:

9718

SAMPLED BY:

AS RECEIVED

TUMBER OF SAMPLES

DATE RECEIVED

21/02/97

IESSAGES

This certificate covers the analytical results for the above samples and comprises this release cover and the following pages.

MPL Value their Clients

For further interpretation of results or free advice on occupational and environmental issues do not hesitate to contact our specialists on (09) 3172505.

Approved Signatory 06/03/97

Environments are our business - To be outstanding is our mission

WA/NT Phone (09) 317 2505 Fax (09) 317 2368

SA Phone (08) 8443-8000 Fax (08) 8443-8003 ACT/NSW Phone (06) 288 2884 Fax (06) 287 1937

VIC Phone (03) 9315 1900 Fax (03) 9315 3711

division of Cryston Holdings Ptv Ltd. ACN 009 446-575

CERTIFICATE OF ANALYSIS

QUALITY SYSTEM CERTIFIED TO ISO 9002 WA/SA REGION

REGN. No. 6608

TESTING FACILITY: PERTH

CLIENT : Ashton Mining Ltd

' ATE RECEIVED: 21/02/97 JOB NO : 970435

MPLED BY : AS RECEIVED

TEST METHOD: Waters analysis in accordance with the procedures published by

the American Public Health Association (APHA, 1995), MPL

Laboratories WILAB 5.0

lab No. : M001

Client ID : Camp Bore - Sample A

20/02/97

	RECOMM. MAXIMUM	UNIT	ANALYSIS RESULT
Conductivity	780	uS/cm	[†] 457
TDS-Calculated	500	mg/L	295
Sodium	180	mg/L	78
Potassium	N/S	mg/L	19
Calcium	n/s	mg/L	<1
Magnesium	n/s	mg/L	6
Hardness [CaCO3]	200	mg/L	25
Aluminium (Total)		mg/L	<0.1
Iron (Total)	0.3	mg/L	<0.05
Carbonate	N/S	mg/L	<1
BiCarbonate	n/s	mg/L	18
Nitrate (as N)		mg/L	<1
Chloride	250	mg/L	92
Sulphate	250	mg/L	48
рн	6.5 - 8.5		6.65
Total Alkalinity-Calc		mg/L	15
Total Suspend Solids		mg/L	<1
Iron (Residue)		mg/L	<0.05
Aluminium (Residue)		mg/L	<0.10

The recommended Maximums are taken from "Australian Drinking Water idelines" published by NHMRC and ARMC 1996.

/S = No Specified Maximum

This report geplaces report previously issued 05/03/97

Page 1 of 8

Approved Signatory 05/03/97

03/03/97

Environments are our business - To be outstanding is our mission

division of Cryston Holdings Pty Ltd. ACN 009-446-575

CERTIFICATE OF ANALYSIS

OUALITY SYSTEM CERTIFIED TO ISO 9002 WA/SA REGION

REGN. No. 6608

JOB NO: 970435

TESTING FACILITY: PERTH

CLIENT

: Ashton Mining Ltd

YTE RECEIVED: 21/02/97

MPLED BY

: AS RECEIVED

TEST METHOD: Waters analysis in accordance with the procedures published by

the American Public Health Association (APHA, 1995), MPL

Laboratories WILAB 5.0

Lab No.

: M002

Client ID : Camp Bore - Sample B

20/02/97

	RECOMM.		UNIT	ANALYSIS RESULT
Conductivity	780	.649	uS/cm	450
TDS-Calculated	500		mg/L	290
Sodium	180		mg/L	77
Potassium	N/S		mg/L	19
Calcium	N/S		mg/L	<1
Magnesium	n/s		mg/L	6
Hardness [CaCO3]	200		mg/L	25
Aluminium (Total)			mg/L	<0.1
Iron (Total)	0.3		mg/L	<0.05
Carbonate	n/s		mg/L	<1
BiCarbonate	n/s		mg/L	21
Nitrate (as N)			mg/L	<1
Chloride	250		mg/L	94
Sulphate	250		mg/L	46
рн	6.5 - 8.5			6.62
Total Alkalinity-Calc			mg/L	18
Total Suspend Solids			mg/L	<1
Iron (Residue)			mg/L	<0.05
Aluminium (Residue)			mg/L	<0.1

The recommended Maximums are taken from "Australian Drinking Water lidelines" published by NHMRC and ARMC 1996.

/S = No Specified Maximum

report replaces report previously issued 05/03/97

Page

05/03/97 Environments are our business - To be outstanding is our mission

WA/NT Phone (09) 317 2505 Fax (09) 317 2368

Phone (08) 8443 8000 Fax (08) 8443 8003

ACT/NSW Phone (06) 288 2884 Fax (06) 287 1937

Phone (03) 9315 1900 Fax (03) 9315 3711

division of Cryston Holdings Pty Ltd. ACN 009-446-575

CERTIFICATE OF ANALYSIS

OUALITY SYSTEM CERTIFIED TO ISO 9002 WA/SA REGION

REGN. No. 6608

JOB NO: 970435

TESTING FACILITY: PERTH

CLIENT

: Ashton Mining Ltd

ATE RECEIVED: 21/02/97

MPLED BY

: AS RECEIVED

TEST METHOD: Results determined by Inductively Coupled Plasma (ICP) Optical

Emission Spectrometry (OES) and Mass Spectrometry (MS).

Lab No.

: M001

Client ID : Camp Bore Sample A

20/02/97

ANALYTE	RESULT	UNIT
Copper	<0.02	mg/L
Lead	<0.05	mg/L
Zinc	0.02	mg/L
Cobalt	<0.02	mg/L
Nickel	<0.02	mg/L
Arsenic	<0.01	mg/L
Boron	0.04	mg/L
Silver	<0.01	mg/L
Chromium	< <u>0.02</u>	mg/L
Barium	0.30	mg/L
Berylium	<0.01	mg/L
Bismuth	<0.01	mg/L
Cadmium	<0.1	mg/L
Gallium	<0.01	mg/L
Germanium	<0.1	mg/L
Lithium	<0.01	mg/L
Manganese	<0.02	mg/L
Molybdenum	<0.01	mg/L
Phosphorous	1.0	mg/L
Antimony	<0.01	mg/L
Scandium	<0.02	mg/L
Tin	<0.1	mg/L
Strontium	0.03	mg/L

Environments are our business - To be outstanding is our mission

division of Cryston Holdings Ptv Ltd. ACN 009 446 575

CERTIFICATE OF ANALYSIS

QUALITY SYSTEM CERTIFIED TO ISO 9002 WA/SA REGION

REGN. No. 6608

TESTING FACILITY: PERTH

CLIENT

: Ashton Mining Ltd

ATE RECEIVED: 21/02/97

AMPLED BY : AS RECEIVED

JOB NO: 970435

TEST METHOD: Results determined by Inductively Coupled Plasma (ICP) Optical

Emission Spectrometry (OES) and Mass Spectrometry (MS).

Lab No.

: M001

Client ID : Camp Bore Sample A

20/02/97

ANALYTE	RESULT	UNIT
Vanadium	<0.02	mg/L
Tungsten	<0.01	mg/L
Tantalum	<0.005	mg/L
Yttrium	<0.01	mg/L
Hafnium	<0.002	mg/L
Zirconium	<0.05	mg/L
Niobium	<0.01	mg/L
Lanthanum	<0.005	mg/L
Cerium	<0.005	mg/L
Praseodymium	<0.002	mg/L
Neodymium	<0.005	mg/L
Samarium	<0.005	mg/L
Europium	<0.002	mg/L
Gadolinium	<0.002	mg/L
Terbium	<0.002	mg/L
Dysprosium	<0.005	mg/L
Holmium	<0.002	mg/L
Erbium	<0.005	mg/L
Thulium	<0.002	mg/L
Ytterbium	<0.005	mg/L
Lutetium	<0.002	mg/L
Thorium	<0.00 5	mg/L
Uranium	<0.005	mg/L
Selenium	<0.1	mg/L

Signatory

Environments are our business - To be outstanding is our mission

of 8

division of Cryston Holdings Pty Ltd. ACN 009 446-575

CERTIFICATE OF ANALYSIS

QUALITY SYSTEM **CERTIFIED TO** ISO 9002 WA/SA REGION

REGN. No. 6608

JOB NO: 970435

TESTING FACILITY: PERTH

CLIENT

: Ashton Mining Ltd

THE RECEIVED: 21/02/97

MPLED BY

: AS RECEIVED

TEST METHOD: Results determined by Inductively Coupled Plasma (ICP) Optical

Emission Spectrometry (OES) and Mass Spectrometry (MS).

Lab No.

: M001

Client ID : Camp Bore Sample A

20/02/97

ANALYTE	RESULT	UNIT
Rubidium	0.032	mg/L
Indium	<0.001	mg/L
Tellurium	<0.02	mg/L
Caesium	<0.005	mg/L
Rhenium	<0.01	mg/L
Thallium	<0.005	mg/L
Silicon	18	mg/L
Iron	<0.02	mg/L
Aluminium	<0.05	mg/L
Calcium	1.4	mg/L
Magnesium	8.7	mg/L
Titanium	<0.05	mg/L
Sodium	67	mg/L
Potassium	12	mg/L
Sulphur	17	mg/L

Environments are our business - To be outstanding is our mission

division of Cryston Holdings Pty Ltd. ACN 009-446-575

CERTIFICATE OF ANALYSIS

QUALITY SYSTEM CERTIFIED TO ISO 9002 WA/SA REGION

REGN. No. 6608

TESTING FACILITY: PERTH

CLIENT : Ashton Mining Ltd

ATE RECEIVED: 21/02/97 JOB NO : 970435

AMPLED BY : AS RECEIVED

TRIED: Results determined by Inductively Coupled Plasma (ICP) Optical

Emission Spectrometry (OES) and Mass Spectrometry (MS).

Lab No. : M002

Client ID : Camp Bore - Sample B

20/02/97

ANALYTE	RESULT	UNIT
Copper	<0.02	mg/L
Lead	<0.05	mg/L
Zinc	0.02	mg/L
Cobalt	<0.02	mg/L
Nickel	<0.02	mg/L
Arsenic	<0.01	mg/L
Boron	0.04	mg/L
Silver	<0.01	mg/L
Chromium	<0.02	mg/L
Barium	0.30	mg/L
Berylium	<0.01	mg/L
Bismuth	<0.01	mg/L
Cadmium	<0.1	mg/L
Gallium	<0.01	mg/L
Germanium	<0.1	mg/L
Lithium	<0.01	mg/L
Manganese	<0.02	mg/L
Molybdenum	<0.01	mg/L
Phosphorous	<0.5	mg/L
Antimony	<0.01	mg/L
Scandium	<0.02	mg/L
Tin	<0.1	mg/L
Strontium	0.03	mg/L

Page 6 of 8

Approved Signatory

Environments are our business - To be outstanding is our mission

division of Cryston Holdings Pty Ltd. ACN 009 446 575

CERTIFICATE OF ANALYSIS

QUALITY SYSTEM CERTIFIED TO ISO 9002 WA/SA REGION

REGN. No. 6608

JOB NO: 970435

TESTING FACILITY: PERTH

CLIENT : Ashton Mining Ltd

1 ATE RECEIVED: 21/02/97

: AS RECEIVED MPLED BY

TEST METHOD: Results determined by Inductively Coupled Plasma (ICP) Optical

Emission Spectrometry (OES) and Mass Spectrometry (MS).

RESULT

UNIT

Lab No. : M002

ANALYTE

Client ID : Camp Bore - Sample B

20/02/97

KESCHI	OIVII
<0.02	mg/L
<0.01	mg/L
<0.005	mg/L
<0.01	mg/L
<0.002	mg/L
<0.05	mg/L
<0.01	mg/L
<0.005	mg/L
<0.005	mg/L
<0.002	mg/L
<0.005	mg/L
<0.005	mg/L
<0.002	mg/L
<0.002	mg/L
<0.002	mg/L
<0.005	mg/L
<0.002	mg/L
<0.005	mg/L
<0.002	mg/L
<0.005	mg/L
<0.002	mg/L
<0.005	mg/L
<0.005	mg/L
<0.1	mg/L
	<0.02 <0.01 <0.005 <0.01 <0.005 <0.005 <0.005 <0.005 <0.002 <0.005 <0.002 <0.002 <0.002 <0.002 <0.002 <0.005 <0.002 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005

Approved Signatory

05/03/97

Environments are our business - To be outstanding is our mission

7 of

division of Cryston Holdings Pty Ltd. ACN 009 446-575

CERTIFICATE OF ANALYSIS

QUALITY SYSTEM CERTIFIED TO ISO 9002 WA/SA REGION

REGN. No. 6608

TESTING FACILITY: PERTH

CLIENT : Ashton Mining Ltd

ATE RECEIVED: 21/02/97 JOB NO : 970435

. AMPLED BY : AS RECEIVED

3ST METHOD: Results determined by Inductively Coupled Plasma (ICP) Optical

Emission Spectrometry (OES) and Mass Spectrometry (MS).

Lab No. : M002

Client ID : Camp Bore - Sample B

20/02/97

ANALYTE	RESULT	UNIT
Rubidium	0.034	mg/L
Indium	<0.001	mg/L
Tellurium	<0.02	mg/L
Caesium	<0.005	mg/L
Rhenium	<0.01	mg/L
Thallium	<0.005	mg/L
Silicon	17	mg/L
Iron	<0.02	mg/L
Aluminium	<0.05	mg/L
Calcium	1.5	mg/L
Magnesium	8.6	mg/L
Titanium	<0.05	mg/L
Sodium	66	mg/L
Potassium	13	mg/L
Sulphur	17	mg/L

Page 8 of 8

Approved Signatory

Environments are our business - To be outstanding is our mission

APPENDIX F

SITE	DATE		T	LATITUDE	LONGITUDE	RELEIF	SLOPE	TOP SOIL
						O very high > 300 m	DLE <1%	COLOUR
İ	ļ					□ high 90 - 300 m	D VE 1-3%	D whitish
	<u> </u>					D high 30 - 90 m	O GE 3-10%	Ω grayish
LOCALITY						0 very low 30 - 90 m	□ MO 10-32%	O mottled
İ						axtremely low <9 m	O ST 32-56%	O yellow
						- extrainery tow < 5 in		
							UVS 56-100%	O yellow/brown
<u></u>							O PR > 100%	D brown
STRUCTURAL	LEORMATION				ALTITUDE	SLOPE POSITION		1) foll
	. ,					O orest		() black
						□ ridge crest		
						O wax, upper slope		
		GHT CA			1	□ waning mid-stope □ simple stope	ASPECT O nil	TEXTURE . O clay
SPECIES	(LAYER)	%	Ηι	STR.	HEIGHT	□ waxing up-slope	O north	Clay loam
						Waxing up-stope		Clay loam
		ļ	ļ			□ max. lower slope	osouth	O sitt
						O min. mid-slopa	O east	O loam
						□ fist	D west	O sandy loam
						O open depression		O sandy
				l			•	(1) stony
						1		
				<u> </u>		4		
PRII	MARY GBH	,		OTHER G				<u> </u> В
SPEC	CIES	GBH	:	SPECIES	GBH			
								Ì
					İ			
								<u>.</u>
Ţ						LANDFORM ELEMENT	NOTES: (including any disturbances)	
		j				O bank O swamp		
	1					O beach O tidal flat		
		1				D beach ridge		
						O cliff footslope O dam		
						□ dam □ drainage depression		
PHOTOS						O duns	i	
						O footslops		
						O foredune		
						O gully		
						O Pillotest	i	
						D hillstope		
COLLECTION	NO:					C loves		
	1101					□ ox-bow		
						O plain		
						D scarp footslope	l	
						O stream bed		
						D swale		
						3.Mgi0		
				•		l	Į .	

.

	-	SITE:		SAMPLE		DATE		RECD'		MAP:		T	12	STEM DENSITY	T
VAI		2115:		SAMPLE	: :	DATE		RECD :) ;	mar:		<u> </u>	12	STEM DENSITY	BA
LOCAL	(17:			1		<u> </u>		<u> </u>				┼			ļ
LAT:		LONG:		LANDFO	AM.			s	LOPE	NBP	ALT	 		_	
				BIT	ELE	PIN		POS	CLASS	1					
		S	DIL \$					OE	OFOOA			1			
OBS.	REL.	CODE	ADD	P.P. FOR	M	OBS	REL	CODE		ADD	H.UNIT				
		<u> </u>													
TOP SOL	TEX														
	1	<u></u>		_		1									<u> </u>
DISTUR	RANCE			51	EM DENSI	ITY	BA			OREST	T				<u> </u>
								COMP	LEAF	COMP	ORTH				
				<u> </u>			<u></u>		<u> L</u>	<u> </u>	<u></u>		13	STEM DENSITY	BA
BAW	<u> </u>							PHU		PHOTO	PTN				ļ
5															
E IIT	11		13		TO		51		52		Q	<u> </u>			
											<u> </u>				
E PCC	71		1.5		13		51		52		9		81	STEM DENSITY	BA
	<u> </u>		<u> </u>				<u> </u>		<u></u>		<u></u>				
A \$ 5 0 C															
							r				T				ļ
EMERG	£741							3 EM	DENSITY		BA	<u> </u>			
											 	ļ		*****	<u> </u>
											-				
								-				 			
11								A TEM	DENSITY		BA				
							<u> </u>				+==				
											 	├			
••••							<u> </u>				<u> </u>	 			
											<u> </u>				
						-					ļ		82	ATEM DENSITY	BA
											ļ				
			_												
							<u> </u>				-				
												L			
										···				· ·	

SPECIES		1	2	3	4	5		PROFILE & NOTES		·					
												+			
															į
								SPECIES	T	1	2	3	4	5	П
	\vdash														$\vdash \vdash \vdash$
									-				-	-	
										 			 		
			_						1				ı——		
		-								ļ					
		 							-				ı		-
													i		
	-	 	-												
			-		\dashv										
	\vdash									 			 		
		 - 		_					 	<u> </u>			 		-
							—			ļ		-			
															
		├── ├													i[
													\dashv		
													 -		
LITTER												-	-		
TOTAL															

. .

Description:								Description:						
Site # :	l) ate	:		GPS Location:				Site #: Date:			GPS Location:			
Altitude:				Photo #:				Altitude:			Photo #:			
Aspect:				Topsoil Color:				Aspect:			Topsoil Color:			
Slope:				Topsoil Texture:				Slope:			Topsoil Texture:			
Slope Position: Disturbances:				Landform:				Slope Position:			Landform:			
Disturbances:								Disturbances:						
Layer:		Heigh	ht:		CSR:			Layer:	lleight	:	CSR:			
SPECIES	FM	Ħ	/ha	SPECI	ES FM	#	/ ha	SPECIES FM	# /	//ha	SPECIES	FM	H	# / ha
		<u> </u>												
			<u> </u>											İ
Layer:		Heigh	ht;		CSR:			Layer:	Height	:	CSR:			
SPECIES	FM	#	/ha	SPECI	ES FM	#	/ ha	SPECIES FM	#	/ha	SPECIES	FM	#	/ha
														i
Layer:		Heigh	ht:		CSR:			Layer:	lleight	:	CSR:			
SPECIES	FM	#	/ha	SPECI	ES FM	#	/ ha	SPECIES FM	#	/ha	SPECIES	FM	#	/ ha
														!
												T		

Key to Growth Form of Plant Species

EMe	=	Emergent tree; woody plant with a single stem within 2 metres of the ground; evergreen.
EMd	=	Emergent tree; woody plant with a single stem within 2 metres of the ground; diciduous.
TRe	=	Tree; woody plant with a single stem within 2 metres of the ground; evergreen.
TRd	=	Tree; woody plant with a single stem within 2 metres of the ground; diciduous.
PM	=	Plam; usually single stemmed woody plants with a tuft of feather or fan shaped leaves arising from the apex. From
• • • •		the family Araceae (true palms), Cycadaceae or Pandanaceae.
SHa	=	Shrub; woody plant with multiple stems arising within 2 metres of the base; annual.
SHpe	=	Shrub; woody perennial plant with multiple stesm arising within 2 metres of the base; evergreen, including leafless
•		plants.
SHpd	=	Shrub; woody perennial plant with multiple stems arising within 2 metres of the base; deciduous.
SHpaa	=	Shrub; woody perennial plant with multiple stems arising within 2 metres of the base; annual.
FOa	=	Forb; herbaceous or slightly woody plant; not a grass; annual.
FOpe	=	Forb; herbaceous or slightly woody plant; not a grass; perennial, evergreen.
FOpaa	=	Forb; herbaceous or slightly woody plant; not a grass; perennial with annual aerial parts.
CLa	=	Climber/Vine; climbing, twining or sprawling plant, usually with a woody stem; annual.
CLpe	=	Climber/Vine; climbing, twining or sprawing plant, usually with a woody stem; perennial, evergreen.
CLpd	=	Climber/Vine; climbing, twining or sprawling plant, usually with a woody stem; perennial, deciduous.
CLpaa	=	Climber/Vine; climbing, twining or sprawling plant, usually with a woody stem; perennial with annual aerial parts.
EP	=	Epiphyte; plants growing on another plant for support ect.
AQ	=	Aquatic; plants growing predominantly in water.
GRa	=	Grass; plants of the family Poaceae; annual.
GRp	=	Grass; plants of the family Poaceae; perennial.
SEa	=	Sedge; herbaceous plant normally with tufted habit and from the family Cyperaceae or Restionaceae; annual.
SEp	=	Sedge; herbaceous plant normally with tufted habit and from the family Cyperaceae or Restionaceae; perennial,
FEa	=	Fern; herbaceous plant usually with succulent feathery leaves from the Phylum Pteridophyta; annual.
FEpe	=	Fern; herbaceous plant usually with succulent feathery leaves from the Phylum Pteridophyta; perennial evergreen.
FEpaa	=	Fern; herbaceous plant usually with succulent feathery leaves from the Phylum Pteridophyta; perennial with annual
-		aerial parts.
PAr	=	Parasite; root.
PAa	=	Parasite; aerial.

Key to Landscape Descriptors

LAN	DFORM ELEMENT	\$LO	PE POSITION	TOP	SOIL	
•	Bank	•	Crest			
•	Beach	•	Ridge	Color	ur	
•	Beach ridge	•	Upper slope			
•	Cliff footslope	•	Mid-slope	•	Whitish	
•	Dam	•	Lower slope	•	Greyish	
•	Drainage Depression	•	Flat .	•	Mottled	
•	Dune	•	Open depression	•	Yellow	
•	Footslope		•	•	Yellow/Brown	
•	Foredune	SLO	PE	•	Brown	
•	Gully	•	LE <1%	•	Red	
•	Hillcrest	•	VE 1-3%	•	Black	
•	Hillslope	•	GE 3-10%			
•	Levee	•	MO 10-30%	Texti	ire	
•	Ox-bow	•	ST 30-55%			
•	Plain	•	VS 55-100%	•	Clay	
•	Scarp footslope	•	PR >100%	•	Clay loam	
•	Stream bed			•	\$at	
•	Swale	ASPE	cr	•	Loam	
		•	Nil	•	Sandy Loam	
REL	IEF	•	North	•	Sandy	
•	300m+	•	South	•	Gravelly	
•	100m+	•	East	•	Lateritic	
•	50m+	•	West	•	Stony	
•	10m+			•	Bare Rock	
•	10m-					

Key to Structural Classification of Vegetation Communities (after Walker & Hopkins, 1990).

Crown Separation	Touching Overlapping	Touching Slightly	Clearly Separated	Well Separated	Isolated Single	Isolated Clumps
(Crown Diameters Apart)	<0	0.0.25	0.25-1.0	1-20	>20	>20
Percentage Foliage Cover	>75	50-75	25-50	0.25-25	<0.25	<0.25
(T) Trees						
Over 35m	ETCF	ETOF	ETW	ETOW	EITI	ETICT
20-35m	VICF	VTOF	vrw	vtow	VIII	VIICI
12-20m	TCF	TOF	TW	TOW	πτ	TICT
6–12m	MHCF	мног	MHW	мном	мнгт	мніст
3-6m	LCF	LOF	LW	row	ш	ЦСТ
1-3m	DCF	DOF	wa	DOW	DTT	DICT
(S) Shrubs						
6–12m	ETCS	ETS	ETOS	ETSS	EIIS	ETICS
3-6m	VTCS	VTS	VTOS	VTSS	VTIS	VTICS
1–3m	TCS	TS	TOS	TSS	TIS	TICS
0.5-1m	MHCS	MHS	MHOS	MHSS	мніз	WHICS
0.26-0.5m	ıcs	LS	LOS	LSS	LIS	LICS
Under 0.25m	DCS	DS	DOS	DSS	DIS	DICS
(G) Grass						
3-6m	ETCG	ETG	ETOG	ETSG	ETIG	ETICG
1–3m	VTCG	VIG	VTOG	VTSG	ΛΙΊG	TICG
0.5-1m	TCG	TG	TOG	TSG	TIG	VIICG
0.26-0.5m	MHCG	мнс	мнос	мнѕс	MHIG	MHICG
Under 0.25m	LCG	re	rog	LSG	LIG	LICG

Abbreviations Used

Height		Densitie	3		
ET -	Extremely Tall	CF -	Closed Forest	os -	- Open Shrubland
VT -	Very Tall	OF ~	Open Forest	SS -	 Sparse Shrubland
T -	Tall	W -	Woodland	IS -	- Isolated Shrubs
MH -	Mid-High	ow -	Open Woodland	ICS -	 Isolated Clumps of Shrubs
L -	Low	Π -	Isolated Clumps of Trees	SG -	- Sparse grassland
		CS -	Closed Shrubland	IG ·	 Isolated Grass Tussocks
		S -	Shrubland	ICG ·	- Isolated Clumps of Grass Tussocks

APPENDIX G

LIBRARY NE DEL DE MINES & ENERGY

Family	Genera	Species	Common Name	Status	Mine	1	2	3	4	5	6	7	8	9	10	11	12	13	Smith (1996)
Acanthaceae	Dicliptera	arnhemica		Endemic	×		1		1	1	1		1	×	1	1		1	×
Aizoaceae	Trianthema	rhynchocalyptra	***************************************		×	1	1	1	1	1	1	•	*********		7	† <i></i>	×		×
Amaranthaceae	Achyranthes	aspera	Farmers Friend	Introduced	-		×	×	×	1	1	1	×	1	1	1		1	
Amaranthaceae	Altemanthera	denticulata	Lesser Joyweed		×						1			1	1			1	×
Amaranthaceae	Gomphrena	brachystylis			×				1	1	1			1	 		×	×	×
Amaranthaceae	Gomphrena	flaccida	Gomphrena Weed		***********	1	*********	·	1	1	1	İ'''''	1	†	†****			†	×
Amaranthaceae	Ptilotus	fusiformis			×	1	1	1	1	1	×	<u> </u>	1		-	 		1	×
Anacardiaceae	Buchanania	obovata	Green Plum		×	1		1	1	1	1	 	 	1	X	 		 	×
Asclepidaceae	Sarcostemma	viminale	Caustic Vine		×			1		1	 			×	1		×	 	×
Asteraceae	Bidens	bipinnata	Cobblers Pegs	Introduced		X	×	×		•	1	†	×	1	1	×		ļ	
Asteraceae	Blumea	saxatillis	***************************************		×			1		 	†		<u> </u>	 			×	 	× ×
Asteraceae	Pterocaulon	serrulatum			×			1	1	1	1	 	 				×	t	×
Asteraceae	Pterocaulon	sphacelatum	Apple Bush		×	†		†		 	 	 		×			×	 	×
Asteraceae	Xanthium	strumarium	Noogoora Burr	Introduced		×	×	×	×	†·····	ļ			†		••••		·····	
Bixiaceae	Chochlospermum	fraseri	Kapok Bush	Endemic		 		×			×			×				·	
Bixiaceae	Chochlospermum	gregorii	Kapok		×	<u> </u>	1	T	1		 	 	 	×			×		×
Boraginaceae	Heliotropium	sp. NMS 3771						 	1	<u> </u>		 					L		X
Boraginaceae	Heliotropium	sp. NMS 3772	***************************************		†		 	†	1		·····		 	! ********		•	*********		×
Boraginaceae	Trichodesma	zeylanicum	Cattle Bush	Introduced	×			†	1	ļ	 			ļ			X	×	×
Caesalpiniaceae	Chamaecrista	symonii						1	1		 							<u> </u>	×
Caesalpiniaceae	Erythrophleum	chlorostachys	Cooktown Ironwood		×	Х		×	×	×	×		 	×	×	х	×	×	×
Caesalpiniaceae	Lysiphyllum	cunninghamii	Bauhinia	***************************************		×	×	×	×	×	×	X	×	×			•••••		x
Caesalpiniaceae	Senna	notabilis		Introduced		X		X	1		1		×	1					
Caesalpiniaceae	Senna	venusta			×												X		×
Capparaceae	Cleome	cleomoides			×	×			×					×			X		×
Capparaceae	Cleome	viscosa	Tickweed	T	×			Х	×	·····			X	ļ		×	х		×
Caryophyllaceae	Polycarpaea	corymbosa			×				ļ		1		*********	×			********		×
Caryophyllaceae	Polycarpaea	multicaulis			х									×					×
Caryophyllaceae	Polycarpaea	spirostylis			×									×					×
Casuarinaceae	Casuarina	cunninghamiana	River Sheoak				×	ļ	1			*******					*********		
Combretaceae	Terminalia	bursarina						1	×										
Combretaceae	Terminalia	canescens			×	×	×	×	×	×	×	Х	×	×					×
Combretaceae	Terminalia	carpentariae			***************************************		×									×	*******		
Combretaceae	Terminalla	platyphylia		 			X	 			 					×			
Combretaceae	Terminalia	volucris	 			×	×	 	 	·	 								
Commelinaceae	Cartonema	parviflorum	<u> </u>		×					 								x	
Commelinaceae	Commelina	ensifolia						 	ļ			•••••				x			X
Commelinaceae	Murdannia	graminea	Blue Murdannia	···	×			 						 	×	-^-		×	X
Convolvulaceae	Bonamia	pannosa	LINE HUNGHING	-	×			×		- ×		 	х				×	×	X X
Convolvulaceae	Evolvulus	alsinoides	Riva parivinkla					- X -		<u>х</u>	×	×							, A
Convolvulaceae	Impomoea	nil	Blue periwinkle		×			····^					x	***********		*********			
Convolvulaceae	Merremia	sp. NMS 3773			·····^				·								<u> </u>		<u> </u>
Convolvulaceae	Polymeria	ambigua			×					×		ا						 	×
Cucurbitaceae	Citrillus	lanatus	Wild Melon		×			X	X			×	×				X	×	<u> </u>
Cucurbitaceae	Momordica	balsamina	Balsam Apple		<u>x</u>		•••••							×	x		**********		X
Cyperaceae	·		Daisaill Apple	-	X		×			×			x					 	X
	Bulbostylis	barbata	<u> </u>		^								_ ^_				×	×	X X
Cyperaceae	Cyperus	carinatus	1						L										Х

Family	Genera	Species	Common Name	Status	Mine	1	2	1 3	4	5	6	7	8	9	10	11	12	13	Smith (1996)
Cyperaceae	Cyperus	cunninghamii			×	 		1	 	1	 	 	 	×	<u> </u>	×		1	X
Cyperaceae	Cyperus	exaltatus	Glant Sedge	·t	* ×	 	†	†		· · · · · · · · · · · · · · · · · · ·	†	†	·	X			····	·····	×
Cyperaceae	Cyperus	holoschoenus			×	1	†	1	†	 	 	†						×	x
Cyperaceae	Cyperus	nervulosus			×	†	1	1		1	1	 	1		×			1	×
Cyperaceae	Cyperus	sp. NMS 3774			1		1	1	1	1	1		1					1	×
Cyperaceae	Frimbristylis	acicularis		••••	×	1	1	ļ	† 	1	1		†		********	X	İ	×	X
Cyperaceae	Frimbristylis	acuminata			×	1		1	1	1	1	i	1	×					×
Cyperaceae	Frimbristylis	mitiacea		Uncertain			1				1	 	1						x
Cyperaceae	Frimbristylis	rara			×		1	1		i		†	 				 	×	×
Cyperaceae	Frimbristylis	sp. NMS 3775	***************************************	***************************************	1		1	1	1		1	†		********					X
Cyperaceae	Frimbristylis	sp. NMS 3776		****	1		1	†			1	1							X
Cyperaceae	Frimbristylis	sp. NMS 3777			1		1	1				† — —							×
Cyperaceae	Frimbristylis	sphaeocephala					1	Ī	1	1	1	1	1					1	X
Cyperaceae	Frimbristylis	squarrulosa			×	<u> </u>	1		×	×		T	1	×	******	********	×	×	X
Cyperaceae	Frimbristylis	tetragona			×		1	T	1		1		1		х			х	×
Cyperaceae	Fuirena	ciliaris					T		T]		×				×
Cyperaceae	Rhynchospora	longisetis			×	T		Ī					1		×			×	×
Cyperaceae	Rhynchospora	sp. NMS 3778			1		1	Ī		·	1	1	1	*********		*******	**********	l	×
Cyperaceae	Scleria	rugosa			×		1				1				**********			×	×
Cyperaceae	Scleria	sp. NMS 3779																	×
Cyperaceae	Scleria	sp. NMS 3780				I			1										x
Dilleniaceae	Hibbertia	lepidota			х									X			×	×	
Dilleniaceae	Hibbertia	sp. NMS 3782																	×
Droseraceae	Drosera	indica	Indian Sundew		×					×								х	X
Droseraceae	Drosera	petiolaris	Woolly Sundew		×			<u> </u>		×				Х	X			×	x
Ebenaceae	Diospyros	humilis	Native Ebony		×									X	X				
Euphorbiaceae	Antidesma	ghesaembilla							×										
Euphorbiaceae	Antidesma	parvifolium			X				1					Х	х				x
Euphorbiaceae	Breynia	cernua	Coffee Bush		×				l						х	X		х	x
Euphorbiaceae	Briedelia	tomentosa			х										Х				×
Euphorbiaceae	Euphorbia	hirta	Asthma Plant	Introduced		Х	X						Х						×
Euphorbiaceae	Euphorbia	tannensis	Desert Spurge		X	<u> </u>					l								×
Euphorbiaceae	Euphorbia	vachelli			X			<u> </u>											X
Euphorbiaceae	Euphorbia	sp. NMS 3785						ļ											×
Euphorbiaceae	Excoecaria	parvifolia	Gutta Percha			X	x	×		×									
Euphorbiaceae	Flueggea	virosa	White Currant		X		×	×	×	×		×			X	X		×	X
Euphorbiaceae	Glochidion	xerocarpum	Buttonwood	*******************	X		.,	<u> </u>	ļ						X	*******			X
Euphorbiaceae	Macaranga	tanarius	Macaranga		×	×				<u> </u>					×				×
Euphorbiaceae	Petalostigma	pubescens	Quinine Tree			×		×	×	X									
Euphorbiaceae	Petalostigma	quadriloculare	Quinine Bush	_	×	ļ	ļ	×		ļ	ļ	X		X			X	X	<u>x</u>
Euphorbiaceae	Phyllanthus	sp. a.			хх			ļ			ļ						x		x
Euphorbiaceae	Phyllanthus	sp. NMS 3782			 	ļ	ļ	ļ	ļ	ļ	ļ	ļ							
Euphorbiaceae	Sauropus	sp. a.			×	ļ	ļ				ļ							×	
Euphorbiaceae	Sauropus	sp. NMS 3783									ļ								х
Euphorbiaceae	Sauropus	sp. NMS 3784					ļ		ļ				ļ						x
Fabaceae	Abrus	precatorius	Crab's-eye		×		X	<u> </u>	X	×				×	×			X	x
Fabaceae	Aeschynomene	indica	Budda Pea		×										×				X

Family	Genera	Species	Common Name	Status	Mine	1	2	1 3	4	6	6	. 7	8	9	10	11	12	13	Smlth (1996)
Fabaceae	Bossiaea	bossiaeoides	Bossiaea		X	1	1	1	 	×	1	 	 	×	 		×	X	X
Fabaceae	Crotalaria	medicaginea	Trefoil Rattlepod	•••	×		1	×		·····	·····	* ×	×	 	 	********		ļ	×
Fabaceae	Crotalaria	novae-hollandae		··	1	X	 	X	· 	·	×	 	×	 	 				×
Fabaceae	Crotalaria	sp. NMS 3786			-	 ^	 	† ^-	 	 	 ^	 	 ^ -	 	 		ļ	-	
Fabaceae	Desmodium	filiforme			1 ×	 	+	 	 	 	 			 	 		×		X
Fabaceae	Desmodium	trichostachyum	•••••	• • • • • • • • • • • • • • • • • • • •	1	†	· 	······	 	********	ļ		 				********	ļ	×
Fabaceae	Glycine	sp. NMS 3787			 	 	 	-	 	 	·			 	 		X	-	<u> </u>
Fabaceae	Gompholobium	subulatum			×		 	+	 	-	 	 	├	-	 				X
Fabaceae	Indigofera				×		 	 	 	 	 	 	 	 	ļ			×	X
Fabaceae	Indigofera	haplophylla hirsuta	Hairy Indigo		••••••	ļ	 	†	· 		ļ	į		X		********	********		x
Fabaceae	Jacksonia	dilatata	Cladode Pea		X	 	 	 	 	 	 	 	 	×	 		X		Х
Fabaceae	Jacksonia	odontociada	CladOle Fea		×	 	 		 	├	 	 		 			X	X	X
Fabaceae	Sesbania	benthamiana	Sesbania Pea		+ ^	 	 	 	 	 	 	X	 	X			×	×	X
Fabaceae	Stylosanthes	hamata	Stylo				ļ	ļ <u>.</u>				ļ <u>.</u>				********			x
Fabaceae	Templetonia	hookeri	Templetonia		 	-	 	 ×	 	-	 	×	X		ļ	**********	×		
Fabaceae	Tephrosia	A26284 "McArthur River"	rempletorid	 	X	 	 	×	 	×	 	×	 	-	ļ			X	<u> </u>
Fabaceae	Tephrosia	brachydon			 	 	 	├	 	 				<u> </u>					X
Fabaceae	Tephrosia	delestangii			x	ļ	········		ļ	ļ	ļ			×			X		X
Fabaceae	Tephrosia	flammea	····		×	ļ	ļ	ļ	ļ					×					*********
Fabaceae	Tephrosia	phaeosperma					 	 	 	×		 		<u> </u>					
Fabaceae	Tephrosia	rosea	Flinder's River Poison		X	 	 	├	ļ				ļ	X					X
Fabaceae	Tephrosia	simplicifolia	Trillage a triver r oldori					ļ			·		ļ	х			х	ļ	x
Fabaceae	Tephrosia	spechtii			X		 -		 		├─				ļ		X	ļl	X
					×		 		 					X				<u> </u>	X
Fabaceae	Vigna	lanceolata					x	<u>X</u>	X	X			ļ			X			***************************************
Fabaceae	Zornia Zornia	muelleriana			×				ļ									×	X
Fabaceae		nervata			<u> </u>		ļ	<u>×</u> _	ļ	X	ļ	X	X				X	×	******************************
Flagellariaceae	Flagellaria	indica	Water Vine		_	<u> </u>	ļ	 	ļ	<u></u>						X			×
Goodeniaceae	Goodenia	redacta			×		ļ	ļ	ļ					<u> </u>				×	X
Goodeniaceae	Goodenia	sp. NMS 3788						ļ					ļ						X
Goodeniaceae	Lechenaultia	filiformis			×		<u> </u>	ļ	ļ					X			X		X
Goodeniaceae	Scaevola	revoluta			ļ		ļ		ļ	<u> </u>									X
Haemodoraceae	Haemodorum	brevicaule			ļ	ļ			<u> </u>	<u> </u>		L		X					X
Haemodoraceae	Haemodorum	coccineum	Blood Root		X							X					X		<u> </u>
Halagoraceae	Gonocarpus	leptothecus	,,,,		X				ļ					 				×	X
Hemionitidaceae	Platyzoma	microphyllum		_	<u>i</u> ×		ļ	<u> </u>						X			X	X	X
Hemandiaceae	Gyrocarpus	americanis	Shitwood				<u> </u>	X	ļ	X									
Lamiaceae	Anisomeles	malabarica			X	<u> </u>		İ						x				<u> </u>	X
Lamiaceae	Hyptis	suaveolens	Hyptis			<u> </u>	×	<u> </u>	×					<u> </u>		X			X
Lauraceae	Cassytha	filiformis	Dodder Laurel		X	X	Ļ	X		X	X	X	X	X	×		X	×	X
Lecythidaceae	Barringtonia	acutangula	Freshwater Mangrove				×												*************
Lecythidaceae	Planchonia	сагеуа	Cocky Apple			x	X	×	x	x				X		X			************
Liliaceae	Crinium	angustifolium	Onion Lilly		X		ļ		ļ						Х				X
Liliaceae	lphìgenia	indica		1	X		ļ										X	I	X
Loganiaceae	Mitrasacme	connata			×									Х.	×				×
Loranthaceae	Amyema	bifurcata			X					*******			*******		i		X	Ţ	XX
Loranthaceae	Lysiana	spathulata			×												×		X
Malvaceae	Abelmoschus	moschatus	Native Rosella			×		Х		×									

Family	Genera	Species	Common Name	Status	Mine	1	2	3	1 4	5	2	1 7	8	9	10	11	12	13	Smith (1996)
Malvaceae	Gossypium	australe	Native Cotton	0.0.03	1000110	 ;	 	<u> </u>	 - -	×	<u> </u>	 	 ° -		 '``	 '- -	 '-		311101 (1330)
Malvaceae	Hibiscus	leptocladus		·	× ×	ļ?		× ×			†	 	+	x	 		×	×	×
Malvaceae	Hibiscus	setulosis		·	 		 		 	1-	 	 	 		 		×		×
Malvaceae	Hibiscus	sturtii	<u> </u>	Rare	×	 	 	 	 	 	 	 	 	×	 		<u> </u>	 	
Malvaceae	Hibiscus	zonatus		Endemic		1	 	×	 	1	┼──	 	 		┼	 	×	 	
Malvaceae	Sida	cordifolia	Flannel Weed	Introduced	X	* ×	×	<u></u>	× ×	×	× ×		×	·····	·····		<u></u>	× ×	X
Malvaceae	Sida	macropoda		1	×	 	 	- `` -	 	 	×		 		 	 	 	×	
Malvaceae	Sida	rhombifolia	Flannel Weed	Introduced	×	×	×	×	×	×	 	t	×		 		×	×	
Malvaceae	Sida	sp. NMS 3789			1		 	 	 		 	 	 					 ^	×
Malvaceae	Sida	subspicata	***********************************	***************************************	† ·····			†		· ·····	×	†	×		†		×	×	
Malvaceae	Sida	virgata			×	ļ	1	×	†***********	 	1 	<u>†</u>	×		†	f	- - x	 	
Meliaceae	Owenia	vernicosa	Emu Apple		×	1	1	X	1	 	×	 	 	×	†		×	 	×
Menispermaceae	Tinospora	smilacina	Snake Vine		×				×	 		×	 		×	 		-	
Mimosaceae	Acacia	alleniana		•	X	†		·····	·····	†····	**********	X	·	х		· <i></i>	×	×	X
Mimosaceae	Acacia	chippendalei		 	×	 		 	1	1	†	×	1	· · · · · ·			×		x
Mimosaceae	Acacia	dimidiata			×	1				 	 	×	 				×	×	×
Mimosaceae	Acacia	drepanocarpa			×	·	1		 	 	1	×	 				×	X	X
Mimosaceae	Acacia	dunnii	Elephants Ear Wattle	1	× ×	ļ			·····		1	×	·····	Х	ļ		х	Х	
Mimosaceae	Acacia	galioides		Endemic	×		1		†	 	!	×	†	X			×		
Mimosaceae	Acacia	gonocarpa	***************************************		×				1	1	 	×							×
Mimosaceae	Acacia	hammondii		1	×					1		X		X			x	х	X
Mimosaceae	Acacia	holosericea	Candelabra Wattle	********	×	*******		********		†	······	×		X			x	×	×
Mimosaceae	Acacia	latifolia		<u> </u>	X		1		1	1		X							×
Mimosaceae	Acacia	mallociada			×					1		×							×
Mimosaceae	Acacia	orthocarpa						х		i		×				h			
Mimosaceae	Acacia	platycarpa		************************************						1		Х		*********			********		X
Mimosaceae	Acacia	plectocarpa	1		X					1		×							×
Mirnosaceae	Acacia	stipuligera			×							х							×
Mimosaceae	Acacia	torulosa			×					1		×					X		×
Mimosaceae	Acacia (affin)	gonocarpa		1					1	1		X							·*************************************
Mimosaceae	Acacia (affin.)	mallociada										X		.,		-			
Mimosaceae	Leucaena	leucocephala	Leucaena	Introduced		Х	×												x
Mimosaceae	Neptunia	monosperma	Native Sensitive Plant			×													×
Moraceae	Ficus	coronulata	Creek Fig				×		X							X			
Moraceae	Ficus	leucotricha	Rock Fig								X				×	×			x
Moraceae	Ficus	opposita	Sandpaper Fig												×			x	x
Moraceae	Ficus	virens	Banyan												×				x
Myrtaceae	Asteromyrtus	symphyocarpa	Liniment Tree		×													×	X
Myrtaceae	Calytrix	achaeta									х								
Myrtaceae	Calytrix	exstipulata	Turkey Bush		X							X		X	Х		X	X	Х
Myrtaceae	Corymbia	aspera	Rough Leaved Ghost Gum		х			X	<u></u>	<u> </u>	x	X		X			X		x
Myrtaceae	Corymbia	confertiflora	Broad Leaved Carbeen				X	X	×	X									***************************************
Myrtaceae	Corymbia	dichromophloia	Small Fruited Bloodwood		Х			X		×	X	х		X			X	×	×
Myrtaceae	Corymbia	ferruginea	Rusty Bloodwood		×												X	X	×
Myrtaceae	Corymbia	grandifolia	Large Leaved Cabbage Gum	l		X	х	×	×	Х			X			X			
Myrtaceae	Corymbia	ptychocarpa	Swamp Bloodwood		х											,.,,,		Х	x
Myrtaceae	Corymbia	setosa	Rough Leaved Bloodwood	<u> </u>	X													х	X

Family	Genera	Species	Common Name	Status	Mine	1	2	3	4	6	6	7	8	9	10	11	12	13	Smith (1996)
Myrtaceae	Corymbia	terminalis	Desert Bloodwood			×		×	×	X	X	X	×		-	1	 		
Myrtaceae	Eucalyptus	camaldulensis	River Red Gum	· •	×		×	†	×	×	1	1			1	x	ļ		
Myrtaceae	Eucalyptus	herbertiana	Kalumburu Gum		×		1	×	1	1	×	1 x	×	X	×		×		×
Myrtaceae	Eucalyptus	microtheca	Coolibah		×	×	×	×	×	×			1	 	1	 		 	
Myrtaceae	Eucalyptus	miniata	Darwin Woollybutt	1	×		 	×	1	×	×	×	1	×	 	i	×	×	×
Myrtaceae	Eucalyptus	papuana	Ghost Gum		X	×	×	×	1 ×	1 ×	×	×	1	†····		!	ł:	† 	
Myrtaceae	Eucalyptus	tectifica	Darwin Box			×	1	X	X	×	×	X	×		†	 	 	 	
Myrtaceae	Eucalyptus	tetradonta	Darwin Stringybark		×		 	<u> </u>	 	1	 :	 	 " -		 	 	×	 	×
Myrtaceae	Lophostemon	grandiflorus	Swamp Mahogany	<u> </u>	1	×		<u> </u>	×	 	 	<u> </u>	 	 	 	·		 	ļ
Myrtaceae	Melaleuca	argentea	Silver Leaved Ti-tree	****************	************************		X	†	×	·	†····	<u> </u>	· 	ļ	†	×	********	†	***************************************
Myrtaceae	Melaleuca	leucadendra	Long Leaved Ti-tree		†		1 ×	†	×	 	†	†	 	 	 	×	 -	 	<u> </u>
Myrtaceae	Melaleuca	nervosa		1	×	×	×	×	×	×	 	 	t	 		×	×	×	×
Myrtaceae	Melaleuca	stenostachya		1	1			<u> </u>	<u> </u>	1	†	 	 		 		- ^ -		·····
Myrtaceae	Melaleuca	vindiflora	Broad Leaved Ti-tree		×	X	×	x	× ×	×	†····	×	†····	†	·····		×	х	×
Myrtaceae	Myrtella	A67473 "Cox River"		<u> </u>	 		l	 	† <u> </u>		 	 	1	1					× ×
Myrtaceae	Myrtella	retusa		1	×		 		 	1	 	 		×	†	<u> </u>	 	 	
Myrtaceae	Syzygium	eucalyptoides		† · · · · · · · · · · · · · · · · · · ·	 		 	 	×	 		 	 	 ^	 	x		 	<u> </u>
Myrtaceae	Verticordia	cunninghamii	Cunninghams Feather Flower		×		·····	•	×	×	·····	 		·····	······	x	*********		×
Myrtaceae	Xanthostemon	paradoxus		†	†·····				×	 	1	†	 	 	 			ļ	·····
Nymphaceae	Nymphaea	violacea	Water Lilly		×			 	1	 	1	 	 	 	×		 	 	×
Onagraceae	Ludwigia	hyssopifolia			×			 	×	 	 	 	 	 	×			×	
Onagraceae	Ludwigia	perennis	******		×	********			····:	†		 	†					x	x x
Opiliaceae	Opilia	amentacea						 	 	 	 	 	 		×			 	¥
Orchidaceae	Cymbidium	canaliculatum			 		×	<u> </u>	×	×	 		 		X			<u> </u>	
Pandanaceae	Pandanus	aquaticus	Creek Pandanus	<u> </u>					 	1	 		 						
Pandanaceae	Pandanus	spiralis	Screw Pine		·····	*********		********	·	!		†				×		×	×
Passifloraceae	Passiflora	foetida	Stinking Passionfruit	Introduced			×		×	 						X		 	×
Poaceae	Aristida	holathera	Erect Kerosene Grass		×				 	 		 	 	 			x	×	×
Poaceae	Cenchrus	echinatus	Mossman River Grass	Introduced	×			 		1		 					x		***************************************
Poaceae	Chloris	inflata	Purple Topped Rhodes Grass		x	********	*******	*******	·····	†		 	*******	·····	*******	********	x	x	X X
Poaceae	Chyrsopogon	fallax		 		×	×	×	 	<u> </u>	X	 	1						
Poaceae	Chyrsopogon	pallidus	Ribbon Grass		×			×		 	×		†			×		×	X
Poaceae	Cymbopogon	bombycinus	Silky Oilgrass		х				·	 		 	 	×					×
Poaceae	Cymbopogon	procerus	Lemon Grass	****************	×	*********	**********			!		•		X	·····	*********			×
Poaceae	Dactyloctenium	radulans	Button Grass	ļ	×		**********			†				····		*******	X	<u> </u>	x
Poaceae	Digitaria	bicornis	Hairy Finger Grass	Introduced	×				-	<u> </u>		×	×			×	X	Y	×
Poaceae	Echinochloa	colona	Awnless Barnyard Grass	Introduced		×	×	<u> </u>		<u> </u>							·		×
Poaceae	Ectrosia	leporina			************				×	t	·····		х		······		*********	х	
Poaceae	Ectrosia	schultzii	Hares Foot Grass	 	х			 -	1	†		<u> </u>				*********		×	×
Poaceae	Elytrophorus	spicatus			×					1					X				X
Poaceae	Enneapogon	pallidus	Conetop Nineawn		×				†	1							X	Х	X
Poaceae	Eragrostris	cumingii	Cummin's Lovegrass	†	х	********	*********		·····	······	·"·		******	*********		•••••	X	X	X
Poaceae	Eriachne	ciliata	Slender Wanderrie Grass	<u> </u>	Х	•••••	X	х		×				********			X	X	X
Poaceae	Eriachne	melicae	Wanderrie Grass						<u> </u>	<u> </u>									X
Poaceae	Eriachne	obtusa	Northern Wanderrie Grass		×					†							X	×	×
Poaceae	Eriachne	triseta	***************************************		х	********			·····	†		•			·	********		X	
Poaceae	Eulalia	aurea	Silky Browntop		×				×	×	-			X					×

Family	Genera	Species	Common Name	Status	Mine	1	2	3	4	6	6	7	8	9	10	11	12	13	Smlth (1996)
Poaceae	Germainia	grandiflora			×		1	1	1	1	1	1	1		×		1	1	×
Poaceae	Germainia	truncatiglumis		***************************************	1	***************************************	†······	†	1	1	†·····	†	********					1	x
Poaceae	Heterachne	quiliveri			1 x	 	1	1	 	†	†	<u> </u>	·		·			×	x
Poaceae	Heteropogon	contortus	Bunch Speargrass	<u> </u>	×	×	×	×	×	1 ×	×	×	·	×	 			1	X
Poaceae	Mnesithea	rottboellioides	Northern Canegrass		×	1	 ``		 	 	 	<u> </u>	 	×	 			 	×
Poaceae	Ophiuros	exaltatus	Cane Grass	***	· ·····	†	†	 	 	†				×			·····	†·····	×
Poaceae	Panicum	mindanaense			 	 	×	×	 	×	 	 		 	·			 	
Poaceae	Pennisetum	pedicellatum	Annual Pennisetum	Introduced	×	 	 ^ -	×	 	 -	ļ	 	×	-	 		×	 	×
Poaceae	Perotis	rara	Cornet Grass	- Introduced	 x	 	 	 ^	+	 	 	 	×	×				×	
Poaceae	Plectrachne	pungens	Soft Spinifex				 	†		×	x	x	····	^	x		x	^	×
Poaceae	Schizachyrium	fragile	Red Spathe Grass		 	ļ	 	 ^	 	 	 	 ^ -		-	·		*****	×	
Poaceae	Setaria	apiculata	Pidgeon Grass		+ ^	 	 	 ^- -	╂	+	 	 	 	 ^	 		X		X
Poaceae	Sorghum	sp. NMS 3790	- Rugeon Glass		 	 		 	 	 	 	 			 		X	×	<u> </u>
Poaceae	Sorghum	timorense			·	·		ļ <u>.</u>	····	ļ	ļ	ļ	·····		ļ			ļ <u>.</u>	X
				- 	- X	├	- ×	X	×	X					 -			X	×
Poaceae Poaceae	Sporobolus Themeda	pulchellus avenacea	Nation Catarana		X		×	 		 	 	 		×	X	×			×
			Native Oatgrass			 	ļ	×	-	×	 	 			ļ			ļ	X
Poaceae	Vetiveria Yakirra	elongata	Death Death			ļ	×	ļ	×	. 		ļ	ļ			×	********	ļ	X
Poaceae		australiensis	Bush Panic		<u> </u>	ļ	 	ļ	·	ļ	ļ	ļ	ļ	×	X		×	 	X
Polygalaceae	Polygala	longifolia			X	 	├	 		ļ	ļ			×	ļ			<u> </u>	
Polygalaceae	Polygala	sp. NMS 3791			 	ļ	ļ	 	 	ļ			<u> </u>	<u> </u>	ļ			ļ	X
Portulacaceae	Calandrinia	quadrivalvis	Lines Dies		×	ļ	ļ			ļ	ļ		ļ	ļ				X	X
Portulacaceae	Portulacca	bicolor	Heart Plant		××	ļ		X	ļ	X	-	 	ļ				×	×	X
Portulacaceae	Portulacca	pilosa	T		×	 	ļ		ļ		ļ				ļ		×	 	X
Proteaceae	Banksia	dentata	Tropical Banksia		 				X	×		 	ļ	<u> </u>				ļ	×
Proteaceae	Grevillea	dimidiata	Caustic Bush		ļ		×		ļ		×							ļ	
Proteaceae	Grevillea	dryandri	Dryander's Grevillea	Endemic	X	ļ		X		ļ	×	 		×	ļ		×	ļ	X
Proteaceae	Grevillea	heliosperma	Rock Grevillea		×	ļ	<u> </u>	 				 		×	ļ		×_	<u> </u>	×
Proteaceae	Grevillea	pteridifolia	Silver Leaf Grevillea		×			X	ļ	X				X			×_	X	×
Proteaceae	Grevillea	refracta	Fern Leaf Grevillea		х	ļ	ļ	Х		х	ļ			х		*******	×		x
Proteaceae	Grevillea	wickhamii			×				}	ļ							×		X
Proteaceae	Hakea	arborescens	Hakea		×	 	 	×	 	X			 					×	X
Proteaceae	Persoonia	falcata	Milky Plum		×			×	ļ	×	X	ļ	ļ	×			<u>×</u>	X	X
Proteaceae	Stenocarpus	acacioides			×	ļ		×	ļ	X	х	ļ		X		••••••	х	×	×
Rhamnaceae	Alphitonia	excelsa	Soap Tree		<u> </u>		ļ	 	ļ	ļ	ļ	 	ļ	X	×		*******	ļ	X
Rhamnaceae	Ventilago	viminalis	Supplejack		 	×	×	×	ļ	X			ļ					 	
Rubiaceae	Gardenia	sp. a					ļ	ļ	ļ	X		ļ						 	
Rubiaceae	Gardenia	sp. NMS 3793					ļ	ļ	ļ	ļ	ļ							ļ	x
Rubiaceae	Gardenia	sp.b	<u> </u>	ļ	<u> </u>	ļ		<u> </u>	<u> </u>			ļ			×				ļ
Rubiaceae	Nauclea	orientalis	Leichardt Pine				X		L		<u> </u>	ļ							
Rubiaceae	Oldenlandia	galioides			×				ļ	<u> </u>	ļ				ļ		×		×
Rubiaceae	Pavetta	brownii			x	ļ	ļ			x				X	х				X
Rubiaceae	Spermacoce	brachystema		_	X	ļ	ļ		ļ	ļ				X			X	×	
Rubiaceae	Spermacoce	brevifiora			×		ļ				L			×			×	X	
Rubiaceae	Spermacoce	sp. NMS 3793								L	<u> </u>								×
Rubiaceae	Spermacoce	sp. NMS 3794						ļ											x
Rutaceae	Boronia	affinus			X							X		X					X
Rutaceae	Boronia	lanceolata			×]						×		×				×	×

Family	Genera	Species	Common Name	Status	Mine	1	2	3	4	5	6	7	8	9	10	11	12	13	5mith (1996)
Rutaceae	Boronia	lanuginosa			×				1	1		X	1	×	1			×	
Santalaceae	Exocarpus	latifolius	Broad Leaved Cherry	1	×		1		1	''''''	1	†	1		1		х	1	× ×
Santalaceae	Santalum	lanceolatum	Sandalwood	<u> </u>	1	×	1	×	1	×	1	1	1		1			1	×
Sapindaceae	Atalaya	hemiglauca	Whitewood			×	×	×	×		×		1		1				
Sapindaceae	Cupaniopsis	anacardioides				1	×		1	†	†		1	1	T	×		!	
Sapindaceae	Distichostemon	hispidulus		<u> </u>	×	1	1		1	1	1	x	1	×	1	*********	×	×	×
Sapindaceae	Dodonaea	oxyptera				×		X	1									1	~~~
Sapindaceae	Dodonaea	physocarpa					×	х		X									
Sapindaceae	Dodonaea	platyptera					×		1					l	1		**********	1	
Sapotaceae	Pouteria	sericea		[×	T	T	Ī	×		1		1	X	×			1	×
Scrophulariaceae	Adenosma	muelleri			×	ļ	1			<u> </u>	1			х	×	***********			×
Scrophulariaceae	Buchnera	linearis			×							<u> </u>		×	1		×	-	×
Scrophulariaceae	Limnophila	fragrans				T	T			1	1	<u> </u>		×	×				X
Scrophulariaceae	Stemodia	lythrifolia	***************************************			†	1		1	1	1	ļ	1	Х		*******	•••••	•	, ************************************
Sinopteridaceae	Cheilanthes	brownii		 	×				1		1		1	х				×	
Sinopteridaceae	Cheilanthes	seiberi			×		1		1		<u> </u>			×			х	×	×
Sinopteridaceae	Cheilanthes	sp. NMS 3795			1	 			1	T	<u> </u>							<u> </u>	×
Solanaceae	Solanum	diocium	*************************************		×	·····	·····		1	1				х			×	l	x
Solanaceae	Solanum	sp. a						×	†		†					×		<u> </u>	
Solanaceae	Solanum	sp. NMS 3796	***************************************	***********		†	1		†·····	†		····			*******		*********	†	×
Stackhousiaceae	Stackhousia	intermedia			×		—		 		-	 						×	<u>x</u>
Sterculiaceae	Brachychiton	collinus	Sandstone Kurrajong		· · · · · · · · · · · · · · · · · · ·	·		 	†	i	×	 		×	×			1	
Sterculiaceae	Brachychiton	diversifolius	Northern Kurrajong		×	·		×	†	×	<u> </u>			×			x	 	×
Sterculiaceae	Brachychiton	paradoxus	***************************************		1			×	ļ	Х	×	•	*********			*******		ļ	
Sterculiaceae	Helicteres	isora	1		1	X	1		×	×	1						********	·	
Sterculiaceae	Melhania	oblongifolia				×			†										×
Stylidiaceae	Stylidium	sp. a	Trigger Plant				1		†	<u> </u>								 	
Taccaceae	Tacca	leontopetaloides	Polynesian Arrowroot			†	×	*********	×						×	********		†····	X
Thymeliaceae	Thecanthes	sanguinea	1		×				1	1								×	×
Tiliaceae	Corchorus	sidoides	**************************************		×	 	×		1	<u> </u>	×			×					×
Tiliaceae	Grewia	retusifolia	Dogs Balls		×		-	×	×	X	×			×			×	×	X
Tiliaceae	Triumfetta	plumigera		***************************************	×		1		1				**********			********	ж	ļ	x
Ulmaceae	Trema	tomentosa	Poison Peach	***************************************	×		1		1		1	·		Х	Х				X
Verbenaceae	Clerodendrum	floribundum	Lolly Bush		×				×	×				X	×				×
Verbenaceae	Premna	acuminata			×	1	 		×			<u> </u>			×	X			
Verbenaceae	Vitex	glabrata	Black Plum		X		 			1		i			X	********	********	•	×
Violocaeae	Hybanthus	enneaspermus	Spade Flower		×			х									×	х	
Vitaceae	Ampelocissus	acetosa	Wild Grape				×	×	×	×		<u> </u>					·····		
Vitaceae	Cayratia	trifolia	Native Grape		х		T		×	×	T								x
	. 	multiflora	······································		×	İ		X	1	×			********	*******	**********	**********	X	Х	×
Xyridaceae	Xyris	complanata	Hatpins		×	·			**********	i							×	х	×
Zygophyllaceae	Tribulopis	pentandra			×						х		×				х		×

APPENDIX H

TERRESTRIAL FAUNA OF THE MAIN MINE AREA

SC = Sandstone Scarp; CFW = Corymbia ferruginea Woodland; AHT = Acacia hammondil Thicket; Eucalyptus miniata Woodland OW = Open Woodland

Gen = General site records, recorded while travelling between sites; AS = Air Strip; Mar = Escarp and creeks on site margins; Cam = Merlin Camp Area M1 = Late Dry Season Survey Mine Area Sample Site.

X=Present at site; SL = Spot Light; PF = Pitfall Trap; ET = Elliot Trap; SK = Skeletal Remains/Skin; HS = Hair Sample from Scat; TR = Tracks UD = Ultra sonic Detection (ANABAT II Bat Detector); MN = Mist Net; HC = Hand Capture.

^{* =} species recorded by Smith (1998) but not recorded during late dry season surveys

		<u> </u>		LAT	E WET S	EASON	(Smith	1996)		=	LATE	ORY SE	ASON			
Conunon Name	Scientific Name	sc	CFW	THA	EMW	ow	Gen	AS	Mar	Camp	M1	M2	М3	M4	M5	Cam
AMPHIBIANS																
Family Myobatrachidae																
Ornate Burrowing Frog	Limnodynastes ornatus					2					l x					
Froglet	Crinia deserticola					_						Х				
Frog	Uperoleia inundata	1 1	1			1					×	X				
Frog	Uperoleia lithomoda	'	•			•					''	X				
Family Hylidae												••				
Tree Frog*	Cyclorana australis					1										
Green Tree Frog*	Litoria caerulea	6				•										
Saxicoline Tree Frog	Litoria coplandi											Х				
Tree Frog	Liloria meiriana											X				
Brown Tree Frog	Litoria rothil									3						Х
Tree Frog	Litoria tornieri		•	1						_		х				
Tree Frog	Liloria woljulumensis			•	4							X				
Family Bufonidae					•											
Cane Toad	Bufo marinus	1	1	1	1	1				Х	ĺ	Х				Х
TOTAL AMPHIBIANS =	12 species	3	2	2	2	4	0	0	1	2	2	8	0	0	0	2
REPTILES									,							
Family Gekkonidae																
Clawless Gecko	Crenadactylus ocellatus												PF			
Spiny-tailed Gecko	Diplodactylus ciliaris														PF	
Northern Dtella	Gehyra australis	1									x					
Marbled Velvet Gecko	Oedura marmorala										SL	х				
Zig Zag Gecko	Oedura rhombifer												PF(4)		PF(3)	
Beaked Gecko*	Rhynchoedura ornala		1										• • •		•	
Family Pygopodidae	•															
Burton's Legless Lizard*	Lialis burtonis	1														
Family Agamidae																
Ring-tailed Dragon	Ctenophorus caudicinctus	5									x			Х		
Dragon	Diporiphora bennetii											PF				

SC = Sandstone Scarp; CFW = Corymbia ferruginea Woodland; Al-T = Acacia hammondii Thicket; Eucalyptus miniata Woodland OW = Open Woodland

Gen = General site records, recorded while travelling between sites; AS = Air Strip; Mar = Escarp and creeks on site margins; Cam = Merlin Camp Area

M1 = Late Dry Season Survey Mine Area Sample Site.

X=Present at site; SL = Spot Light; PF = Pitfall Trap; ET = Elliot Trap; SK = Skeletal Remains/Skin; HS = Hair Sample from Scat; TR = Tracks

UD = Ultra sonic Detection (ANABAT II Bat Detector); MN = Mist Net; HC = Hand Capture.

* = species recorded by Smith (1998) but not recorded during late dry season surveys

		I		LAT	E WET S	EASON	(Smith	1996)	****		LATE D	RY SEA	SON			
Common Name	Scientific Name	sc	CFW	AHT	EMW	ow	Gen	AS	Mar	Camp	М1	M2	М3	M4	M5	Cam
Two-lined Dragon	Diporiphora C.F. bilineala					1						Х	,	Х		
Dragon	Diporiphora magna		1								PF(2)				Х	
Gilbert's Dragon	Lophognathus gilberti															Х
Family Varanidae											ļ					
Ridge-tailed Monitor	Varanus storri	1									l		EΤ			
Freckled Monitor	Varanus tristis												ET			
Family Scincidae																
Skink	Carlia amax										X	Х				
Skink	Carlia munda										x	X			Х	
Skink	Cryploblepharus plaglocephalus										X	Х				
Skink	Clenotus inornatus	1									1			Х		
Skink	Ctenotus pantherinus										İ			Х		
Skink	Ctenotus pulchellus	1 1									X				PF(3)	
Skink	Ctenotus striaticeps		1													
Skink	Lerista orientalis														Х	
Fire-tailed Skink*	Morelhia ruficauda	1														
Skink	Proablepharus tenuis	1									PF	PF				
Family Typhlopidae	·															
Blind Snake*	Rampholyphlops unguirosris				1											
Family Boldae																
Children's Python	Liasis childreni										1	Х				Х
Olive Python	Liasis olivaceus											Х				
Black-headed Python	Aspidiles melanocephalus			٠.							SL		SL			
Family Elapidae																
Gwardar	Pseudonaja nuchalis		1													Х
TOTAL REPTILES =	29 species	7	4	0	1	1	0	0	0	0	10	9	5	4	6	3
BIRDS																
Family Casuariidae																
Emu*	Dromaius novaehollandiae								Х							
Family Phasianidae																
unidentified Quail														Х		
Family Ardeidae																

SC = Sandstone Scarp; CFW = Corymbia terruginea Woodland; AHT = Acacia hammondii Thicket; Eucalyptus miniata Woodland OW = Open Woodland

Gen = General site records, recorded while travelling between sites; AS = Air Strip; Mar = Escarp and creeks on site margins; Cam = Merlin Camp Area M1 = Late Dry Season Survey Mine Area Sample Site.

X=Present at site; SL = Spot Light; PF = Pitfall Trap; ET = Elliot Trap; SK = Skeletal Remains/Skin; HS = Hair Sample from Scat; TR = Tracks

UD = Ultra sonic Detection (ANABAT II Bat Detector); MN = Mist Net; HC = Hand Capture.

" = species recorded by Smith (1996) but not recorded during late dry season surveys

		T		LAT	E WET S	EASON	(Smith	1996)			LATE	ORY SEA	SON			
Common Name	Scientific Name .	sc	CFW	AHT	EMW	ow	Gen	AS	Mar	Camp	М1	M2	мз	М4	M5	Cani
While-necked Heron	Ardea pacifica															
Family Accipitridae	·	Ì														
Black-breasted Buzzard	Hamirostra melanosternon			х												X
Black Kite	Milvus migrans									Х			Х		Х	Х
Brown Goshawk	Accipiter fasclatus															X
Wedge-tailed Eagle	Aquila audax															
Family Falconidae										•						
Australian Hobby*	Falco longipennis			X							ļ					
Nankeen Kestrel*	Falco cenchroides							Х								
Family Otidae		-									ĺ					
Australian Bustard	Ardeotis australis							Х		Х					Х	Х
Family Burhinidae											1					
Bush Stone-curlew	Burhinus grallarius										х			Х		х
Family Charadriidae	· ·															
Masked Lapwing	Vanellus miles									X						х
Family Columbidae		1								.,						
Common Bronzewing	Phaps chalcoptera							х			x	х				
Cresled Pigeon	Ochyphaps lopholes		х											Х		
Spinifex Pigeon	Geophaps plumifera		••							Х	x	х		X	Х	х
Diamond Dove	Geopelia cuneata			Х		х										
Peaceful Dove	Geopelia striata					•••			х			х	х	Х		
Family Cacatuidae	•															
Red-tailed Black-Cockaloo	Calyptorhynchus banksii											х				
Sulphur-crested Cockatoo*	Cacatua galerita								х							
Cockatiel*	Nymphicus hollandicus						х									
Family Paittacidae																
Varied Lorikeet*	Psitteuteles versicolor	X		х	Х											
Northern Rosella*	Platycerus venustus								Х							
Budgerigar*	Melopsittacus undulatus															
Family Cuculidae	•															
Black-eared Cuckoo	Chrysococcyx osculans													Х		
Channel-billed Cuckoo	Scythrops novaehollandiae												х	-		
Family Centropodidae																l
Pheasant Coucal*	Centropus phasianinus								х							ļ

SC = Sandstone Scarp; CFW = Corymbia ferruginea Woodland; AHT = Acacla hammondii Thicket; Eucalyptus miniata Woodland OW = Open Woodland

Gen = General site records, recorded while travelling between sites; AS = Air Strip; Mar = Escarp and creeks on site margins; Cam = Merlin Camp Area M1 = Late Dry Season Survey Mine Area Sample Site.

X=Present at sile; SL = Spot Light; PF = Pitfall Trap; ET = Elliot Trap; SK = Skeletal Remains/Skin; HS = Hair Sample from Scat; TR = Tracks UD = Ultra sonic Detection (ANABAT II Bat Detector); MN = Mist Net; HC = Hand Capture.

^{* =} species recorded by Smith (1996) but not recorded during late dry season surveys

				LAT	E WET S	EASON	(Smith	1996)			LATE	RY SEA	NOS			
Common Name	Scientific Name	sc	CFW	AHT	EMW	ow	Gen	AS	Mar	Camp	M1	M2	МЗ	M4	M5	Cam
Family Strigidae																
Southern Boobook Owl	Ninox novaeseelandiae	1									SL		SL		SL	
Family Tytonidae																
Barn Owl	Tylo alba													SL		
Family Podargidae	•															
Tawny Frogmouth*	Podargus strigoides	l x														
Family Caprimulgidae																
Spotted Nightjar*	Eurostopodus argus						Х									
Family Aegothelidae	· -										l					
Australian Owlet-nightjar*	Aegotheles cristatus						Х									
Family Halcyonidae	•															
Red-backed Kingfisher	Todiramphus pyrrhopygia	х	Х		х	х						Х		Х		
Family Meropidae	, .,										l x					
Rainbow Bee-eater	Merops ornatus										l x	Х		X	Х	
Family Coraciidae	•															
Dollarbird	Eurystomus orientalis										X					
Family Climacteridae	•										ĺ					
Black-tailed Treecreeper	Climacteris melanura			Х	X						х		Х		Х	
Family Maluridae																
Variegated Fairy-wren	Malurus lamberti			Х							X	Х				
Red-backed Fairy-wren	Malurus melanocephalus	1				х										Х
Family Pardalotidae	•															
Striated Pardalote	Pardolotus striatus										j			Х		
Weebill	Smicrornis brevirostris	l x			•						x	Х				
White-throated Gerygone	Gerygone olivacea								Х					Х		
Family Meliphagidae																
Spiny-cheeked Honeyeater	Acanthagenys rufogularis			Х							l					
Silver-crowned Friarbird	Philemon argenticeps	X	Х	Х	Х	х					x	Х	Х		Х	Х
Little Friarbird	Philemon citreogularis			Х	Х	х					l			х		
Blue-faced Honeyeater	Enlomyzon cyanolis			X										Х		
Yellow-throated Miner	Manorina flavigula						Х									
Singing Honeyeater	Lichenostomus virescens	х		х		х					}			Х		
White-gaped Honeyeater	Lichenostomus unicolor								X		х	Х	Х		Х	
Grey-fronted Honeyeater	Lichenostomus plumulus	X		Х	Х						X		Х	Х		

SC = Sandstone Scarp; CFW = Corymbia ferruginea Woodland; AHT = Acacia hammondii Thicket; Eucalyptus miniata Woodland OW = Open Woodland

Gen = General site records, recorded while travelling between sites; AS = Air Strip; Mar = Escarp and creeks on site margins; Cam = Merlin Camp Area M1 = Late Dry Season Survey Mine Area Sample Site.

X=Present at site; SL = Spot Light; PF = Pitfall Trap; ET = Elliot Trap; SK = Skeletal Remains/Skin; HS = Hair Sample from Scat; TR = Tracks
UD = Ultra sonic Detection (ANABAT II Bat Detector); MN = Mist Net; HC = Hand Capture.

* = species recorded by Smith (1998) but not recorded during late dry season surveys

		1		LATI	WETS	EASON	(Smith	1996)	****		LATE	ORY SEA	NOS		p	
Common Name	Scientific Name	sc	CFW	AHT	EMW	ow	Gen	AS	Mar	Camp	M1	M2	МЗ	M4	M5	Cam
Yellow-tinted Honeyeater	Lichenostomus flavescens								Х		X					
White-throated Honeyeater	Melithreptus albogularis	X														
Brown Honeyeater	Lichmera Indistincta	x		Х	Х	Х										
Bar-breasted Honeyeater	Ramsayornis fasciatus								X		X					Х
Rufous-throated Honeyeater	Conopophila rufogularis															
Banded Honeyeater	Certhionyx pectoralis															
Family Petrolcidae	• •															
Jacky Winter	Microeca fascinans		Х			Х					X		Х	Х		
Hooded Robin	Melanodryas cucullata													X		
Family Pomatostomidae																
Grey-crowned Babbler	Pomatostomas temporalis	X	Х											Х		
Family Neosittidae	•															
Varied Sittela	Daphoenositta chiysoptera	X	Х	х		Х								Х		
Family Pachycephalidae	• •	1														
Crested Bellbird	Oreolcia gutturalis							Х								
Rufous Whistler	Pachycephala rufiventris	X		Х							X			Х		
Family Dicruridae																
Leaden Flycatcher*	Mylagra rubecula								Х							
Australian Magple-lark	Grallina cyanoleuca												Х			Х
Willie Waglail	Rhipidura leucophrys		Х			Х								Х		
Family Campephagidae																
Black-faced Cuckoo-shrike	Coracina novaehollandiae	X	Х										Х			Х
White-bellied Cuckoo-shrike	Coracina tenuirostris								Х		X		Х	X		
White-winged Triller*	Lalage sueurii		X	Х												
Family Artamidae																
Black-faced Woodswallow	Artamus cinereus	1		Х	Х						X		Х	Х	Х	
Little Woodswallow	Artamus minor					Х							Х	X	Х	
Pied Bulcherbird	Cracticus nigrogularis												Х		Х	
Australian Magpie	Gymnorhina tibicen		Х			Х										Х
Family Corvidae																
Torresian Crow	Colvus orru				Х									Х		Х
Family Passeridae																
Double-barred Finch	Taeniopygia bichenovii								X							Х
Long-tailed Finch	Poephila acuticauda									Х	X	X				X

SC = Sandstone Scarp; CFW = Corymbia ferruginea Woodland; AHT = Acacia hammondii Thicket; Eucalyptus miniata Woodland OW = Open Woodland

Gen = General site records, recorded while travelling between sites; AS = Air Strip; Mar = Escarp and creeks on site margins; Cam = Merlin Camp Area M1 = Late Dry Season Survey Mine Area Sample Site.

X=Present at site; SL = Spot Light; PF = Pitfall Trap; ET = Elliot Trap; SK = Skeletal Remains/Skin; HS = Hair Sample from Scat; TR = Tracks UD = Ultra sonic Detection (ANABAT II Bat Detector); MN = Mist Net; HC = Hand Capture.

^{* =} species recorded by Smith (1996) but not recorded during late dry season surveys

		1		LAT	E WET 9	EASON	(Smith	1996)			LATE	DRY SEA	SON			
Common Name	Scientific Name	sc	CFW	AHT	EMW	ow	Gen	AS	Mar	Camp	M1	M2	M3	M4	M5	C≥m
Crimson Finch*	Neochinia phaeton			-				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Х							
Family Dicaeldae	·															
Mistletoebird*	Dicaeum hirundinaceum								Х							
Family Sylviidae																
Rufous Songlark*	Cincloramphus mathewsi			X	Х			X								
TOTAL BIRDS =	75 species	13	10	18	10	12	4	5	14	5	20	11	15	25	11	16
MAMMALS				, 400 ,,,,			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					,	····	•		····
Family Dasyuridae																
Northern Dibbler	Parantechinus bilarni											HS				
Family Macropodidae																
Euro	Macropus robustus										Х					
Agile Wallaby	Macropus agilis											HS				
Family Emballonuridae	, •	1														
Common Sheathtail-bat	Taphozous georgianus										αυ	UD/MN				
Family Molossidae	, , ,															
Northern Freetail-bat	Chaerephon jobensis											up				au
Beccari's Freetall-bat	Mormoplerus beccarii										up					
Family VespertitionIdae	,	j														
Gould's Wattled Bat	Chalinolobus gouldii										ļ			QU		UD
Hoary Wallled Bal	Chalinolobus nigrogriseus														QU	
Little Broad-nosed Bat	Scolorepens greyii												UD			
Finlayson's Cave Bat	Vespadelus finlaysoni	1			**							MN				
Family Muridae	•															
Delicate Mouse	Pseudomys delicatulus														HC	
Common Rock-rat	Zyzomys argurus											HS				
Family Canidae																
Dingo	Canis lupus dingo										TR				х	Х
Family Felidae	, ,															
Feral Cat	Fells calus											HS				
Family Equidae		1														
Donkey	Equus asinus	1													х	
Family Bovidae	,															

SC = Sandstone Scarp; CFW = Corymbia ferrugines Woodland; AHT = Acacia hammondii Thicket; Eucalyptus miniata Woodland OW = Open Woodland

Gen = General site records, recorded while travelling between sites; AS = Air Strip; Mar = Escarp and creeks on site margins; Cam = Merlin Camp Area M1 = Late Dry Season Survey Mine Area Sample Site.

X=Present at site; SL = Spot Light; PF = Pitfall Trap; ET = Elliot Trap; SK = Skeletal Remains/Skin; HS = Hair Sample from Scat; TR = Tracks

UD = Ultra sonic Detection (ANABAT II Bat Detector); MN = Mist Net; HC = Hand Capture.

* = species recorded by Smith (1996) but not recorded during late dry season surveys

		LATE WET SEASON (Smith 1998) LATE DRY SEASON SC CFW AHT EMW OW Gen AS Mar Camp M1 M2 M3 M4 M5 C														
Common Name	Scientific Name	sc	CFW	AHT	EMW	ow	Gen	AS	Mar	Camp	M1	M2	М3	M4	M5	Cam
Cattle	Bos taurus/Indicus													Х		Х
TOTAL MAMMALS =	16 species	0	0	0	0	0	0	0	0	0	4	7	1	2	4	4

APPENDIX I

APPENDIX **1**TERRESTRIAL FAUNA OF THE ROUTE CORRIDOR

		LA					SUF				CO		DOR	SIT	ES (RS)												
Common Name	Scientific Name	RS 1	R8 2	RS 3	RS 4	RS 5	R8 6	RS 7	RS 8	RS 9	R8 10	R8 11	R8 12	RS 13	RS 14	RS 15	RS 16	RS 17	RS 18	RS 19	RS 20	RS 21	RS 22	RS 23	RS 24	RS 25	RS 28	2
AMPHIBIANS	NAME OF THE PROPERTY OF THE PR															_												F
								<u> </u>																				-
Family Myobatrachidae	Original design About	- - -			ļ <u></u>		<u> </u>											ļ										
Froglet	Crinia deserticola	X			·													ļ										
Family Hylidae	****												<u> </u>															
Green Tree Frog	Litoria caerulea		X				_X_							ļ	X					 		-			·			
Brown Tree Frog	Litoria rothii				 			X					—			_X								i				l-
Burrowing Frog	Cyclorana australis		<u> </u>		ļ			ļ				 			 	 				***************************************			 		. 	X		-
Family Bufonidae		I —	<u> </u>												ļ		ļ	ļ	ļ									Η.
Cane Toad	Bufo marinus	PF			<u> </u>								<u> </u>		ļ							-	-					?
TOTAL AMPHIBIANS =	5 species	2	1	0	0	0	1	1	0	0	0	0	_0_	0	1	1	0	0	0	0	0	0	0	0	0	1	0	1
REPTILES					_											-												
Family Crocodylidae						_			_				 					-										1
Freshwater Crocodile	Crocodylus johnstoni	X	\vdash						_				 		-													;
Family Gekkonidae								 -						1	-				l									Γ
Northern Diella	Gehyra australis		X	X			Х				<u></u> .		l		X													$\overline{}$
Gecko	Gehyra borroloola	***************************************		<u> </u>						X				1						1								
Zig Zag Gecko	Oedura rhombifer										Х																	
Family Pygopodidae			<u> </u>										-															
Burton's Legless Lizard	Lialis burtonis																X						·					
Family Agamidae										,					\Box													
Frilled L'zard	Chlamydosaurus kingii			l												<u> </u>				-					X			
Ring-tailed Dragon	Clenophorus caudicinctus					X		X	Х											Ī								
Two-lined Dragon	Diporiphora bilineala			X												l	Х		1			1						

APPENDIX : TERRESTRIAL FAUNA OF THE ROUTE CORRIDOR

		LA	TE D	RY	SEA	SON	SUF	₹VE`	Y RC	UTE	CO	RRI	DOF	SIT	ES (RS)													
Common Name	Scientific Name	R8	RS 2	R9 3	RS 4	RS 5	RS 8	RS 7	R3 8	RS 9	R8 10	R8 11	RS 12	R8 13	RS 14	R8 15	RS 18	RS 17	RS 18	RS 19		RS 20	RS 21	RS 22	R9 23	RS 24	RS 25	RS 28	RS 27
Gilbert's Dragon	Lophognathus gilberti	×	 				x			<u> </u>	<u> </u>					X								X			Х	X	X
Family Scincidae																												l!	
Skink	Carlia amax	_			X																								
Skink	Carlia munda					X																					İ	l'	
Skink	Cryptoblepharus plagiocephalus					X	X												X										
Skink	Cryptoblepharus megastictus		X					Х								-													
Skink	Ctenotus inornalus						X		X										X										
Skink	Ctenotus pulchellus			X			Х				Х						X											I	
Fire-tailed Skink	Morethia ruficauda				X																						L		
Family Boldae																											l		
Children's Python	Liasis childreni										Ĭ						X												
Olive Python	Liasis olivacaus	,,,,,			sĸ																							l	
Family Elapidae					1									1		L`													
King Brown Snake	Pseudechis australis	X			_						_										_								-
TOTAL REPTILES =	19 species	3	2	3	3	3	5	2	2	1	2	0	0	0	1_	1	4_	0	2	0	0	0	0	1	0	1	1	1	2
BIRDS																					_								
Family Phasianidae																													
Brown Quail	Coturnix ypsilophora																	Х							X				
Family Anhingidae																													
Darter	Anhinga melanogaster	X																			[
Family Ardeldae]																								
Little Egret	Egretta garzetta	X																											
Nankeen Night Heron	Nycticorax caledonicus	X							l			l																	

APPENDIX 1 TERRESTRIAL FAUNA OF THE ROUTE CORRIDOR

		LA	E D	RY :	SEA	SON	SUI	RVE	Y RC	UTE	CO	RRI	DOF	SIT	ES (RS)												
Common Name	Scientific Name	RS 1	RS 2	RS 3	RS 4	RS 5	RS 6	RS 7	RS 8	RS 9	RS 10	RS . 11	RS 12		RS 14	RS 15	RS 16	RS 17	RS 18	RS 19	RS 20	RS 21	RS 22	RS 23	RS 24	RS 25	RS 26	R 2
Family Accipitridae																												
Black Kite	Milvus migrans	X														X						l				X	X	_
Brown Goshawk	Accipiter fascialus	X																Х										_
Family Falconidae]																					_
Brown Falcon	Falco berigora		-																					X	X		l	
Family Gruidae				_																								_
Broiga	Grus rubicunda			X																								
Family Otidae																												
Australian Bustard	Ardeotis australis										X																	
Family Charadriidae														1														
Masked Lapwing	Vanellus miles	X		<u> </u>																							X	
Family Columbidae		1	_	<u> </u>					 																			
Common Bronzewing	Phaps chalcoplera		X	X							X																	
Spinifex Pigeon	Geophaps plumifera		-					X	X		X		X		X		******			1								
Peaceful Dove	Geopelia striata				X	X				Х						Х		X	X			X					X	
Bar-shouldered Dove	Geopelia humeralis	X	X					-				-		-		X												
Family Cacatuidae	·																-											
Red-tailed Black-Cockatoo	Calyptorhynchus banksii	X		_	-																							
Galah	Cacatua roseicapilla		-																				X					
Sulphur-crested Cockatoo	Cacalua galerita	X	1																									
Family Psittacidae	·																											
Varied Lorikeet	Psitteuteles versicolor																						Х					
Red-winged Parrot	Aprosmictus erythropterus	X																										
Northern Rosella	Platycerus venustus	X				X																						
Family Cuculidae						Γ																						
Brush Cuckoo	Cacomantis variolosus	X				X									Х													
Common Koel	Eudynamys scolopacea	X	X			1	1		X					l			X	X									Х	

APPENDIX : † TERRESTRIAL FAUNA OF THE ROUTE CORRIDOR

	-	LA	TE D	RY S	SEAS	SON	SUF	RVE	Y RC	UTE	CO	RRII	DOR	SIT	ES (RS)			_									
Common Name	Scientific Name	RS 1	RS 2	RS 3	RS 4	RS 6	R8 8	RS 7	RS 8	RS 9	RS 10	RS 11	RS 12	RS 13	RS 14	RS 15	RS 16	RS 17	RS 18	RS 19	RS 20	RS 21	RS 22	RS 23	RS 24	RS 25	RS 26	RS 27
Channel billed Cuckoo	Scythrops novaehollandiae	†	×		<u> </u>				x					<u> </u>		<u> </u>					Ì				<u> </u>		İ	
Family Centropodidae																					<u> </u>							_
Pheasant Coucal	Centropus phasianinus	<u>X</u>	X	[Х							X								Х			X		
Family Strigidae					l		l								١	l			 							/	l	
Barking Owi	Ninox connivens																									/	l	X
Family Caprimulgidae	•	l														l			l			l		<u> </u>	<u> </u>	l!		
Spotted Nightjar	Eurostopodus argus										X													<u> </u>	[l'		
Family Halcyonidae																												l
Blue-winged Kookaburra	Dacelo leachii		Х					X								X											X	
Red-backed Kingfisher	Todiramphus pyrrhopygia		X		X							X				Х	Х		X	X	X					Х	l	
Sacred Kingfisher	Todiramphus sanclus]																	Х		
Family Meropidae																												
Rainbow Bee-eater	Merops ornalus	X	X	X		X	X			X		Х	X		X	Х						1				Х		
Family Coracildae																												
Dollarbird	Eurystomus orientalis	X	X						_						X	X	Х	Х				X	X	X			X	
Family Climacteridae	-																											
Black-tailed Treecreeper	Climacteris melanura									X	Х		X	X					X					X	Х			
Family Maluridae									1									_										
Variegated Falry-wren	Malurus lamberti												Х	1							1							Х
Red-backed Falry-wren	Malurus melanocephalus		X		X											Х	Х	X		X								
Family Pardalotidae																												i
Striated Pardalote	Pardololus striatus	-	×																		-							$\lceil - \rceil$
Weebill	Smicrornis brevirostris		Х		Х				X					Х		X			Х									
Family Meliphagidae						1					<u> </u>			1														
Silver-crowned Friarbird	Philemon argenticeps			Х										X		X		X	X							х	X	
Blue-faced Honeyealer	Entomyzon cyanotis	X																		·			X					
White-gaped Honeyeater	Lichenostomus unicolor	$\frac{x}{x}$					X		X				X								X							Х

APPENDIX 1 TERRESTRIAL FAUNA OF THE ROUTE CORRIDOR

		LA	TE D	RY :	SEAS	SON	SUI	RVE'	Y RC	UTE	E CO	RRI	DOR	SIT	ES (RS)											_	
Common Name	Scientific Name	RS 1	RS 2	RS 3	RS 4	R8	RS 6	RS 7	RS 8	RS 9	RS 10	RS 11	RS 12	RS 13	RS 14	RS 15	R3 16	RS 17	RS 18	RS 19	RS 20	RS 21	RS 22	RS 23	RS 24	R9 25	RS 28	R:
Grey-fronted Honeyeater	Lichenostomus plumulus	I^-				X					x	l						<u> </u>	L									
Yellow-tinted Honeyeater	Lichenostomus flavescens	X																					X					X
Brown Honeyeater	Lichmera indistincta							ļ															X	İ				X
Bar-breasted Honeyeater	Ramsayornis fascialus																							-				Х
Rulous-throated Honeyeater	Conopophila rufogularis	X								X						X			X	X	X	X		X				
Banded Honeyeater	Certhionyx pectoralis			- Mark A makes						4								1					Х					X
Family Petroicidae																			-									
Jacky Winter	Microeca fascinans				\Box						X							X		1	X							
Family Pomatostomidae									,																			
Grey-crowned Babbler	Pomatostomas temporalis	X	Х	X		Х										X					Х			X		X		
Family Neosittidae																												
Varied Sittela	Daphoenositta chrysoptera																	-	X	X								
Family Pachycephalidae								. ====																				
Crested Bellbird	Oreoicia gutturalis				****			*** - *		Х			, , , , ,			' '		-										
Rufous Whistler	Pachycephala rufiventris	X	X	Х								-				Х		X	X	X		X	Х		Х	X		X
Little Shrike-thrush	Colluricincia megarhyncha				_													1									<u> </u>	X
Sandstone Shrike-thrush	Colluricincla woodwardi					<u> </u>	Х							1	X													
Grey Shrike-thrush	Colluricincia harmonica									X										X								
Family Dicruridae					 		-														1							
Leaden Flycatcher	Mylagra rubecula	X														Х												
Restless Flycatcher	Mylagra inquieta	X																					-	1				
Australian Magple-lark	Grallina cyanoleuca	X	X				 				_					X				,			X	X		Х		
Willie Wagtall	Rhipidura leucophrys	X	-			X									X					Х							1	
Family Campephagidae	• •	-																										
Black-faced Cuckoo-shrike	Coracina novaehollandiae					X					Х					Х	Х				and the common							
White-bellied Cuckoo-shrike	Coracina tenuirostris		X	X	 			X				X		X		X				X								
White-winged Triller	Lalage sueuril		1	l						Х						l				X		X						

APPENDIX 1 TERRESTRIAL FAUNA OF THE ROUTE CORRIDOR

			(ED	RY S		ON	SUF					RRII		SIT		RS)					_							
Common Name	Scientific Name	R8 1	RS 2	RS 3	RS 4	R8 5	RS 8	R8 7	RS 8	RS 9	RS 10	R8 11	RS 12		RS 14	RS 15	RS 16	RS 17	RS 18	RS 19	RS 20	RS 21	RS 22	RS 23	RS 24	RS 25	RS 26	RS 27
Family Oriolidae																												<u> </u>
Olive-backed Oriole	Oriolus sagittalus								_										X			.				.		.]
Family Artamidae															l									J				
Black-faced Woodswallow	Artamus cinereus	l		Х						X	_X_	Х							_X	X			.	X	X			
Little Woodswallow	Artamus minor											Х		X								ļ	.	X			.	
Pled Butcherbird	Cracticus nigrogularis		Х	Х					Х			Х			<u> </u>	_X_	X	X		<u>X</u>	X		.	ļ		X	l	
Australian Magple	Gymnorhina tibicen								Х											ļ								
Family Corvidae																									<u> </u>			_
Torresian Crow	Corvus orru					X	X						X	X		X		Х		<u> </u>			_					<u>X</u>
Family Ptilonorhynchidae			I																									
Great Bowerbird	Chlamydera nuchalis	X		Х	Х	X										X							X	X		X	Х	X
Family Passeridae	-								-				_															
Zebra Finch	Taeniopygia guttata																				_				X			
Double-barred Finch	Taeniopygia bichenovii	Х	Х	X	X					X	Х			Х			,		X	X		X	X		X			X
Long-tailed Finch	Poephila acuticauda			Х						X										X	Х							
Masked Finch	Poephila personata									X																		
Crimson Finch	Neochmia phaeton	X				***************************************																						X
Star Finch	Neochmia ruficauda																				l				Х			L
Pictorella Mannikin	Heteromunia pectoralis				J. W. L. W. L. W.																			Х	Х			
																												ļ
TOTAL BIRDS =	74 species	29	18	12	6	10	4	4	7	11	10	6	8	7	7	20	6	11	11	13	7	6	12	11	8	11	8	13
		+	-						-	_		 		\vdash		-	_		-		_	-	+	+	-	+-	-	+-
MAMMALS			-						_			 -																
Family Macropodidae			Ī						\Box																			
Euro	Macropus robusius					X		Х	Х	Х		X																
Agile Wallaby	Macropus agilis		1								<u> </u>			1	HS	[X	X								1

APPENDIX 1 TERRESTRIAL FAUNA OF THE ROUTE CORRIDOR

		LA1	E D	RY S	SEAS	SON	SUF	RVE'	/ RC	UTE	CO	RRII	DOR	SIT	ES (RS)												
Common Name	Scientific Name	RS 1	RS 2			RS 5				RS 9			RS	RS	RS 14	R3 15	R8 16	R8 17	R8 18	RS 19	RS 20	RS 21	RS 22	RS 23	RS 24	RS 25	RS 26	R9
Antilopine Wallaroo	Macropus antelopinus																									X		
Family Emballonuridae								Ī																			<u> </u>	
Common Sheathtail-bat	Taphozous georgianus							MN		MN					MN													
Family Molossidae																												l
Beccari's Freetall-bat	Mormopterus beccarii	QU			***************************************				UD																			l
Family VespertitionIdae	•																											
Gould's Wattled Bat	Chalinolobus gouldii	UD																										
Large-footed Myotis	Myotis mollucarum	UD																										
Little Broad-nosed Bat	Scotorepens greyii	-				l —		UD																				
Finlayson's Cave Bat	Vespadelus finlaysoni														MN													
Family Canidae	,	***************************************																										
Dingo	Canis lupus dingo		X			l				X	X				HS												Х	
Family Equidae	, •							 -											-									
Donkey	Equus asinus	X	X			X	_			****		X				X								X			Х	X
Family Bovidae	•							_													-	-						
Cattle	Bos taurus∕indicus								 											ļ ——								
					1		\vdash														X			X	X	X	×	X
TOTAL MAMMALS =	12 species	4	2	0	0	2	0	3	2	3	1	2	0	0	4	1	0	0	1	1	1	0	0	2	1	2	3	2
	•							<u> </u>		1																		

APPENDIX J

ABORIGINAL AREAS PROTECTION AUTHORITY

AUTHORITY CERTIFICATE

Issued in accordance with Section 22 of the Abortginal Sacred Sites Act

REFERENCE:

D89/199;90/1015 (Doc:22357)

C97/037

Amendment to C97/037

COMMON SEAL

APPLYING TO:

Merlin Mine area as shown on the attached map.

PROPOSED WORK OR USE: The area will be subject to various activities relating to mining. This would

include, but would not be restricted to the erection of plant and

infrastructure, construction of a camp site, borefield, tailings and water storage facilities, construction of roads and all activities associated with

mining and processing.

ISSUED TO:

Ashton Mining Pty Ltd 21 Wynyard Street

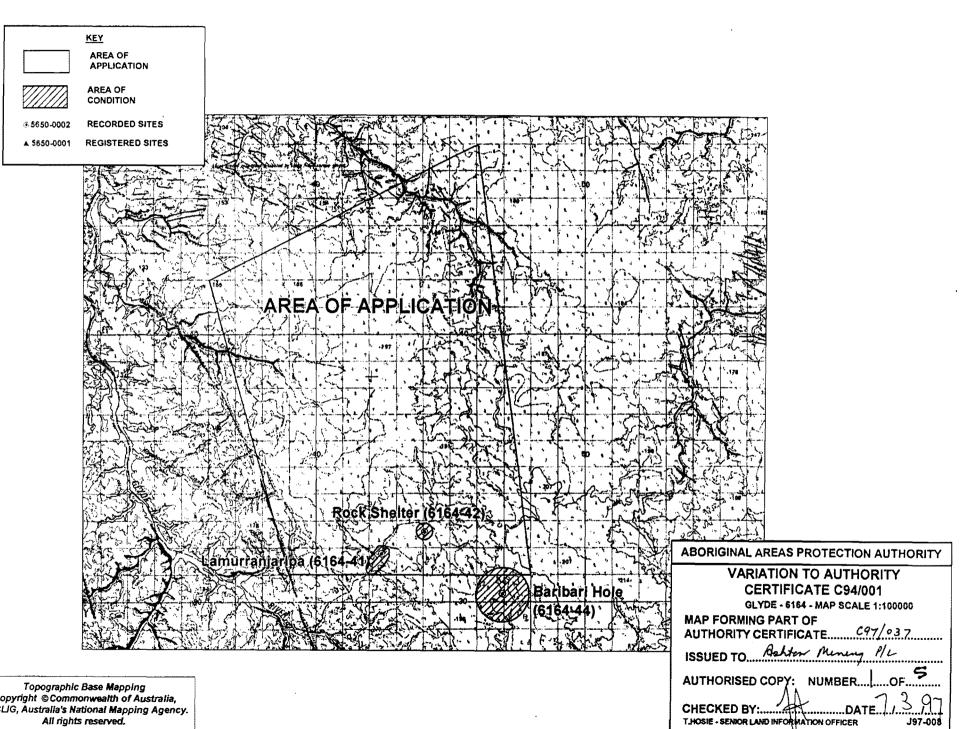
BELMONT W.A. 2096

CONDITIONS:

1. It is the responsibility of the recipient of this Certificate to:

(i) Include the conditions of this Certificate in any subsequent contract or tender document commissioning works described in this Certificate.

- (ii) Otherwise inform agents and employees of the conditions of this Certificate and obligations under the Aboriginal Sacred Sites (NT) Act 1989.
- 2. The proposed use or works covered by this Certificate must commence within 24 months of the date of issue.
- 3. The information on the map relate specifically to the areas of the Certificate as marked and the fact that sites are not shown in other areas should not be taken as a definitive indication of the existence or lack of existence of sites in these areas.
- 4. The map attached to the Certificate forms part of the Certificate.
- 5. There must be no entry to or works upon the three hatched areas labelled 6164-41, 6164-42 and 6164-44 as shown on the attached map.


The COMMON SEAL of the ABORIGINAL AREAS PROTECTION AUTHORITY was hereto affixed on the

1997

0 1

DAVID RITCHIE

Chief Executive Officer

J97-008

Copyright © Commonwealth of Australia, AUSLIG, Australia's National Mapping Agency. All rights reserved.

ABORIGINAL AREAS PROTECTION AUTHORITY

AUTHORITY CERTIFICATE

Issued in accordance with Section 22 of the Aboriginal Sacred Sites Act

REFERENCE:

D89/199;90/1015 (Doc:17701)

C96/030

APPLYING TO:

A 2 kilometre wide corridor, centred on an existing access track between Carpentaria Highway and Boomerang Creek, Borroloola district. The corridor is highlighted in yellow on the attached

map.

PROPOSED

WORK OR USE:

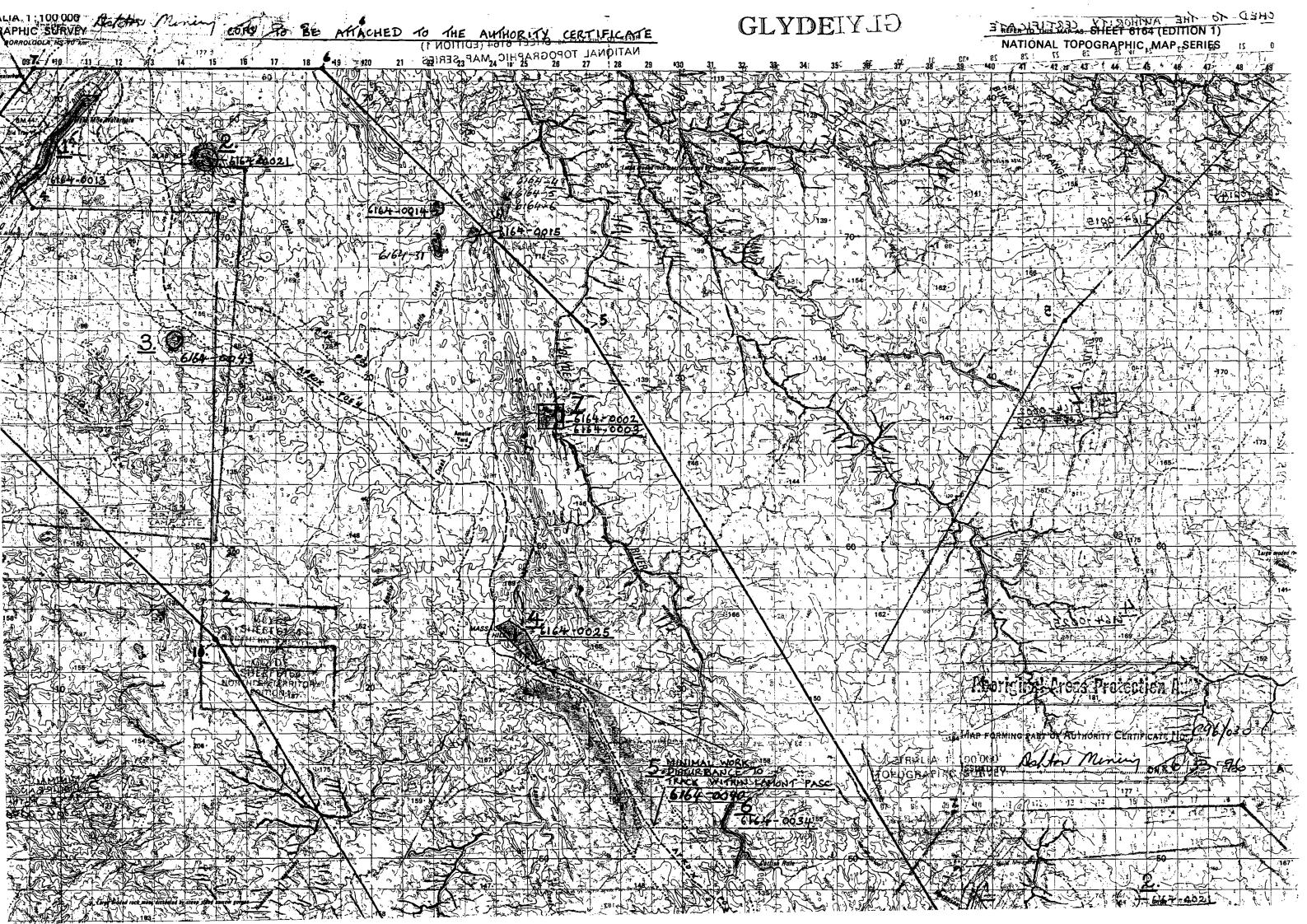
Construction of an all weather gravel access track.

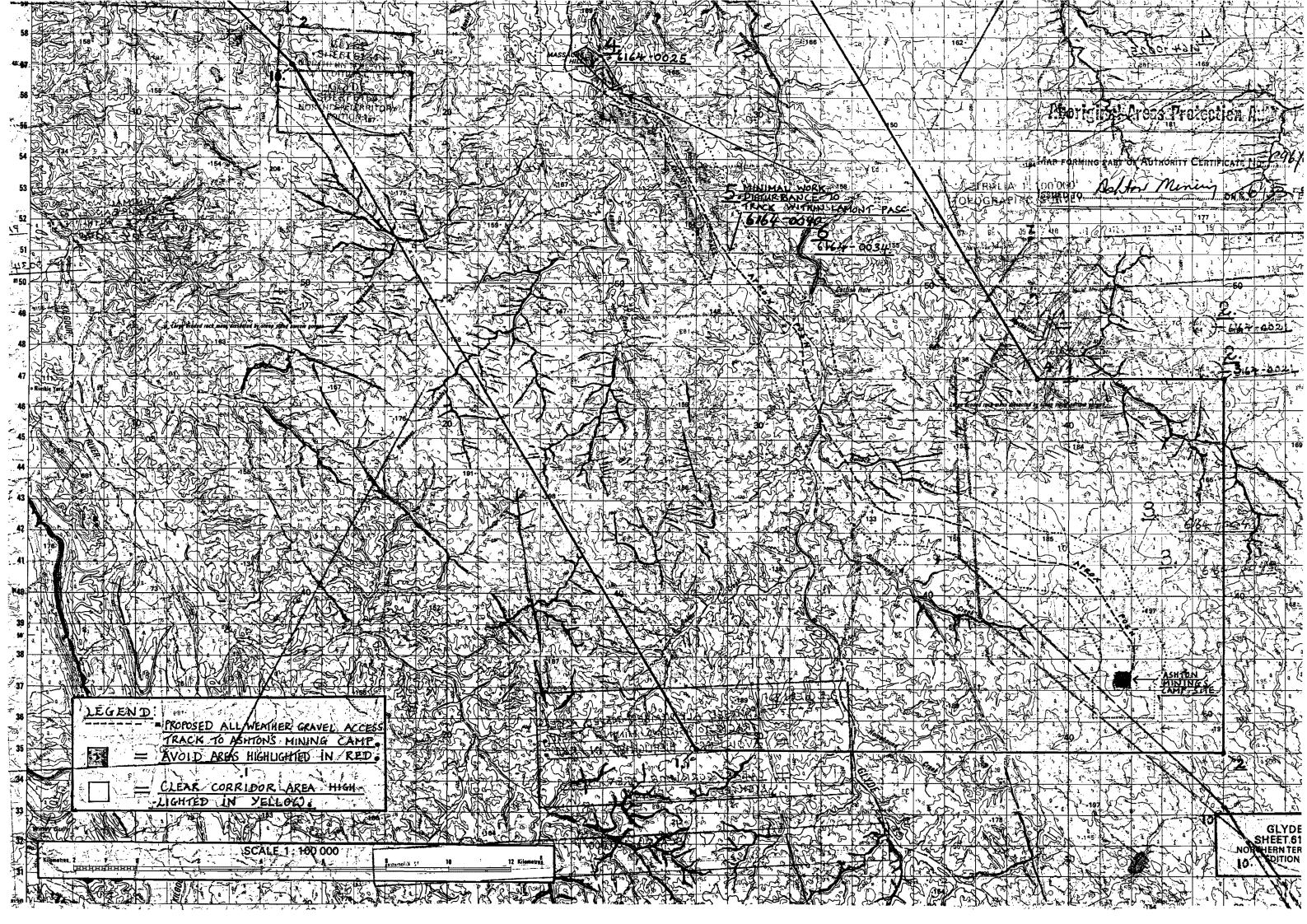
ISSUED TO:

Ashton Mining Limited 1st Floor. 24 Outram Street WEST PERTH W.A. 6005

CONDITIONS:

It is the responsibility of the recipient of this Certificate to:


Include the conditions of this Certificate in any subsequent contract or tender document commissioning works described in this Certificate.


- Otherwise inform agents and employees of the conditions of this Certificate (11) and obligations under the Abortginal Sacred Sites (NT) Act 1989.
- 2. The proposed use or works covered by this Certificate must commence within 24 months of the date of issue.
- 3. The information on the maps relate specifically to the areas of the Certificate as marked and the fact that sites are not shown in other areas should not be taken as a definitive indication of the existence or lack of existence of sites in these areas.
- The map attached to the Certificate forms part of the Certificate. 4.
- 5. No damage of the sacred sites highlighted in red on the map attached to the certificate.
- 6. Minimal disturbance to the existing track through Area 5 (Lamont Pass) as indicated on the map.

The COMMON SEAL of the ABORIGINAL AREAS PROTECTION AUTHORITY was hereto affixed on the day of

1996

DAVID RITCHIE Chief Executive Officer COMMON SEAL

APPENDIX K

Our Ref: 1/151

4 October 1995

NT 0801

GPO Box 3520 Darwin

Telephone: (089) 81 2848 Facsimile: (089) 81 2379

Ms Donna Reynolds Tenement Officer Ashton Mining Ltd. PO Box 962 **WEST PERTH WA 6872**

Dear Donna.

Re: SEL 8630 - Substantial Disturbance

Thank you for your correspondence of 3 October 1995 in which you advised of proposed substantial disturbance work at your SEL 8630. Thank you also for the detailed information you provided on the location of the proposed works.

A review of site files held by the National Trust (NT) indicates that there are no recorded sites of heritage significance on SEL 8630. However, we are aware that the area in which SEL 8630 is situated was an important part of the early pastoral endeavours in the Gulf Region of the NT and accordingly we would welcome any information that your contractors might provide should they locate any remains of these activities

Such relics would include former yards, homestead or camp sites and surface scatters of artefacts. We would be most appreciative of information on these sites in the form of position, sketch plans and photographs if possible. This would then provide us the opportunity to update our files, and importantly, increase our knowledge of the region.

I trust this information is of assistance to you and I look forward to hearing from you.

Yours sincerely,

Bob Alford

Director

Reference: 95/495

30 August 1996

Ms Melanie Cox Dames and Moore PO Box 2005 DARWIN NT 0801

Dear Ms Cox

Thank you for your enquiry requesting a search of an area in the Northern Territory covered by Latitudes/Longitudes 16 degrees 45 minutes to 16 degrees 55 minutes and 136 degrees 15 minutes to 136 degrees 25 minutes.

Upon searching our Register Database and maps, <u>no</u> listings were found in this area.

If you require any further information, please don't hesitate to contact me on (06) 217 2153.

Yours sincerely

Richard Bray

Register of the National Estate Section

APPENDIX L

APPENDIX L

Suggested Species for Rehabilitation Purposes

Family	Species Name	Common Name
Bixiaceae	Cochlospermum gregorii	Kapok
Сурегасеае	Fimbristylis squarrulosa	a sedge
Dilleniaceae	Hihbertia lepidota	a hibbertia
Euphorbiaceae	Petalostigma quadriloculare	Quinine Bush
Fabaceae	Bossiaea bossiaeoides	Bossiaea Pea
Fabaceae	Crotalaria medicaginea	Trefoil Rattlepod
Fabaceae	Jacksonia odontoclada	Jacksonia Pea
Fabaceae	Templetonia hookeri	Templetonia Pea
Fabaceae	Tephrosia spp.	pea species
Malvaceae	Hibiscus leptocladus	Native Cotton
Mimosaceae	Acacia alleniana	a wattle
Mimosaceae	Acacia dimidiata	a wattle
Mimosaceae	Acacia drepanocarpa	a wattle
Mimosaceae	Acacia gonocarpa	a wattle
Mimosaceae	Acacia hammondii	a wattle
Mimosaceae	Acacia holosericea	Candelabra Wattle
Mimosaceae	Acacia platycarpa	a wattle
Mimosaceae	Acacia malloclada	a wattle
Мутасеае	Calytrix exstipulata	Turkey Bush
Мутасеае	Corymbia dichromophloia	Small-fruited Bloodwood
Myrtaceae	Corymbia ferruginea	Rusty Bloodwood
Myrtaceae	Corymbia setosa	Rough-leaved Bloodwood
Мутасеае	Eucalyptus herbertiana	Kalamburu Gum
Myrtaceae	Eucalyptus miniata	Darwin Woollybutt
Poaceae	Heteropogon contortis	Bunch Speargrass
Poaceae	Plectrachne pungens	Soft Spinifex
Poaceae	Sorghum timorensis	Sorghum
Proteaceae	Grevillea pteridifolia	Fern-leaf Grevillea
Proteaceae	Grevillea refracta	Silver-leaf Grevillea
Rubiaceae	Pavetta brownii	a shrub
Rutaceae	Boronia lanuginosa	a boronia
	Distichostemon hispidulus	a shrub